1
|
Luo M, Wang YM, Zhao FK, Luo Y. Recent Advances in Nanomaterial-Mediated Cell Death for Cancer Therapy. Adv Healthc Mater 2025; 14:e2402697. [PMID: 39498722 DOI: 10.1002/adhm.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Collapse
Affiliation(s)
- Min Luo
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
2
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
3
|
Thomas CJ, Delgado K, Sawant K, Roy J, Gupta U, Song CS, Poojary R, de Figueiredo P, Song J. Harnessing Bacterial Agents to Modulate the Tumor Microenvironment and Enhance Cancer Immunotherapy. Cancers (Basel) 2024; 16:3810. [PMID: 39594765 PMCID: PMC11593222 DOI: 10.3390/cancers16223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment by leveraging the immune system to attack tumors. However, its effectiveness is often hindered by the immunosuppressive tumor microenvironment (TME), where a complex interplay of tumor, stromal, and immune cells undermines antitumor responses and allows tumors to evade immune detection. This review explores innovative strategies to modify the TME and enhance immunotherapy outcomes, focusing on the therapeutic potential of engineered bacteria. These bacteria exploit the unique characteristics of the TME, such as abnormal vasculature and immune suppression, to selectively accumulate in tumors. Genetically modified bacteria can deliver therapeutic agents, including immune checkpoint inhibitors and cytokines, directly to tumor sites. This review highlights how bacterial therapeutics can target critical immune cells within the TME, such as myeloid-derived suppressor cells and tumor-associated macrophages, thereby promoting antitumor immunity. The combination of bacterial therapies with immune checkpoint inhibitors or adoptive cell transfer presents a promising strategy to counteract immune suppression. Continued research in this area could position bacterial agents as a powerful new modality to reshape the TME and enhance the efficacy of cancer immunotherapy, particularly for tumors resistant to conventional treatments.
Collapse
Affiliation(s)
- Christina James Thomas
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kaylee Delgado
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kamlesh Sawant
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Jacob Roy
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Udit Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Carly Shaw Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Rayansh Poojary
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Paul de Figueiredo
- Department of Molecular Microbiology and Immunology, The University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| |
Collapse
|
4
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Kellerer M, Javed S, Casar C, Will N, Berkhout LK, Schwinge D, Krebs CF, Schramm C, Neumann K, Tiegs G. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis. Hepatology 2024; 80:844-858. [PMID: 38441998 PMCID: PMC11407778 DOI: 10.1097/hep.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.
Collapse
Affiliation(s)
- Mareike Kellerer
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacy, The University of Faisalabad, Pakistan
| | - Christian Casar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Will
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K. Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Zhang L, Liu H, Shen J, Liu W, Liu D, Cheng L, Huang B. Selenium nanoparticles enhance the anti-tumor immune responses of anti-4-1BB antibody and alleviate the adverse effects on mice. Immunobiology 2024; 229:152839. [PMID: 39094396 DOI: 10.1016/j.imbio.2024.152839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
4-1BB agonists for cancer immunotherapy have shown good preliminary efficacy in clinical trials, but several of the first-generation 4-1BB agonistic antibodies entering the clinic have failed due to safety issues. Selenium nanoparticles (SeNPs) exhibit anti-inflammatory, anti-tumor, antioxidant, and immune-modulating properties. In addition, they have been shown to have detoxifying effects and prevent oxidative liver damage. In this study, we used an anti-4-1BB antibody in combination with SeNPs to evaluate the anti-lung cancer effects in in vitro and in vivo experiments and explore the underlying mechanisms by pathological analyses, quantitative PCR, and enzyme-linked immunoassay. We found that 5 μmol·L-1 anti-4-1BB antibody combined with 1 μmol·L-1 SeNPs increased the expression of IFN-γ and promoted the killing effects of peripheral blood mononuclear cells on Lewis lung carcinoma cells, with a lethality rate up to 56.88 %. Experiments in tumor-bearing mice showed that the tumor inhibition rate was 58.61 % after treatment with 3.5 mg/kg anti-4-1BB antibody combined with 0.25 mg/kg SeNPs, and the liver function index returned to normal. When the combined treatment was compared with the antibody treatment alone, detection of immune relevant factors demonstrated that the expression of FOXP3, IL-2, IL-12, and TNF-α in the spleen was downregulated, whereas the expression of IFN-γ in the spleen, serum, and tumor was upregulated, accompanied by increased Fas ligand expression in the tumor tissues. Based on these findings, we get the conclusion that anti-4-1BB antibody combined with SeNPs may alleviate the immunosuppression of regulatory T cells, promote the immune cell proliferation and metastasis to synergistically kill tumor cells. This combination also reduces the inflammatory damage to normal tissues and slows overstimulation of the splenic immune response.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Sciences, Anhui University, Hefei 230601, China; Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Houru Liu
- School of Life Sciences, Anhui University, Hefei 230601, China; Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Jie Shen
- School of Life Sciences, Anhui University, Hefei 230601, China; Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology co., Ltd, Hefei, Anhui 230088, China
| | - Dahai Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Medicine, Foshan University, Foshan 528000, Guangdong, People's Republic of China.
| | - Liansheng Cheng
- Hefei HankeMab Biotechnology co., Ltd, Hefei, Anhui 230088, China.
| | - Bei Huang
- School of Life Sciences, Anhui University, Hefei 230601, China; Center for Stem Cell and Translational Medicine, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Papadaki MA, Papadaki E, Chatziavraam S, Aggouraki D, Michaelidou K, Fotsitzoudis C, Vassilakopoulou M, Mavroudis D, Agelaki S. Prognostic Value of Fas/Fas Ligand Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Patients with Metastatic Breast Cancer. Cancers (Basel) 2024; 16:2927. [PMID: 39272785 PMCID: PMC11393959 DOI: 10.3390/cancers16172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Eleni Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Sofia Chatziavraam
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Vassilakopoulou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
8
|
Dhaouadi S, Bouhaouala-Zahar B, Orend G. Tenascin-C targeting strategies in cancer. Matrix Biol 2024; 130:1-19. [PMID: 38642843 DOI: 10.1016/j.matbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological conditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already extensively targeted in clinical trials on cancer patients. This review provides an overview of the current most advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced clinical strategies. We also discuss novel treatment protocols, where targeting immune modulating functions of TNC could be center stage.
