1
|
Chuwa AH, Mvunta DH. Prognostic and clinicopathological significance of survivin in gynecological cancer. Oncol Rev 2024; 18:1444008. [PMID: 39687493 PMCID: PMC11646728 DOI: 10.3389/or.2024.1444008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Survivin belongs to the inhibitor of apoptosis protein (IAP) family and is encoded by the baculoviral inhibitor of apoptosis repeat-containing, or BIRC5, gene. It is preferentially expressed in cancers with functional complexity in cell signaling cascades such as extracellular signal-regulated kinases (ERK), mitogen-activated protein kinases (MAPK), heat shock protein-90 (HSP90), epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription (STAT), hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), and others. Survivin plays a role in cell division and cell death, properties that have attracted a large body of research to decipher its therapeutic and prognostic significance in cancer. Survivin has tumor-promoting effects in endometrial (EC) and ovarian (OC) cancers, and its upregulation in endometrial cancer has been associated with poor overall survival (OS). While survivin protein is abundantly expressed in OC, it is barely detectable in normal ovarian tissue or benign ovarian tumors. Survivin expression is also a marker for cervical intraepithelial neoplasia (CIN) and high-risk human papillomavirus, and a predictor of viral clearance and prognosis in uterine cervical cancer (UCC). Furthermore, nuclear survivin expression is very low in normal vulvar squamous epithelium and increases to become abundant in vulvar invasive squamous cell carcinoma (ISCC), conferring resistance to apoptosis in vulvar carcinogenesis. In this review, we discuss in detail the impact of survivin signaling on gynecological cancers and provide insight on its therapeutic and diagnostic potential, existing research gaps, and areas for future research.
Collapse
Affiliation(s)
- Agapiti H. Chuwa
- Department of Physiology, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | - David H. Mvunta
- Department of Obstetrics and Gynecology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Surgical Oncology, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Nakagawa-Saito Y, Mitobe Y, Togashi K, Suzuki S, Sugai A, Takenouchi S, Nakamura K, Sonoda Y, Kitanaka C, Okada M. The MDM2-p53 Axis Represents a Therapeutic Vulnerability Unique to Glioma Stem Cells. Int J Mol Sci 2024; 25:3948. [PMID: 38612758 PMCID: PMC11011437 DOI: 10.3390/ijms25073948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
The prevention of tumor recurrence by the successful targeting of glioma stem cells endowed with a tumor-initiating capacity is deemed the key to the long-term survival of glioblastoma patients. Glioma stem cells are characterized by their marked therapeutic resistance; however, recent evidence suggests that they have unique vulnerabilities that may be therapeutically targeted. We investigated MDM2 expression levels in glioma stem cells and their non-stem cell counterparts and the effects of the genetic and pharmacological inhibition of MDM2 on the viability of these cells as well as downstream molecular pathways. The results obtained showed that MDM2 expression was substantially higher in glioma stem cells than in their non-stem cell counterparts and also that the inhibition of MDM2, either genetically or pharmacologically, induced a more pronounced activation of the p53 pathway and apoptotic cell death in the former than in the latter. Specifically, the inhibition of MDM2 caused a p53-dependent increase in the expression of BAX and PUMA and a decrease in the expression of survivin, both of which significantly contributed to the apoptotic death of glioma stem cells. The present study identified the MDM2-p53 axis as a novel therapeutic vulnerability, or an Achilles' heel, which is unique to glioma stem cells. Our results, which suggest that non-stem, bulk tumor cells are less sensitive to MDM2 inhibitors, may help guide the selection of glioblastoma patients suitable for MDM2 inhibitor therapy.
