1
|
Zhu JY, Jiang RY, Zhang HP, Fang ZR, Zhou HH, Wei Q, Wang X. Advancements in research and clinical management of interstitial lung injury associated with ADC drugs administration in breast cancer. Discov Oncol 2024; 15:843. [PMID: 39729236 DOI: 10.1007/s12672-024-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of targeted anti-tumor medications that utilize the covalent linkage between monoclonal antibodies and cytotoxic agents. This unique mechanism combines the cytotoxic potency of drugs with the targeting specificity conferred by antigen recognition. However, it is essential to recognize that many ADCs still face challenges related to off-target toxicity akin to cytotoxic payloads, as well as targeted toxicity and other potential life-threatening adverse effects, such as treatment-induced interstitial lung injury. Currently, of the four approved ADC drugs for breast cancer, several reports have documented post-treatment lung injury-related fatalities. As a result, treatment-induced interstitial lung injury due to ADC drugs has become a clinical concern. In this review article, we delve into the factors associated with ADC-induced interstitial lung injury in patients with advanced-stage breast cancer and highlight strategies expected to decrease the incidence of ADC-related interstitial lung injury in the years ahead. These efforts are directed at enhancing treatment outcomes in both advanced and early-stage cancer patients while also providing insights into the development and innovation of ADC drugs and bolstering clinicians' understanding of the diagnosis and management of ADC-associated interstitial lung injury.
Collapse
Affiliation(s)
- Jia-Yu Zhu
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Rui-Yuan Jiang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Zi-Ru Fang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Huan Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qing Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
3
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Diwaker P, Jha T, Gogoi P, Arora VK, Ansari MA, Kaur N. Expression of Immune Checkpoint Regulator Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) and Programmed Cell Death Protein Ligand 1 (PD-L1) in Invasive Ductal Carcinoma Breast. Indian J Surg Oncol 2024; 15:713-720. [PMID: 39555338 PMCID: PMC11564441 DOI: 10.1007/s13193-024-01977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
Despite significant advancement in the diagnostic and therapeutic aspects of breast carcinoma, the prognosis remains dismal. Recently, with advances in its understanding, various immune system-based management strategies have been developed. CTLA-4 suppresses lymphocyte reactivity, IL-2 secretion, and IL-2 receptor expression and triggers cell cycle arrest. PD-L1 inhibits the proliferation and cytotoxicity of T cells and inhibits release of cytokines. Hence, we planned to evaluate the immunoexpression of CTLA-4 and PD-L1 in invasive ductal carcinoma breast and seek correlation between their immunopositivity and the clinicopathological parameters. This was a retrospective study conducted on archival material of 50 cases of breast carcinoma tissue microarrays. Clinicopathological details were recorded. All cases were evaluated for immunohistochemical expression of CTLA-4 and PD-L1. Cytoplasmic expression of CTLA-4 and membranous expression of PD-L1 were considered positive and staining intensity was recorded as mild, moderate, and intense. Data was recorded and analyzed. Immunopositivity for CTLA-4 was seen in 92% of cases of breast carcinoma. CTLA-4 staining intensity showed significant association with TNM staging of breast carcinomas (p = 0.036). Age group of the breast carcinoma cases showed a statistically significant correlation with PD-L1 immunoexpression (p = 0.002). No significant correlation was found between all other clinicopathological characteristics and CTLA-4 or PD-L1 immunostaining. Our study shows that CTLA-4 is a more important immune checkpoint regulator in breast carcinomas in comparison to PD-L1. Thus, anti-CTLA-4 immunotherapy might prove to be of immense help in the treatment of invasive ductal carcinoma breast showing overexpression of CTLA-4.