Collapse
Affiliation(s)
- Sayda Dhaouadi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| | - Gertraud Orend
- INSERM U1109, The Tumor Microenvironment laboratory, Université Strasbourg, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
9
|
Pelizzari-Raymundo D, Maltret V, Nivet M, Pineau R, Papaioannou A, Zhou X, Caradec F, Martin S, Le Gallo M, Avril T, Chevet E, Lafont E. IRE1 RNase controls CD95-mediated cell death. EMBO Rep 2024; 25:1792-1813. [PMID: 38383861 PMCID: PMC11014915 DOI: 10.1038/s44319-024-00095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.
Collapse
Affiliation(s)
- Diana Pelizzari-Raymundo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Victoria Maltret
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Manon Nivet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Alexandra Papaioannou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Flavie Caradec
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sophie Martin
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
10
|
Rolski F, Tkacz K, Węglarczyk K, Kwiatkowski G, Pelczar P, Jaźwa-Kusior A, Bar A, Kuster GM, Chłopicki S, Siedlar M, Kania G, Błyszczuk P. TNF-α protects from exacerbated myocarditis and cardiac death by suppressing expansion of activated heart-reactive CD4+ T cells. Cardiovasc Res 2024; 120:82-94. [PMID: 37879102 PMCID: PMC10898940 DOI: 10.1093/cvr/cvad158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS Tumour necrosis factor α (TNF-α) represents a classical pro-inflammatory cytokine, and its increased levels positively correlate with the severity of many cardiovascular diseases. Surprisingly, some heart failure patients receiving high doses of anti-TNF-α antibodies showed serious health worsening. This work aimed to examine the role of TNF-α signalling on the development and progression of myocarditis and heart-specific autoimmunity. METHODS AND RESULTS Mice with genetic deletion of TNF-α (Tnf+/- and Tnf-/-) and littermate controls (Tnf+/+) were used to study myocarditis in the inducible and the transgenic T cell receptor (TCRM) models. Tnf+/- and Tnf-/- mice immunized with α-myosin heavy chain peptide (αMyHC) showed reduced myocarditis incidence, but the susceptible animals developed extensive inflammation in the heart. In the TCRM model, defective TNF-α production was associated with increased mortality at a young age due to cardiomyopathy and cardiac fibrosis. We could confirm that TNF-α as well as the secretome of antigen-activated heart-reactive effector CD4+ T (Teff) cells effectively activated the adhesive properties of cardiac microvascular endothelial cells (cMVECs). Our data suggested that TNF-α produced by endothelial in addition to Teff cells promoted leucocyte adhesion to activated cMVECs. Analysis of CD4+ T lymphocytes from both models of myocarditis showed a strongly increased fraction of Teff cells in hearts, spleens, and in the blood of Tnf+/- and Tnf-/- mice. Indeed, antigen-activated Tnf-/- Teff cells showed prolonged long-term survival and TNF-α cytokine-induced cell death of heart-reactive Teff. CONCLUSION TNF-α signalling promotes myocarditis development by activating cardiac endothelial cells. However, in the case of established disease, TNF-α protects from exacerbating cardiac inflammation by inducing activation-induced cell death of heart-reactive Teff. These data might explain the lack of success of standard anti-TNF-α therapy in heart failure patients and open perspectives for T cell-targeted approaches.
Collapse
Affiliation(s)
- Filip Rolski
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265, Cracow 30-663, Poland
| | - Karolina Tkacz
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265, Cracow 30-663, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265, Cracow 30-663, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Paweł Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | | | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Gabriela M Kuster
- Clinic of Cardiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Cracow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265, Cracow 30-663, Poland
| | - Gabriela Kania
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Wielicka 265, Cracow 30-663, Poland
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| |
Collapse
|
11
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
12
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
13
|
Galsky MD, Daneshmand S, Izadmehr S, Gonzalez-Kozlova E, Chan KG, Lewis S, Achkar BE, Dorff TB, Cetnar JP, Neil BO, D'Souza A, Mamtani R, Kyriakopoulos C, Jun T, Gogerly-Moragoda M, Brody R, Xie H, Nie K, Kelly G, Horowitz A, Kinoshita Y, Ellis E, Nose Y, Ioannou G, Cabal R, Del Valle DM, Haines GK, Wang L, Mouw KW, Samstein RM, Mehrazin R, Bhardwaj N, Yu M, Zhao Q, Kim-Schulze S, Sebra R, Zhu J, Gnjatic S, Sfakianos J, Pal SK. Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: a phase 2 trial. Nat Med 2023; 29:2825-2834. [PMID: 37783966 PMCID: PMC10667093 DOI: 10.1038/s41591-023-02568-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Cystectomy is a standard treatment for muscle-invasive bladder cancer (MIBC), but it is life-altering. We initiated a phase 2 study in which patients with MIBC received four cycles of gemcitabine, cisplatin, plus nivolumab followed by clinical restaging. Patients achieving a clinical complete response (cCR) could proceed without cystectomy. The co-primary objectives were to assess the cCR rate and the positive predictive value of cCR for a composite outcome: 2-year metastasis-free survival in patients forgoing immediate cystectomy or
Collapse
Affiliation(s)
- Matthew D Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin G Chan
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sara Lewis
- Department of Radiology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bassam El Achkar
- Department of Radiology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanya B Dorff
- Department of Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jeremy Paul Cetnar
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Brock O Neil
- Department of Urology, University of Utah, Salt Lake City, UT, USA
| | - Anishka D'Souza
- Division of Hematology and Medical Oncology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ronac Mamtani
- Division of Hematology and Medical Oncology, University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Christos Kyriakopoulos
- Division of Hematology and Medical Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Tomi Jun
- Genentech, South San Francisco, CA, USA
- Formerly with the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahalya Gogerly-Moragoda
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yayoi Kinoshita
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohei Nose
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael Cabal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane M Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Kenneth Haines
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Wang
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gene Dx, Stamford, CT, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Samstein
- Department of Radiation Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Qianqian Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gene Dx, Stamford, CT, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Sfakianos
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumanta K Pal
- Department of Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
14
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
15
|
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, Zhao GR, Xu FH. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol 2023; 14:1199173. [PMID: 37457707 PMCID: PMC10348220 DOI: 10.3389/fimmu.2023.1199173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.