Collapse
Affiliation(s)
- Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Senri Takenouchi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kazuki Nakamura
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Kim HJ, Ahn MH, Shin JA, Choi SJ, Yu HJ, Cho SD. Caffeic acid phenethyl ester: Unveiling its potential as a potent apoptosis inducer for combating hypopharyngeal squamous cell carcinoma. Oncol Rep 2024; 51:21. [PMID: 38099422 PMCID: PMC10777462 DOI: 10.3892/or.2023.8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor‑suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE‑mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase‑9. CAPE also modulated survivin and X‑linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post‑translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria‑dependent apoptosis.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Hye Ahn
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungwon 28116, Republic of Korea
| | - Ji-Ae Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Torabi M, Yasami-Khiabani S, Sardari S, Golkar M, Pérez-Sánchez H, Ghasemi F. Identification of new potential candidates to inhibit EGF via machine learning algorithm. Eur J Pharmacol 2024; 963:176176. [PMID: 38000720 DOI: 10.1016/j.ejphar.2023.176176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
One of the cost-effective alternative methods to find new inhibitors has been the repositioning approach of existing drugs. The advantage of computational drug repositioning method is saving time and cost to remove the pre-clinical step and accelerate the drug discovery process. Hence, an ensemble computational-experimental approach, consisting of three steps, a machine learning model, simulation of drug-target interaction and experimental characterization, was developed. The machine learning type used here was a different tree classification method, which is one of the best randomize machine learning model to identify potential inhibitors from weak inhibitors. This model was trained more than one-hundred times, and forty top trained models were extracted for the drug repositioning step. The machine learning step aimed to discover the approved drugs with the highest possible success rate in the experimental step. Therefore, among all the identified molecules with more than 0.9 probability in more than 70% of the models, nine compounds, were selected. Besides, out of the nine chosen drugs, seven compounds have been confirmed to inhibit EGF in the published articles since 2019. Hence, two identified compounds, in addition to gefitinib, as a positive control, five weak-inhibitors and one neutral, were considered via molecular docking study. Finally, the eight proposed drugs, including gefitinib, were investigated using MTT assay and In-Cell ELISA to characterize the drugs' effect on A431 cell growth and EGF-signaling. From our experiments, we could conclude that salicylic acid and piperazine could play an EGF-inhibitor role like gefitinib.
Collapse
Affiliation(s)
- Mohammadreza Torabi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran
| | | | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Reseach Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, E30107, Spain
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Lu Y, Shan L, Cheng X, Zhu XL. Exploring the mechanism underlying the therapeutic effects of butein in colorectal cancer using network pharmacology and single-cell RNA sequencing data. J Gene Med 2024; 26:e3628. [PMID: 37963584 DOI: 10.1002/jgm.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Butein has shown substantial potential as a cancer treatment, but its precise mechanism of action in colorectal cancer (CRC) remains unclear. This study aimed to uncover the underlying mechanisms through which butein operates in CRC and to identify potential biomarkers through a comprehensive investigation. METHODS Target genes associated with butein were sourced from SwissTargetPrediction, CTD, BindingDB and TargetNet. Gene expression data from the GSE38026 dataset and the single-cell dataset (GSE222300) were retrieved from the Gene Expression Omnibus database. The activation of disease-related pathways was assessed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and differential gene analysis. Disease-associated genes were identified through differential analysis and weighted gene co-expression network analysis (WGCNA). The protein-protein interaction network was utilized to pinpoint potential drug targets. Molecular complex detection (MCODE) analysis was employed to uncover relevant genes influenced by butein within key subgroup networks. Machine learning techniques were applied for the screening of potential biomarkers, with receiver operating characteristic curves used to evaluate their clinical significance. Single-cell analysis was conducted to assess the pharmacological targets of butein in CRC, with validation performed using the external dataset GSE40967. RESULTS A total of 232 target genes for butein were identified. Functional enrichment analysis revealed significant enrichment of signaling pathways, including mitogen-activated protein kinase, JAK-STAT and NF-κB, among these genes. Differential analysis, in conjunction with WGCNA, yielded 520 disease-related genes. Subsequently, a disease-drug-gene network consisting of 727 targets was established, and a subnetwork containing 56 crucial genes was extracted. Important pathways such as the FoxO signaling pathway exhibited significant enrichment within these key genes. Machine learning applied to the 56 important genes led to the identification of a potential biomarker, UBE2C. Receiver operating characteristic analysis demonstrated the excellent clinical predictive utility of UBE2C. Single-cell analysis suggested that butein's therapeutic effects might be linked to its influence on epithelial and T cells, with UBE2C expression associated with these cell types. Validation using the external dataset GSE40967 further confirmed the exceptional clinical predictive capability of UBE2C. CONCLUSION This study combines network pharmacology with single-cell analysis to unravel the mechanisms underlying butein's effects in CRC. Notably, UBE2C emerged as a promising biomarker with superior clinical efficacy. These research findings contribute significantly to our understanding of specific molecular mechanisms, potentially shaping future clinical practices.