Collapse
Affiliation(s)
- Preeti Diwaker
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095 India
| | - Tanvi Jha
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095 India
| | - Priyanka Gogoi
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095 India
| | - Vinod Kumar Arora
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095 India
| | - Mohammad Ahmad Ansari
- Multi-Disciplinary Research Unit, University College of Medical Sciences and GTB Hospital, Delhi, 110095 India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences and GTB Hospital, Delhi, 110095 India
| |
Collapse
|
5
|
Rajadurai P, Yap NY, Chiew SF, Md Zin RR, Md Pauzi SH, Jaafar ASB, Yahaya A, Looi LM. Prevalence of Programmed Death-Ligand 1 Positivity Using SP142 in Patients With Advanced Stage Triple-Negative Breast Cancer in Malaysia: A Cross-Sectional Study. J Breast Cancer 2024; 27:362-371. [PMID: 39622509 PMCID: PMC11710907 DOI: 10.4048/jbc.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its poor prognosis and the absence of viable targets for standard receptor-based therapies. Several studies have suggested that targeting programmed death-ligand 1 (PD-L1) in tumors that express this biomarker, either on tumor cells and/or in the tumor inflammatory infiltrate, may be beneficial in some patients. This study aimed to assess the overall prevalence of PD-L1 positivity using the SP142 antibody clone in patients with advanced TNBC in Malaysia. METHODS This was a multicenter, cross-sectional prevalence study on PD-L1 positivity among patients with advanced-stage TNBC in Malaysia. Patients were identified using medical records and were enrolled in the study if they met the inclusion criteria. PD-L1 evaluation was performed using archived formalin-fixed paraffin-embedded tissue specimens. Demographic and clinical data were also obtained and summarized using descriptive statistics. The association of these parameters with PD-L1 positivity was assessed using chi-square and logistic regression analysis. RESULTS Three medical centers provided 138 complete cases for analysis. Of these 138 cases, 52 (37.7%; 95% confidence interval, 29.6%-46.3%) showed positive PD-L1 expression, defined as immune cell PD-L1 expression ≥ 1%. In a univariate analysis, stage III of the disease and tumor samples from resected specimens were significantly associated with a positive PD-L1 status. However, further assessment using a multivariate model revealed that only resected tumor samples remained significantly associated with PD-L1 positivity after controlling for disease staging. CONCLUSION The prevalence of PD-L1 positivity among patients with stage III or IV TNBC was 37.7%. A significant association was noted between PD-L1 positivity and the tumor tissue obtained from resected specimens. Although the mechanism and clinical significance of this association remain unclear, this finding indicates a possible disparity in the PD-L1 status of samples obtained using surgical resection or biopsy.
Collapse
Affiliation(s)
- Pathmanathan Rajadurai
- Laboratory, Subang Jaya Medical Centre, Subang Jaya, Malaysia
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Petaling Jaya, Malaysia
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Ning Yi Yap
- Laboratory, Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - Seow Fan Chiew
- Department of Pathology, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suria Hayati Md Pauzi
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Azyani Yahaya
- Department of Diagnostic Laboratory Service, Hospital Canselor Tuanku Mukhriz, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Lai Meng Looi
- Department of Pathology, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
7
|
Guo R, Wang P. The complex role of regulatory cells in breast cancer: implication for immunopathogenesis and immunotherapy. Breast Cancer 2024:10.1007/s12282-024-01654-7. [PMID: 39589625 DOI: 10.1007/s12282-024-01654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Breast cancers (BCs) are frequently linked to an immunosuppressive microenvironment that facilitates tumor evasion of anti-cancer immunity. The cells that suppress the immune system such as regulatory B cells (Bregs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), play a crucial role in immune resistance. Also, tumor progression and immune evasion of cancers are facilitated by cytokines and factors released by tumor cells or immunosuppressive cells. Targeting these regulatory cells therapeutically, whether through elimination, inactivation, or reprogramming, has resulted in hopeful anti-tumor reactions. Yet, the substantial diversity and adaptability of these cells, both in terms of appearance and function, as well as their variation over time and depending on where they are in the body, have posed significant challenges for using them as reliable biomarkers and creating focused therapies that could target their creation, growth, and various tumor-promoting roles. The immunotherapy approaches in BC and their effectiveness in treating certain subtypes are still in their initial phases. In this review, we thoroughly outlined the characteristics, roles, and possible treatment options for these immune-suppressing cells in the tumor environment.
Collapse
Affiliation(s)
- RuiJuan Guo
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China
| | - Ping Wang
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Shandong Province, Yantai City, People's Republic of China.