Collapse
Affiliation(s)
- Ya-long Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Fei Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zhuan-qing Huang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuan-yuan Li
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Hao-yuan Shi
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yue Ma
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yao Wang
- Department of Biotherapeutic, The First Medical Centre, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ying Zhang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Sen Yang
- Chinese People’s Armed Police Force Hospital of Beijing, Beijing, China
| | - Guan-ren Zhao
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Feng-hua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| |
Collapse
|
16
|
Kim IY, Kim HY, Song HW, Park JO, Choi YH, Choi E. Functional enhancement of exosomes derived from NK cells by IL-15 and IL-21 synergy against hepatocellular carcinoma cells: The cytotoxicity and apoptosis in vitro study. Heliyon 2023; 9:e16962. [PMID: 37484408 PMCID: PMC10361042 DOI: 10.1016/j.heliyon.2023.e16962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Exosomes are released by various cells, including natural killer (NK) cells and transport signaling molecules for the intercellular communication. Hepatocellular carcinoma (HCC), also known as primary liver cancer, is often inoperable and difficult to accurate diagnosis. Notably, the prognosis and underlying mechanisms of HCC are not fully understood. Exosomes-derived NK cells (NK-exos) express unique cytotoxic proteins with a killing ability in tumors and can easily penetrate tumor tissues to improve their targeting ability. NK cell functions, inducing cellular cytotoxicity are modulated by cytokines such as interleukin (IL)-15 and IL-21. However, the mechanisms and effects of cytokines-stimulated NK-exos for the treatment of liver cancer, including HCC, are not well known. In this study, we aimed to investigate the synergistic anti-tumor effects of NK-exos stimulated with IL-15 and IL-21 (NK-exosIL-15/21) in Hep3B cells. Our findings revealed that NK-exosIL-15/21 expressed cytotoxic proteins (perforin and granzyme B) and contained typical exosome markers (CD9 and CD63) within the size range of 100-150 nm. Moreover, we demonstrated that NK-exosIL-15/21 induced the enhancement of cytotoxicity and apoptotic activity in Hep3B cells by activating the specific pro-apoptotic proteins (Bax, cleaved caspase 3, cleaved PARP, perforin, and granzyme B) and inhibiting the anti-apoptotic protein (Bcl-2). In summary, our results suggest that NK-exosIL-15/21 regulate strong anti-tumor effects of HCC cells, by increasing the cytotoxicity and apoptosis through the activation of specific cytotoxic molecules.
Collapse
Affiliation(s)
- In-Young Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Hyeong-woo Song
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
17
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
18
|
Casari G, Dall'Ora M, Melandri A, Masciale V, Chiavelli C, Prapa M, Neri G, Spano MC, Murgia A, D'Esposito A, Baschieri MC, Ceccherelli GB, Dominici M, Grisendi G. Impact of soluble tumor necrosis factor-related apoptosis-inducing ligand released by engineered adipose mesenchymal stromal cells on white blood cells. Cytotherapy 2023; 25:605-614. [PMID: 37012089 DOI: 10.1016/j.jcyt.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AIMS The proapoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is physiologically expressed by immune cells and performs regulatory functions in infections, autoimmune diseases and cancer, where it acts as a tumor suppressor. Adipose-derived mesenchymal stromal cells (AD-MSCs) also may play immunomodulatory roles in both primary and acquired immune responses. We have previously demonstrated the efficacy of an anticancer gene therapy based on AD-MSC engineered to secrete a soluble TRAIL variant (sTRAIL) against pancreatic cancer. However, the impact of AD-MSC sTRAIL on leukocyte subsets has been not yet considered also to predict a possible immunotoxicity profile in the clinical translation of this cell-based anticancer strategy. METHODS Monocytes, polymorphonuclear cells and T lymphocytes were freshly isolated from the peripheral blood of healthy donors. Immunophenotype and functional (DR4 and DR5) and decoy (DcR1 and DcR2) TRAIL receptors were tested by flow cytometry. The viability of white blood cells treated with sTRAIL released by gene-modified AD-MSC or co-cultured with AD-MSC sTRAIL was then evaluated by both metabolic assays and flow cytometry. In addition, cytokine profile in co-cultures was analyzed by multiplex enzyme-linked immunosorbent assay. RESULTS Monocytes and polymorphonuclear cells showed high positivity for DR5 and DcR2, respectively, whereas T cells revealed negligible expression of all TRAIL receptors. Irrespective of TRAIL receptors' presence on the cell membrane, white blood cells were refractory to the proapoptotic effect displayed by sTRAIL secreted by gene-modified AD-MSC, and direct cell-to-cell contact with AD-MSC sTRAIL had negligible impact on T-cell and monocyte viability. Cytokine crosstalk involving interleukin 10, tumor necrosis factor alpha, and interferon gamma secreted by T lymphocytes and vascular endothelial growth factor A and interleukin 6 released by AD-MSC was highlighted in T-cell and AD-MSC sTRAIL co-cultures. CONCLUSIONS In summary, this study demonstrates the immunological safety and thus the clinical feasibility of an anticancer approach based on AD-MSC expressing the proapoptotic molecule sTRAIL.