Collapse
Affiliation(s)
- Ye Lu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
- Suzhou Medical College of Soochow University/Soochow University Affiliated Taicang Hospital, Suzhou, Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| | - Xiao-Li Zhu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Taicang, Jiangsu, China
| |
Collapse
|
6
|
Li T, Liu X, Long X, Li Y, Xiang J, Lv Y, Zhao X, Shi S, Chen W. Brexpiprazole suppresses cell proliferation and de novo lipogenesis through AMPK/SREBP1 pathway in colorectal cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:2352-2360. [PMID: 37347510 DOI: 10.1002/tox.23871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE In the present study, we investigated the role of brexpiprazole on cell proliferation and lipogenesis in colorectal cancer (CRC) and its molecular mechanism. METHODS The effect of brexpiprazole on CRC cell proliferation was determined by CCK-8, EdU assay, cell clone formation. The flow cytometry was evaluated cell cycle. Differential expression genes (DEGs) were identified by RNA-seq assay after treating HCT116 cells with or without 20 μM brexpiprazole for 24 h. Then, the top 120 DEGs were analyzed by GO and KEGG enrichment analysis. After that, Oil red O staining and the levels of total cholestenone and triglyceride were measured to assess lipogenesis capacity in CRC cells. The related molecules of cell proliferation, lipogenic and AMPK/SREBP1 signal pathways were measured by q-PCR, western blot and immunohistochemical staining. RESULTS Brexpiprazole remarkably suppressed cell proliferation, lipogenesis, and induced cell cycle arrest in CRC. The underlying mechanisms probably involved the suppression of SREBP1 and the stimulation of AMPK. CONCLUSION Brexpiprazole inhibited cell proliferation and de novo lipogenesis through AMPK/SREBP1 pathway in CRC.
Collapse
Affiliation(s)
- Ting Li
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaojie Liu
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaoyi Long
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yangyou Li
- Animal Experimental Center, North Sichuan Medical College, Nanchong, China
| | - Jin Xiang
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xiaoyang Zhao
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Chen
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, Xie C, Xia Z, Cui J, Liu F, Du S, Meng S, Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov 2023; 9:333. [PMID: 37669963 PMCID: PMC10480197 DOI: 10.1038/s41420-023-01632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
- Department of Laboratory Medicine, Affiliated Qingdao Central Hospital, Qingdao University, 266000, Qingdao, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Dachuan Shen
- Department of Oncology, Affliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Xingyue Zhai
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Zhiyu Xia
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
8
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
9
|
Dong X, Liu W, Li X, Gan Y, Zhou L, Li W, Xie L. Butein promotes ubiquitination-mediated survivin degradation inhibits tumor growth and overcomes chemoresistance. Sci Rep 2022; 12:20644. [PMID: 36450751 PMCID: PMC9712619 DOI: 10.1038/s41598-022-21839-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Overexpression of survivin is frequently observed in human malignancies and is associated with poor prognosis. The present study found that survivin is highly expressed in nasopharyngeal carcinoma (NPC) tumor tissues. Depleting survivin with shRNA inhibited cell viability, colony formation, and in vivo tumorigenesis of NPC cells. With a natural product screening, we identified Butein as a potential anti-tumor compound for NPC by reducing survivin protein level. Butein shortened the half-life of survivin and enhanced ubiquitination-mediated degradation. The mechanism study showed that Butein promoted the interaction between survivin and E3 ligase Fbxl7, and the knockdown of Fbxl7 compromised Butein-induced survivin ubiquitination. Butein suppressed the Akt-Wee1-CDK1 signaling and decreased survivin Thr34 phosphorylation, facilitating E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Moreover, Butein exhibited a strong in vivo anti-tumor activity, as the tumor volume of Butein-treated xenografts was reduced significantly. Butein alone or combined with cisplatin (CDDP) overcame chemoresistance in NPC xenograft tumors. Overall, our data indicate that Butein is a promising anti-tumor agent for NPC treatment.