| |
Collapse
|
8
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
9
|
Wang L, Mei N, Li J, Chen H, He J, Wang R. Exploring the role of mitophagy-related genes in breast cancer: subtype classification and prognosis prediction. Int J Med Sci 2024; 21:2664-2682. [PMID: 39512680 PMCID: PMC11539391 DOI: 10.7150/ijms.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Breast cancer (BC) is the most common cancer among women globally and poses the leading health threat to women worldwide, with persistently high incidence rates. Mitophagy is a selective autophagy process that specifically targets mitochondria within the cell, maintaining cellular energy balance and metabolic health by identifying and degrading damaged mitochondria. Although there is an understanding of the relationship between mitophagy and cancer, the specific mechanisms remain unclear due to the complexity and diversity of mitophagy, suggesting that it could be an effective and more targeted therapeutic approach for BC. Methods: In this study, we meticulously examined the BC expression and clinical pathology data from The Cancer Genome Atlas (TCGA) to assess the expression profiles, copy number variations (CNV), and to investigate the correlation, function, and prognostic impact of 34 mitophagy-related genes (MRGs). Differentially expressed genes (DEGs) were identified based on group classification. Lasso and Cox regression were used to determine prognostic genes for constructing a nomogram. Single-cell analysis mapped the distribution of these genes in BC cells. Additionally, the association between gene-derived risk scores and factors such as immune infiltration, tumor mutational burden (TMB), cancer stem cell (CSC) index, and drug responses was studied. In vitro experiments were conducted to confirm the analyses. Results: We included 34 MRGs and subsequently generated a risk score for 7 genes, including RPLP2, PCDHGA2, PRKAA2, CLIC6, FLT3, CHI3L1, and IYD. It was found that the low-risk group had better overall survival (OS) in BC, higher immune scores, but lower tumor mutational burden (TMB) and cancer stem cell (CSC) index, as well as lower IC50 values for commonly used drugs. To enhance clinical applicability, age and staging were incorporated into the risk score, and a more comprehensive nomogram was constructed to predict OS. This nomogram was validated and showed good predictive performance, with area under the curve (AUC) values for 1-year, 3-year, and 5-year OS of 0.895, 0.765, and 0.728, respectively. Conclusion: Our findings underscore the profound impact of prognostic genes on the immune response and prognostic outcomes in BC, indicating that they can provide new avenues for personalized BC treatment and potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Lizhao Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Nan Mei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jianpeng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Heyan Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ru Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
10
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
11
|
Goodin DA, Chau E, Zheng J, O’Connell C, Tiwari A, Xu Y, Niravath P, Chen SH, Godin B, Frieboes HB. Characterization of the Breast Cancer Liver Metastasis Microenvironment via Machine Learning Analysis of the Primary Tumor Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:2846-2857. [PMID: 39373616 PMCID: PMC11525956 DOI: 10.1158/2767-9764.crc-24-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Breast cancer liver metastases (BCLM) are hypovascular lesions that resist intravenously administered therapies and have grim prognosis. Immunotherapeutic strategies targeting BCLM critically depend on the tumor microenvironment (TME), including tumor-associated macrophages. However, a priori characterization of the BCLM TME to optimize therapy is challenging because BCLM tissue is rarely collected. In contrast to primary breast tumors for which tissue is usually obtained and histologic analysis performed, biopsies or resections of BCLM are generally discouraged due to potential complications. This study tested the novel hypothesis that BCLM TME characteristics could be inferred from the primary tumor tissue. Matched primary and metastatic human breast cancer samples were analyzed by imaging mass cytometry, identifying 20 shared marker clusters denoting macrophages (CD68, CD163, and CD206), monocytes (CD14), immune response (CD56, CD4, and CD8a), programmed cell death protein 1, PD-L1, tumor tissue (Ki-67 and phosphorylated ERK), cell adhesion (E-cadherin), hypoxia (hypoxia-inducible factor-1α), vascularity (CD31), and extracellular matrix (alpha smooth muscle actin, collagen, and matrix metalloproteinase 9). A machine learning workflow was implemented and trained on primary tumor clusters to classify each metastatic cluster density as being either above or below median values. The proposed approach achieved robust classification of BCLM marker data from matched primary tumor samples (AUROC ≥ 0.75, 95% confidence interval ≥ 0.7, on the validation subsets). Top clusters for prediction included CD68+, E-cad+, CD8a+PD1+, CD206+, and CD163+MMP9+. We conclude that the proposed workflow using primary breast tumor marker data offers the potential to predict BCLM TME characteristics, with the longer term goal to inform personalized immunotherapeutic strategies targeting BCLM. SIGNIFICANCE BCLM tissue characterization to optimize immunotherapy is difficult because biopsies or resections are rarely performed. This study shows that a machine learning approach offers the potential to infer BCLM characteristics from the primary tumor tissue.