Collapse
Affiliation(s)
- Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | | | - Aurora Melandri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Medical Technical Sciences, Universiteti Barleti, Tirana, Albania
| | - Giovanni Neri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Angela D'Esposito
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cristina Baschieri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; EVOTEC (Modena) Srl, Medolla, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
19
|
Yang C, Li D, Ko CN, Wang K, Wang H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front Immunol 2023; 14:1133050. [PMID: 36969211 PMCID: PMC10036358 DOI: 10.3389/fimmu.2023.1133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Immunotherapy is a type of treatment that uses our own immune system to fight cancer. Studies have shown that traditional Chinese medicine (TCM) has antitumor activity and can enhance host immunity. This article briefly describes the immunomodulatory and escape mechanisms in tumors, as well as highlights and summarizes the antitumor immunomodulatory activities of some representative active ingredients of TCM. Finally, this article puts forward some opinions on the future research and clinical application of TCM, aiming to promote the clinical applications of TCM in tumor immunotherapy and to provide new ideas for the research of tumor immunotherapy using TCM.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| |
Collapse
|
20
|
Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX. Natural Killer Cell-Derived Extracellular Vesicles as a Promising Immunotherapeutic Strategy for Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044026. [PMID: 36835438 PMCID: PMC9964266 DOI: 10.3390/ijms24044026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Jin Min Cheah
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391-457677
| |
Collapse
|
21
|
Butyrate limits human natural killer cell effector function. Sci Rep 2023; 13:2715. [PMID: 36792800 PMCID: PMC9932090 DOI: 10.1038/s41598-023-29731-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiota regulates chronic inflammation and has been implicated in the pathogenesis of a broad spectrum of disease including autoimmunity and cancer. Microbial short-chain fatty acids (SCFAs) e.g., butyrate have demonstrated immunomodulatory effects and are thought to be key mediators of the host-microbiome interaction. Here, we investigated the effect of butyrate on effector functions of blood derived human NK cells stimulated for 18 h with a combination of IL-12/IL-15, a potent mix of cytokines that drive NK cell activation. We show that butyrate has a strong anti-inflammatory effect on NK cells. NK cells cultured in the presence of butyrate expressed lower levels of activating receptors (TRAIL, NKp30, NKp44) and produced lower levels of cytokines (IFNγ, TNF-α, IL-22, granzyme B, granzyme A, perforin) in response to IL-12/IL-15. Butyrate restricted NK cell function by downregulation of mTORC1 activity, c-Myc mRNA expression and metabolism. Using a shotgun proteomic approach, we confirmed the effect of butyrate on NK cell cytokine signaling and metabolism and identified BRD2, MAT2A and EHD1 as downstream mediators of these effects. This insight into the immunomodulatory activity of butyrate on human NK cell function might help to develop new ways to limit NK cell function during chronic inflammation.
Collapse
|
22
|
Zhong Y, Yang F, Su T, Wu X, Zheng W, Zhang L, Liang G, Wang L, Wang L, Wang S, Yang H. Proteome and phosphoproteome profiling of non-small cell lung cancer cell line A549 treated with TRAIL. Proteomics 2023; 23:e2200248. [PMID: 36222260 DOI: 10.1002/pmic.202200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is recognized for its promising therapeutic effects against cancer. However, mechanisms underlying the effect of TRAIL on protein expression, signal transduction, and apoptosis induction remain unclear. We surmised that a systematic analysis of the proteome and phosphoproteome associated with TRAIL signaling may help elucidate the mechanisms involved and facilitate the development of therapeutics. Therefore, we investigated the proteome and phosphoproteome of non-small cell lung cancer cell line A549 treated with TRAIL. Our results indicated that 126 proteins and 1684 phosphosites were markedly differentially expressed between the phosphate-buffered saline- and TRAIL-treated groups. The expression at protein and phosphosite levels were not completely consistent. Gene ontology functional analysis revealed that metal ion (zinc) binding was highly affected by TRAIL treatment. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that almost all pathways that involved differentially expressed phosphosites were associated with apoptosis. We also identified an important kinase, AKT1, and its series of substrates in TRAIL signaling. The results of this study may provide guidance for future research on tumor therapy using TRAIL.
Collapse
Affiliation(s)
- Yi Zhong
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fen Yang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyu Wu
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Chengdu Centre for Disease Control and Prevention, Chengdu, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shisheng Wang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
24
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
25
|
Chandrasekar AP, Cummins NW, Natesampillai S, Misra A, Alto A, Laird G, Badley AD. The BCL-2 Inhibitor Venetoclax Augments Immune Effector Function Mediated by Fas Ligand, TRAIL, and Perforin/Granzyme B, Resulting in Reduced Plasma Viremia and Decreased HIV Reservoir Size during Acute HIV Infection in a Humanized Mouse Model. J Virol 2022; 96:e0173022. [PMID: 36448802 PMCID: PMC9769373 DOI: 10.1128/jvi.01730-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The BCL-2 prosurvival protein is implicated in HIV persistence and is a potential therapeutic target for HIV eradication efforts. We now know that cells harboring HIV are preferentially enriched for high BCL-2 expression, enabling their survival, and that the BCL-2 inhibitor venetoclax promotes the death of actively replicating HIV-infected cells in vitro and ex vivo. Herein, we assess the effect of venetoclax on immune clearance of infected cells and show that BCL-2 inhibition significantly enhances target cell killing induced by Fas ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), and perforin/granzyme B and synergistically enhances autologous NK (natural killer) and CD8 cells' killing of target cells. In a humanized mouse model of acute HIV infection, venetoclax monotherapy significantly decreases plasma viremia and normalizes CD4:CD8 ratios, and results in more mice with undetectable provirus levels than control. In this model, treatment was associated with leukopenia, as has been described clinically in patients receiving venetoclax for other indications. These data confirm meaningful anti-HIV effects of venetoclax during HIV infection but suggest that venetoclax use should be combined with ART (antiretroviral therapy) to reduce toxicity. IMPORTANCE This study is the first to examine the applicability of BCL-2 inhibition in the setting of active HIV infection in vivo. Furthermore, this study demonstrates that venetoclax significantly enhances target cell killing induced by Fas ligand, TRAIL, and perforin/granzyme B and synergistically enhances autologous NK and CD8 cells' killing of target cells.