Collapse
Affiliation(s)
- Xin Dong
- grid.216417.70000 0001 0379 7164Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Wenbin Liu
- grid.216417.70000 0001 0379 7164Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China
| | - Xiaoying Li
- grid.216417.70000 0001 0379 7164Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Yu Gan
- grid.216417.70000 0001 0379 7164Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Li Zhou
- grid.452223.00000 0004 1757 7615Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008 Hunan China
| | - Wei Li
- grid.216417.70000 0001 0379 7164Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Li Xie
- grid.216417.70000 0001 0379 7164Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China
| |
Collapse
|
10
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
11
|
Siddiqui S, Deshmukh AJ, Mudaliar P, Nalawade AJ, Iyer D, Aich J. Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review. J Egypt Natl Canc Inst 2022; 34:33. [PMID: 35934727 PMCID: PMC9358112 DOI: 10.1186/s43046-022-00137-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
Collapse
|
12
|
Li X, Huang Z, Zhu L, Yu F, Feng M, Gu A, Jiang J, Wang G, Huang D. Prognostic Model and Nomogram Construction and Validation With an Autophagy-Related Gene Signature in Low-Grade Gliomas. Front Genet 2022; 13:905751. [PMID: 35923699 PMCID: PMC9342864 DOI: 10.3389/fgene.2022.905751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Autophagy plays a vital role in cancer development. However, the prognostic value of autophagy-related genes (ARGs) in low-grade gliomas (LGG) is unclear. This research aimed to investigate whether ARGs correlated with overall survival (OS) in LGG patients. Methods: RNA-sequencing data were obtained from The Cancer Genome Atlas (TCGA) TARGET GTEx database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of ARGs were performed by the “clusterprofile” R package. Cox regression with the wald χ2 test was employed to identify prognostic significant ARGs. Next, the receiver operator characteristic curves were established to evaluate the feasibility of risk score (riskscore=h0(t)exp(∑j=1nCoefj×Xj)) and other clinical risk factors to predict prognosis. A nomogram was constructed. Correlations between clinical features and ARGs were further verified by a t-test or Kruskal–Wallis test. In addition, the correlations between autophagy and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and tumor immune estimation resource database. Last, the prediction model was verified by LGG data downloaded from the Chinese Glioma Genome Atlas (CGGA) database. Results: Overall, 35 DE-ARGs were identified. Functional enrichment analysis showed that these genes were mainly related to oxidative stress and regulation of autophagy. Nine ARGs (BAX, BIRC5, CFLAR, DIRAS3, GRID2, MAPK9, MYC, PTK6, and TP53) were significantly associated with OS. Age (Hazard ratio (HR) = 1.063, 95% CI: 1.046–1.080), grade (HR = 3.412, 95% CI: 2.164–5.379), histological type (HR = 0.556, 95% CI: 0.346–0.893), and risk score (HR = 1.135, 95% CI: 1.104–1.167) were independent prognostic risk factors (all p < 0.05). In addition, BIRC5, CFLAR, DIRAS3, TP53, and risk scores were found to correlate significantly with age and tumor grade (all p < 0.05). Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significantly different from those in the low-risk group (all p < 0.05). A prognostic nomogram was constructed to predict 1-, 3-, and 5-year survival, and the prognostic value of sorted ARGs were verified in the CGGA database and clinical samples. Conclusion: Our findings suggest that the 9 DE-ARGs’ risk score model could serve as diagnostic and prognostic biomarkers. The prognostic nomograms could be useful for individualized survival prediction and improved treatment strategies.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minghao Feng
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Aiqin Gu
- Department of Neurosurgery, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
| | - Jianxin Jiang
- Department of Neurosurgery, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- *Correspondence: Jianxin Jiang, ; Guangxue Wang, ; Dongya Huang,
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jianxin Jiang, ; Guangxue Wang, ; Dongya Huang,
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jianxin Jiang, ; Guangxue Wang, ; Dongya Huang,
| |
Collapse
|
13
|