Collapse
Affiliation(s)
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Greg Laird
- Accelevir Diagnostics, Baltimore, Maryland, USA
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Pal S, Sheff S, Al-Kuhlani M, Ojcius DM, de la Maza LM. Role of TRAIL-R in Primary and Secondary Genital and Respiratory Chlamydia muridarum Infections in Mice. Microbiol Spectr 2022; 10:e0161722. [PMID: 35876584 PMCID: PMC9431660 DOI: 10.1128/spectrum.01617-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor (TRAIL-R) suppresses inflammation and could therefore affect the course of Chlamydia infections and their long-term sequelae. Wild-type (WT) and TRAIL-R-/- C57BL/6 mice were inoculated vaginally with Chlamydia muridarum; the course of the infection was followed with vaginal cultures and the presence of hydrosalpinx determined. To evaluate the role of TRAIL-R following a secondary infection, the mice were vaginally reinfected. WT and TRAIL-R-/- male mice were also infected and reinfected in the respiratory tract, and the course of the diseases and the infections were followed. Following the primary and secondary vaginal infection, no significant differences in vaginal shedding or hydrosalpinx formation were observed between the WT and TRAIL-R-/- mice. The WT and TRAIL-R-/- mice mounted antibody responses in serum and vaginal washes that were not significantly different. After the primary and secondary intranasal infections of the male mice, changes in body weight were determined, and no significant differences were observed between the WT and TRAIL-R-/- mice. Ten days after the primary and the secondary infections, the weight of the lungs and number of C. muridarum inclusion forming units (IFU) were determined. The lungs of the WT mice weighed less compared with the TRAIL-R-/- mice following a primary infection but not after a secondary infection. No differences in the number of C. muridarum IFU in the lungs were observed between the two groups of mice. In conclusion, despite playing a role in inflammation cell-signaling pathways in vitro, TRAIL-R does not appear to play a major role in the susceptibility, clinical outcomes, or long-term sequelae of C. muridarum infections in vivo. IMPORTANCE TNF-related apoptosis-inducing ligand receptor (TRAIL-R) is involved in suppressing inflammatory responses. Bacterial pathogens such as Chlamydia spp. elicit inflammatory responses in humans following genital, ocular, and respiratory infections. The inflammatory responses are important to control the spread of Chlamydia. However, in certain instances, these inflammatory responses can produce long-term sequelae, including fibrosis. Fibrosis, or scarring, in the genital tract, eye, and respiratory system results in functional deficiencies, including infertility, blindness, and chronic obstructive lung disease, respectively. The goal of this study was to determine if mice deficient in TRAIL-R infected in the genital and respiratory tracts with Chlamydia spp. suffer more or less severe infections, infertility, or lung diseases than wild-type mice. Our results show no differences between the immune responses, infection severity, and long-term sequelae between TRAIL-R knockout and wild-type animals following a genital or a respiratory infection with Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | - Sydni Sheff
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| | - Mufadhal Al-Kuhlani
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
- Life Science Department, Fresno City College, Fresno, California, USA
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
27
|
Wu J, He B, Miao M, Han X, Dai H, Dou H, Li Y, Zhang X, Wang G. Enhancing Natural Killer Cell-Mediated Cancer Immunotherapy by the Biological Macromolecule Nocardia rubra Cell-Wall Skeleton. Pathol Oncol Res 2022; 28:1610555. [PMID: 36110249 PMCID: PMC9468226 DOI: 10.3389/pore.2022.1610555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
The biological macromolecule Nocardia rubra cell-wall skeleton (Nr-CWS) has well-established immune-stimulating and anti-tumor activities. However, the role of Nr-CWS on natural killer (NK) cells remains unclear. Here, we explore the function and related mechanisms of Nr-CWS on NK cells. Using a tumor-bearing model, we show that Nr-CWS has slightly effect on solid tumor. In addition, using a tumor metastasis model, we show that Nr-CWS suppresses the lung metastasis induced by B16F10 melanoma cells in mice, which indicates that Nr-CWS may up-regulate the function of NK cells. Further investigation demonstrated that Nr-CWS can increase the expression of TRAIL and FasL on spleen NK cells from Nr-CWS treated B16F10 tumor metastasis mice. The spleen index and serum levels of TNF-α, IFN-γ, and IL-2 in B16F10 tumor metastasis mice treated with Nr-CWS were significantly increased. In vitro, the studies using purified or sorted NK cells revealed that Nr-CWS increases the expression of CD69, TRAIL, and FasL, decreases the expression of CD27, and enhances NK cell cytotoxicity. The intracellular expression of IFN-γ, TNF-α, perforin (prf), granzyme-B (GrzB), and secreted TNF-α, IFN-γ, IL-6 of the cultured NK cells were significantly increased after treatment with Nr-CWS. Overall, the findings indicate that Nr-CWS could suppress the lung metastasis induced by B16F10 melanoma cells, which may be exerted through its effect on NK cells by promoting NK cell terminal differentiation (CD27lowCD11bhigh), and up-regulating the production of cytokines and cytotoxic molecules.