Wang SP, Hsu YP, Chang CJ, Chan YC, Chen CH, Wang RH, Liu KK, Pan PY, Wu YH, Yang CM, Chen C, Yang JM, Liang MC, Wong KK, Chao JI. A novel EGFR inhibitor suppresses survivin expression and tumor growth in human gefitinib-resistant EGFR-wild type and -T790M non-small cell lung cancer. Biochem Pharmacol 2021; 193:114792. [PMID: 34597670 DOI: 10.1016/j.bcp.2021.114792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are currently used therapy for non-small cell lung cancer (NSCLC) patients; however, drug resistance during cancer treatment is a critical problem. Survivin is an anti-apoptosis protein, which promotes cell proliferation and tumor growth that highly expressed in various human cancers. Here, we show a novel synthetic compound derived from gefitinib, do-decyl-4-(4-(3-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)propyl) piper-azin-1-yl)-4-oxobutanoate, which is named as SP101 that inhibits survivin expression and tumor growth in both the EGFR-wild type and -T790M of NSCLC. SP101 blocked EGFR kinase activity and induced apoptosis in the A549 (EGFR-wild type) and H1975 (EGFR-T790M) lung cancer cells. SP101 reduced survivin proteins and increased active caspase 3 for inducing apoptosis. Ectopic expression of survivin by a survivin-expressed vector attenuated the SP101-induced cell death in lung cancer cells. Moreover, SP101 inhibited the gefitinib-resistant tumor growth in the xenograft human H1975 lung tumors of nude mice. SP101 substantially reduced survivin proteins but conversely elicited active caspase 3 proteins in tumor tissues. Besides, SP101 exerted anticancer abilities in the gefitinib resistant cancer cells separated from pleural effusion of a clinical lung cancer patient. Consistently, SP101 decreased the survivin proteins and the patient-derived xenografted lung tumor growth in nude mice. Anti-tumor ability of SP101 was also confirmed in the murine lung cancer model harboring EGFR T790M-L858R. Together, SP101 is a new EGFR inhibitor with inhibiting survivin that can be developed for treating EGFR wild-type and EGFR-mutational gefitinib-resistance in human lung cancers.
Collapse
Affiliation(s)
- Su-Pei Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Ping Hsu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Jen Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yu-Chi Chan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Kai Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Pan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Hui Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Man Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, MA, United States; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
15
|
Zhang T, Liu Q, Yu M, Lan Y, Zhou J. Expression Profiles Reveal Involvement of VEGF, IGF1, BIRC5, and MMP1 in Vulvar Carcinogenesis. Technol Cancer Res Treat 2021; 20:15330338211004922. [PMID: 33888009 PMCID: PMC8071978 DOI: 10.1177/15330338211004922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The objective of this study was to identify key genes and shed light on the underlying molecular mechanisms of vulvar squamous cell carcinoma (VSCC). METHODS Bioinformatic software was utilized for the identification and characterization of key differentially expressed genes (DEGs) from microarrays GSE63678 and GSE38228, which contain VSCC and normal vulvar tissue data. These microarrays were obtained from Gene Expression Omnibus (GEO). Immunohistochemical assays (55 VSCC and 50 normal vulvar tissues) were utilized to validate the expression of VEGF, IGF1, BIRC5, and MMP1 screened from the identified DEGs. SPSS 18.0 software was used for statistical analyses of the relationships between IGF1, BIRC5, VEGF, MMP1 expression levels and patient clinicopathological characteristics. RESULTS A total of 141 DEGs were identified, among which 18 genes were closely correlated with the biological characteristics of VSCC. Four of the 18 genes (VEGF, IGF1, BIRC5, and MMP1) screened from the GEO database were markedly enriched in pathways in cancer (P < 0.05), and could be considered key genes in VSCC based on KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis in DAVID (Database for Annotation, Visualization and Integrated Discovery).The expression levels of these 4 hub genes, determined by immunohistochemical assays, were consistent with the bioinformatics results. Higher expression of IGF1 showed significant association with well-differentiated carcinomas (P = 0.017).BIRC5 expression levels showed a positive correlation with clinical stage (P = 0.039); compared with those in menopause for over 10 years, patients in menopause for less than 10 years at the time of diagnosis tended to have significantly higher expression of BIRC5 (P = 0.003). VEGF and MMP1 expression levels were not correlated with any of the tested clinicopathological characteristics. CONCLUSION VEGF, IGF1, BIRC5, and MMP1 were identified as being associated with VSCC using integrated bioinformatic methods, which may provide important insights into the pathogenesis of this disease and help to identify new biomarkers.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gynecology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qin Liu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Minghua Yu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghong Zhou