Collapse
Affiliation(s)
- Jie Wu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Baojun He
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Miao Miao
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Xibin Han
- Laboratory Animal Center, Jinzhou Medical University, Jinzhou, China
| | - Hongyan Dai
- Department of Outpatient PICC, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Heng Dou
- Greatest Biopharma Limited Company, Benxi, China
| | - Yanqiu Li
- Greatest Biopharma Limited Company, Benxi, China
| | - Xiaoqing Zhang
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
- *Correspondence: Xiaoqing Zhang, ; Guangchuan Wang,
| | - Guangchuan Wang
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Xiaoqing Zhang, ; Guangchuan Wang,
| |
Collapse
|
28
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
29
|
Regis S, Dondero A, Spaggiari GM, Serra M, Caliendo F, Bottino C, Castriconi R. miR-24-3p down-regulates the expression of the apoptotic factors FasL and BIM in human natural killer cells. Cell Signal 2022; 98:110415. [PMID: 35870695 DOI: 10.1016/j.cellsig.2022.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are involved in the regulation of different functions in immune and non-immune cells. Here we show that miR-24-3p functionally interacts with FASLG mRNA and down-regulates its expression. This interaction occurs in human natural killer cells (NK), leading to the modulation of FasL surface expression. Moreover, miR-24-3p also modulates the mRNA and protein expression of BIM in NK cells. Thus, it likely contributes to the control of both the extrinsic and intrinsic apoptotic pathways. In line with this hypothesis, inhibition of miR-24-3p improves both initiator caspase-8 and effector caspase-3 and -7 activities, increases cell apoptosis, and reduces cell viability. Our data suggest that miR-24-3p can act as a survival factor in NK cells, affecting the FasL-mediated killing of Fas expressing cells and the BIM-dependent cell death. More generally, miR-24-3p may condition the level of cell apoptosis, which increases at the contraction phase of the immune response when the clearance of various expanded effector cells is needed.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Grazia Maria Spaggiari
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
30
|
Rampado R, Caliceti P, Agostini M. Latest Advances in Biomimetic Cell Membrane-Coated and Membrane-Derived Nanovectors for Biomedical Applications. NANOMATERIALS 2022; 12:nano12091543. [PMID: 35564251 PMCID: PMC9104043 DOI: 10.3390/nano12091543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023]
Abstract
In the last decades, many nanovectors were developed for different diagnostic or therapeutic purposes. However, most nanosystems have been designed using a “bottom-up” approach, in which the basic components of the nanovector become assembled to achieve complex and specific behaviors. Despite the fine control of formulative conditions, the complexity of these systems often results cumbersome and difficult to scale-up. Recently, biomimetic materials emerged as a complementary or alternative design approach through a “top-down strategy”, using cell-derived materials as building blocks to formulate innovative nanovectors. The use of cell membranes as nanoparticle coatings endows nanomaterials with the biological identity and some of the functions of the cells they are derived from. In this review, we discuss some of the latest examples of membrane coated and membrane-derived biomimetic nanomaterials and underline the common general functions offered by the biomaterials used. From these examples, we suggest a systematic classification of these biomimetic materials based on their biological sources and formulation techniques, with their respective advantages and disadvantages, and summarize the current technologies used for membranes isolation and integration on nanovectors. We also discuss some current technical limitations and hint to future direction of the improvement for biomimetics.
Collapse
Affiliation(s)
- Riccardo Rampado
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (R.R.); (P.C.)
- Nano-Inspired Biomedicine Lab, Insitute of Pediatric Research-Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (R.R.); (P.C.)
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Insitute of Pediatric Research-Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
- Correspondence:
| |
Collapse
|
31
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. eLife 2022; 11:70848. [PMID: 35379387 PMCID: PMC8983048 DOI: 10.7554/elife.70848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells belong to a family of innate-like T cells that bridge innate and adaptive immunities. Although MAIT cells have been implicated in tumor immunity, it currently remains unclear whether they function as tumor-promoting or inhibitory cells. Therefore, we herein used induced pluripotent stem cell (iPSC) technology to investigate this issue. Murine MAIT cells were reprogrammed into iPSCs and redifferentiated towards MAIT-like cells (m-reMAIT cells). m-reMAIT cells were activated by an agonist in the presence and absence of antigen-presenting cells and MR1-tetramer, a reagent to detect MAIT cells. This activation accompanied protein tyrosine phosphorylation and the production of T helper (Th)1, Th2, and Th17 cytokines and inflammatory chemokines. Upon adoptive transfer, m-reMAIT cells migrated to different organs with maturation in mice. Furthermore, m-reMAIT cells inhibited tumor growth in the lung metastasis model and prolonged mouse survival upon tumor inoculation through the NK cell-mediated reinforcement of cytolytic activity. Collectively, the present results demonstrated the utility and role of m-reMAIT cells in tumor immunity and provide insights into the function of MAIT cells in immunity.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Yukie Murakami
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Eisuke Ishii
- Department of Dermatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
33
|
Koliaki C, Katsilambros N. Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence. Int J Mol Sci 2022; 23:ijms23063225. [PMID: 35328646 PMCID: PMC8949963 DOI: 10.3390/ijms23063225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF protein superfamily, represents a multifaceted cytokine with unique biological features including both proapoptotic and pro-survival effects in different cell types depending on receptor interactions and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a growing body of experimental and clinical evidence over the past two decades suggests a protective role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities, caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship and delineate its therapeutic implications in metabolic disease.