- Department of Gynecology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Suzuki S, Yamamoto M, Sanomachi T, Togashi K, Sugai A, Seino S, Okada M, Yoshioka T, Kitanaka C. Doxazosin, a Classic Alpha 1-Adrenoceptor Antagonist, Overcomes Osimertinib Resistance in Cancer Cells via the Upregulation of Autophagy as Drug Repurposing. Biomedicines 2020; 8:biomedicines8080273. [PMID: 32764319 PMCID: PMC7460424 DOI: 10.3390/biomedicines8080273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Osimertinib, which is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, is an important anticancer drug because of its high efficacy and excellent safety profile. However, resistance against osimertinib is inevitable; therefore, therapeutic strategies to overcome the resistance are needed. Doxazosin, a classic quinazoline-based alpha 1-adrenoceptor antagonist is used to treat hypertension and benign prostatic hyperplasia with a known safety profile. The anticancer effects of doxazosin have been examined in various types of malignancies from the viewpoint of drug repositioning or repurposing. However, it currently remains unclear whether doxazosin sensitizes cancer cells to osimertinib. Herein, we demonstrated that doxazosin induced autophagy and enhanced the anticancer effects of osimertinib on the cancer cells and cancer stem cells of non-small cell lung cancer, pancreatic cancer, and glioblastoma at a concentration at which the growth of non-tumor cells was not affected. The osimertinib-sensitizing effects of doxazosin were suppressed by 3-methyladenine, an inhibitor of autophagy, which suggested that the effects of doxazosin were mediated by autophagy. The present study provides evidence for the efficacy of doxazosin as a combination therapy with osimertinib to overcome resistance against osimertinib.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
- Correspondence: (S.S.); (M.Y.); Tel.: +81-23-628-5224 (S.S.); +81-23-628-5214 (M.Y.)
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Correspondence: (S.S.); (M.Y.); Tel.: +81-23-628-5224 (S.S.); +81-23-628-5214 (M.Y.)
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (K.T.); (A.S.); (S.S); (M.O.); (C.K.)
- Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
18
|
Genetic Profiles Playing Opposite Roles of Pathogenesis in Schizophrenia and Glioma. JOURNAL OF ONCOLOGY 2020; 2020:3656841. [PMID: 32565801 PMCID: PMC7275202 DOI: 10.1155/2020/3656841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022]
Abstract
Background Patients diagnosed with schizophrenia were found having lower risks to develop cancers, including glioma. Based on this epidemiology, we hypothesized that there were gene profiles playing opposite roles in pathogenesis of schizophrenia and glioma. Methods Based on GEO datasets and TCGA, key genes of schizophrenia genes on the opposite development of glioma were screened by different expressed genes (DEGs) screening, weighted gene coexpression network analysis (WGCNA), disease-specific survival (DSS), and glioma grading and verified by gene set enrichment analysis (GSEA). Results First, 612 DEGs were screened from schizophrenia and control brain samples. Second, 134 key genes more specific to schizophrenia were left by WGCNA, with 93 key genes having annotations in TCGA. Third, DSS of glioma helped to find 42 key gene expressions of schizophrenia oppositely associated with survival of glioma. Finally, 24 key genes showed opposite expression trends in schizophrenia and different glioma grading, i.e., the upregulated key genes in schizophrenia expressed increasingly in higher grade glioma, and vice versa. CAMK2D and MPC2 were taken as the examples and evaluated by GSEA, which indeed showed opposite trends in the same pathways of schizophrenia and glioma. Conclusion This workflow of selecting novel targeted genes which may have opposite roles in pathogenesis of two diseases was firstly and innovatively generated by our team. Some filtered key genes were indeed found by their potential effects in several mechanism studies, indicating our process could be effective to generate novel targeted genes. These 24 key genes may provide potential directions for future biochemical and pharmacotherapeutic research studies.