Collapse
|
34
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|
35
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
36
|
Groysman L, Carlsen L, Huntington KE, Shen WH, Zhou L, El-Deiry WS. Chemotherapy-induced cytokines and prognostic gene signatures vary across breast and colorectal cancer. Am J Cancer Res 2021; 11:6086-6106. [PMID: 35018244 PMCID: PMC8727797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which chemotherapeutic drugs mediate efficacy and toxicity in patients across cancers are not fully understood. A poorly understood aspect of the tumor cell response to chemotherapy is cytokine regulation. Some drug-induced cytokines promote the anti-cancer activity of the drugs, but others may promote proliferation, metastasis, and drug resistance. We evaluated effects of clinical chemotherapeutics oxaliplatin, cisplatin, 5-fluorouracil (5-FU), doxorubicin, paclitaxel, docetaxel, and carboplatin on a panel of 52 cytokines in MCF7 breast cancer (BC) cells. We observed pan-drug effects, such as the upregulation of TRAIL-R2 and Chitinase 3-like 1 and drug-specific effects on interleukin and CXCL cytokines. We compared cytokine regulation in MCF7 BC and HCT116 colorectal cancer (CRC) cells, revealing tissue-specific drug effects such as enhanced upregulation of TRAIL-R2 and downregulation of IFN-β and TRAIL in MCF7 by cisplatin, oxaliplatin, and 5-FU. We found that chemotherapy-inducible transcripts have varying potential for prognostic significance in CRC versus BC. Among the non-prognostic CRC genes that were prognostic in BC were NFKBIA and GADD45A, both of which support anti-cancer drug mechanisms. Thus, we establish a novel 7-drug, 52-cytokine signature in MCF7 BC cells and a 3-drug, 40-cytokine signature in HCT116 CRC cells that suggest drug-specific and tissue-specific cytokine regulation. Distinct differences across prognostic gene signatures in BC and CRC further support tissue specificity in the relative impact of drug-regulated genes on patient survival.
Collapse
Affiliation(s)
- Leya Groysman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Macaulay Honors College at Hunter College, CUNYManhattan, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell UniversityNY 10065, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Kelsey E Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell UniversityNY 10065, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Hematology-Oncology Division, Brown University and The Lifespan Cancer InstituteProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| |
Collapse
|
37
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
38
|
Benchabane S, Slimani-Kaddouri A, Acheli D, Bendimerad-Iratene T, Mesbah R, Touil-Boukoffa C. Association between increased Bcl-2, Fas and FasL levels and inflammation extent in labial salivary glands during primary Sjögren's syndrome. Endocr Metab Immune Disord Drug Targets 2021; 22:328-338. [PMID: 34370657 DOI: 10.2174/1871530321666210809155147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Primary Sjögren syndrome (pSS) is a chronic autoimmune disease characterized by epithelial atrophy, mononuclear infiltration in exocrine glands resulting in defective function of these glands. In pSS, atrophy of the epithelium is caused by an increased amount of apoptosis. OBJECTIVE The main aim of this study is to investigate the role of the apoptosis-related factors by studying Bcl-2, Fas and FasL expression in relation to the extent of inflammation as well as the effect of therapy on the expression of these mediators. METHODS In pSS patients (n=62) documented for their serological and clinical features, Fas, FasL and Bcl-2 plasma levels were assessed using enzyme-linked immunosorbent assays. In the same context, we investigated their expression by immunohistochemistry analysis in the labial salivary glands samples in association with the extent of inflammation. RESULTS Interestingly, our results indicated that in pSS patients, the plasmatic Bcl-2, Fas and FasL levels, which appear to be associated with the severity of inflammation and were significantly elevated in comparison to the healthy controls. Moreover, a significant decrease in all these factors was observed in patients after combined corticosteroids-hydroxychloroquine therapy. Importantly, we report a strong positive correlation between Bcl-2 and NO levels. The immunohistochemical staining reveals a strong Bcl-2 expression in infiltrating mononuclear cells and a total absence in the acinar cells. The Bcl-2 level varies according to the severity of the pathology. However, the expression of Fas and FasL was less important and predominantly localized in infiltrating mononuclear cells. CONCLUSION Our current study highlights the involvement of Bcl-2, Fas and FasL in pSS glands injury. These factors may act as useful predictor markers of a clinical course in pSS suggesting a novel approach in the pSS patients monitoring.
Collapse
Affiliation(s)
- Sarah Benchabane
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Group, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers. Algeria
| | | | - Dahbia Acheli
- Internal Medicine Department, Douera Hospital, Algiers. Algeria
| | | | - Redouane Mesbah
- Anatomical Pathology Service, Issad Hassani Hospital (Beni-Messous), Algiers. Algeria
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Group, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers. Algeria
| |
Collapse
|
39
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
40
|
Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers (Basel) 2021; 13:cancers13143524. [PMID: 34298735 PMCID: PMC8306848 DOI: 10.3390/cancers13143524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Communication signals and signaling pathways are often studied in different physiological systems. However, it has become abundantly clear that the immune system is not self-regulated, but functions in close association with the nervous system. The neural-immune interface is complex; its balance determines cancer progression, as well as autoimmune disorders. Immunotherapy remains a promising approach in the context of glioblastoma multiforme (GBM). The primary obstacle to finding effective therapies is the potent immunosuppression induced by GBM. Anti-inflammatory cytokines, induction of regulatory T cells, and the expression of immune checkpoint molecules are the key mediators for immunosuppression in the tumor microenvironment. Immune checkpoint molecules are ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. In the past decade, they have been extensively studied in preclinical and clinical trials in diseases such as cancer or autoimmune diseases in which the immune system has failed to maintain homeostasis. In this review, we will discuss promising immune-modulatory targets that are in the focus of current clinical research in glioblastoma, but are also in the precarious position of potentially becoming starting points for the development of autoimmune diseases like multiple sclerosis.