Collapse
|
19
|
Li M, Gao F, Yu X, Zhao Q, Zhou L, Liu W, Li W. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:88. [PMID: 32410646 PMCID: PMC7227341 DOI: 10.1186/s13046-020-01593-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Background Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, survivin has been proposed as an attractive target for new anti-tumor interventions. Methods A natural product library was used for natural compound screening through MTS assay. The expression of survivin in oral squamous cell carcinoma (OSCC) and the inhibitory effect of xanthohumol (XN) on OSCC were examined by anchorage-dependent and -independent growth assays, immunoblot, immunofluorescence, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. Results Survivin is highly expressed in OSCC patient-derived tissues and cell lines. Knockout of survivin reduced the tumorigenic properties of OSCC cells in vitro and in vivo. With a natural compound screening, we identified that xanthohumol inhibited OSCC cells by reducing survivin protein level and activating mitochondrial apoptotic signaling. Xanthohumol inhibited the Akt-Wee1-CDK1 signaling, which in turn decreased survivin phosphorylation on Thr34, and facilitated E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Xanthohumol alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Conclusion Our findings indicate that targeting survivin for degradation might a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410000, People's Republic of China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qing Zhao
- Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
20
|
Pathological Mechanistic Studies of Osimertinib Resistance in Non-Small-Cell Lung Cancer Cells Using an Integrative Metabolomics-Proteomics Analysis. JOURNAL OF ONCOLOGY 2020; 2020:6249829. [PMID: 32256584 PMCID: PMC7103047 DOI: 10.1155/2020/6249829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
Background Osimertinib is the first-line therapeutic option for the T790M-mutant non-small-cell lung cancer and the acquired resistance obstructs its application. It is an urgent challenge to identify the potential mechanisms of osimertinib resistance for uncovering some novel therapeutic approaches. Methods In the current study, the cell metabolomics based on ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry and the qualitative and tandem mass tags quantitative proteomics were performed. Results 54 differential metabolites and 195 differentially expressed proteins were, respectively, identified. The amino acids metabolisms were significantly altered. HIF-1 signaling pathway modulating P-glycoproteins expression, PI3K-Akt pathway regulating survivin expression, and oxidative phosphorylation were upregulated, while arginine and proline metabolism regulating NO production and glycolysis/gluconeogenesis were downregulated during osimertinib resistance. Conclusion The regulation of HIF-1 and PI3K-Akt signaling pathway, energy supply process, and amino acids metabolism are the promising therapeutic tactics for osimertinib resistance.
Collapse
|
21
|
Sanomachi T, Suzuki S, Togashi K, Sugai A, Seino S, Okada M, Yoshioka T, Kitanaka C, Yamamoto M. Spironolactone, a Classic Potassium-Sparing Diuretic, Reduces Survivin Expression and Chemosensitizes Cancer Cells to Non-DNA-Damaging Anticancer Drugs. Cancers (Basel) 2019; 11:cancers11101550. [PMID: 31614999 PMCID: PMC6826935 DOI: 10.3390/cancers11101550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.
Collapse
Affiliation(s)
- Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Asuka Sugai
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Takashi Yoshioka
- Department of Clinical Oncology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
- Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
22
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|