Collapse
|
41
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
42
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
43
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
Zhang DN, Liu Y, Li X, Gao Y, Xi FY, Li Y, Zhu GZ. Imbalance Between Soluble and Membrane-Bound CD100 Regulates Monocytes Activity in Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure. Viral Immunol 2021; 34:273-283. [PMID: 33646067 DOI: 10.1089/vim.2020.0311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD100 is an important immune semaphorin that is a secreted and membrane bound protein involved in infectious diseases. However, CD100 expression profile and the regulation to innate immune system in hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF) was not previously reported. The aim of this study was to investigate CD100 level and modulatory function of CD100 to CD14+ monocytes in HBV-ACLF patients. Plasma-soluble CD100 (sCD100) level and membrane-bound CD100 (mCD100) expression on peripheral CD14+ monocytes was analyzed in HBV-ACLF patients. CD14+ monocytes-induced cytotoxicity and CD14+ monocytes-mediated T cell activation in response to CD100 stimulation was also assessed in direct and indirect contact coculture culture systems. HBV-ACLF patients had lower plasma sCD100 and higher mCD100 level on CD14+ monocytes compared with asymptomatic HBV carriers, chronic hepatitis B patients, and controls. CD14+ monocytes from HBV-ACLF patients induced limited target Huh7.5 cell death and secreted less interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and granzyme B in both direct and indirect contact coculture systems compared with controls. Recombinant sCD100 not only enhanced CD14+ monocytes-mediated Huh7.5 cell death and granzyme B secretion, but it also elevated CD14+ monocytes-induced IFN-γ/interleukin-17 production by CD4+ T cells as well as IFN-γ/TNF-α secretion by CD8+ T cells in HBV-ACLF patients. The current data indicated that severe inflammation induced sCD100/mCD100 imbalance to inactivate CD14+ monocytes response, which might be beneficial for the survival of HBV-ACLF patients.
Collapse
Affiliation(s)
- Dong-Na Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Xue Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ying Gao
- Department of Hematology, Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Feng-Yu Xi
- Department of Clinical Laboratory Medicine, and Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Guang-Ze Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
46
|
Dadey RE, Grebinoski S, Zhang Q, Brunazzi EA, Burton A, Workman CJ, Vignali DAA. Regulatory T Cell-Derived TRAIL Is Not Required for Peripheral Tolerance. Immunohorizons 2021; 5:48-58. [PMID: 33483333 PMCID: PMC8663370 DOI: 10.4049/immunohorizons.2000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
TRAIL (Tnfsf10/TRAIL/CD253/Apo2L) is an important immune molecule that mediates apoptosis. TRAIL can play key roles in regulating cell death in the tumor and autoimmune microenvironments. However, dissecting TRAIL function remains difficult because of the lack of optimal models. We have now generated a conditional knockout (Tnfsf10 L/L) for cell type-specific analysis of TRAIL function on C57BL/6, BALB/c, and NOD backgrounds. Previous studies have suggested a role for TRAIL in regulatory T cell (Treg)-mediated suppression. We generated mice with a Treg-restricted Tnfsf10 deletion and surprisingly found no impact on tumor growth in C57BL/6 and BALB/c tumor models. Furthermore, we found no difference in the suppressive capacity of Tnfsf10-deficient Tregs and no change in function or proliferation of T cells in tumors. We also assessed the role of TRAIL on Tregs in two autoimmune mouse models: the NOD mouse model of autoimmune diabetes and the myelin oligodendrocyte glycoprotein (MOG) C57BL/6 model of experimental autoimmune encephalomyelitis. We found that deletion of Tnfsf10 on Tregs had no effect on disease progression in either model. We conclude that Tregs do not appear to be dependent on TRAIL exclusively as a mechanism of suppression in both the tumor and autoimmune microenvironments, although it remains possible that TRAIL may contribute in combination with other mechanisms and/or in different disease settings. Our Tnfsf10 conditional knockout mouse should prove to be a useful tool for the dissection of TRAIL function on different cell populations in multiple mouse models of human disease.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261;
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
47
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
48
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
49
|
Tavakkoli S, Sotoodehnejadnematalahi F, Fathollahi A, Bandehpour M, Haji Molla Hoseini M, Yeganeh F. EL4-derived Exosomes Carry Functional TNF-related Apoptosis-inducing Ligand that are Able to Induce Apoptosis and Necrosis in the Target Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:207-215. [PMID: 33274183 PMCID: PMC7703661 DOI: 10.22088/ijmcm.bums.9.3.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/31/2020] [Indexed: 01/08/2023]
Abstract
Exosomes released by tumor cells play critical roles in tumor progression, immune cell suppression, and cancer metastasis. The aim of the present study was to investigate whether the exosomes released by EL4 cells carry a functional TNF-related apoptosis-inducing ligand (TRAIL) molecule. Exosomes were harvested from the supernatants of EL4 cell culture, and the shape, size, and identity of EL4-derived exosomes were evaluated by utilizing scanning electron microscopy, dynamic light scattering, and dot-blot method. The expression of mRNA and TRAIL protein in EL4 cells and EL4-exosomes were investigated using real-time PCR method and dot-blot analysis. Moreover, the effects of EL4-derived exosomes on cell death in a TRAIL-sensitive cell line (4T1) were studied by using flow cytometry (annexin V/propidium iodide (PI) staining) and fluorescent microscopy analyses (acridine orange/ethidium bromide staining). The results showed that EL4 cells continuously and without the need for stimulation, produce exosomes that carry TRAIL protein. In addition, EL4-derived exosomes were capable to induce apoptosis as well as necrosis in 4T1 cells. It was ultimately revealed that EL4 cells express TRAIL protein and release exosomes containing functional TRAIL. Moreover, the released exosomes were able to induce apoptosis and necrosis in a TRAIL-sensitive cell line. Further studies are needed to reveal the potential roles of tumor-derived exosomes in the pathogenesis of cancers.
Collapse
Affiliation(s)
- Sajjad Tavakkoli
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G. The immune system on the TRAIL of Alzheimer's disease. J Neuroinflammation 2020; 17:298. [PMID: 33050925 PMCID: PMC7556967 DOI: 10.1186/s12974-020-01968-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Cettina De Francisci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy.,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy. .,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| |
Collapse
|