Collapse
Affiliation(s)
- Dylan A. Goodin
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Junjun Zheng
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Anjana Tiwari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Yitian Xu
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Polly Niravath
- Breast Medical Oncology Faculty, Houston Methodist Cancer Center, Houston, Texas
| | - Shu-Hsia Chen
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
12
|
van Houtum EJ, Valk AH, Granado D, Lok J, van den Bogaard L, Remkes N, van Eck van der Sluijs J, Span PN, Cornelissen LA, Adema GJ. Siglec-7 and Siglec-9 expression in primary triple negative and oestrogen receptor positive breast cancer and in vitro signalling. Clin Transl Immunology 2024; 13:e1524. [PMID: 39246414 PMCID: PMC11378723 DOI: 10.1002/cti2.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives PD-1/PD-L1 immune checkpoint blockade can be an effective treatment for advanced breast cancer patients. However, patients with oestrogen receptor positive (ER+) tumors often display only low lymphocyte infiltration, while a large part of triple negative (TN) breast tumors does not generate an effective immunotherapy response. Therefore, new treatment strategies have to be developed. Here, we investigate Siglec-7 and Siglec-9 as novel ITIM-bearing inhibitory immune checkpoint receptors similar to PD-1, but expressed on a broader range of immune cells. Methods We assessed Siglec-7 and Siglec-9 (ligand) expression in TN and ER+ breast cancer tumors and their breast cancer cell line-induced signalling. Results We report that Siglec-7 and Siglec-9 are highly expressed in TN tumors, and to a low extent in ER+ tumors. Siglec-7 was observed on myeloid cells, T cells, and NK cells and Siglec-9 preferentially on myeloid cells. Expression of sialoglycans, including Siglec-7 and Siglec-9 ligands, was observed in both TN and ER+ breast cancer tissue sections. Expression levels of Siglec-7 and Siglec-9 ligands were higher on in vitro cultured TN cell lines than ER+ cell lines. Importantly, by applying chimeric Siglec-7 reporter cells, we showed the induction of Siglec-7 signalling by multiple TN cell lines, but only by one ER+ cell line. Moreover, Siglec-7 signalling is directly related to Siglec-7 ligand expression levels of breast cancer cell lines. Conclusion These data imply that immunotherapy targeting Siglec receptors may be particularly interesting for TN breast cancer patients not responding to current treatment strategies with tumors displaying high immune cell infiltration.
Collapse
Affiliation(s)
- Eline Jh van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Anne Hc Valk
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Daniel Granado
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Jasper Lok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Lune van den Bogaard
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Naomi Remkes
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Jesper van Eck van der Sluijs
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Lenneke Am Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
13
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
14
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Wang L, Li J, Mei N, Chen H, Niu L, He J, Wang R. Identifying subtypes and developing prognostic models based on N6-methyladenosine and immune microenvironment related genes in breast cancer. Sci Rep 2024; 14:16586. [PMID: 39020010 PMCID: PMC11255230 DOI: 10.1038/s41598-024-67477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. The tumor microenvironment (TME), comprising epithelial tumor cells and stromal elements, is vital for breast tumor development. N6-methyladenosine (m6A) modification plays a key role in RNA metabolism, influencing its various aspects such as stability and translation. There is a notable link between m6A methylation and immune cells in the TME, although this relationship is complex and not fully deciphered. In this research, BC expression and clinicopathological data from TCGA were scrutinized to assess expression profiles, mutations, and CNVs of 31 m6A genes and immune microenvironment-related genes, examining their correlations, functions, and prognostic impacts. Lasso and Cox regression identified prognostic genes for constructing a nomogram. Single-cell analyses mapped the distribution and patterns of these genes in BC cell development. We investigated associations between gene-derived risk scores and factors like immune infiltration, TME, checkpoints, TMB, CSC indices, and drug response. As a complement to computational analyses, in vitro experiments were conducted to confirm these expression patterns. We included 31 m6A regulatory genes and discovered a correlation between these genes and the extent of immune cell infiltration. Subsequently, a 7-gene risk score was generated, encompassing HSPA2, TAP1, ULBP2, CXCL1, RBP1, STC2, and FLT3. It was observed that the low-risk group exhibited better overall survival (OS) in BC, with higher immune scores but lower tumor mutational burden (TMB) and cancer stem cell (CSC) indices, as well as lower IC50 values for commonly used drugs. To enhance clinical applicability, age and stage were incorporated into the risk score, and a more comprehensive nomogram was constructed to predict OS. This nomogram was validated and demonstrated good predictive performance, with area under the curve (AUC) values for 1-year, 3-year, and 5-year OS being 0.848, 0.807, and 0.759, respectively. Our findings highlight the profound impact of prognostic-related genes on BC immune response and prognostic outcomes, suggesting that modulation of the m6A-immune pathway could offer new avenues for personalized BC treatment and potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Lizhao Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jianpeng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Nan Mei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Heyan Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Ligang Niu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Ru Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
16
|
Raghani RM, Urie RR, Ma JA, Escalona G, Schrack IA, DiLillo KM, Kandagatla P, Decker JT, Morris AH, Arnold KB, Jeruss JS, Shea LD. Engineered Immunologic Niche Monitors Checkpoint Blockade Response and Probes Mechanisms of Resistance. IMMUNOMEDICINE 2024; 4:e1052. [PMID: 39246390 PMCID: PMC11376346 DOI: 10.1002/imed.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 09/10/2024]
Abstract
Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1+ metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.
Collapse
Affiliation(s)
- Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Guillermo Escalona
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian A Schrack
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Wescott EC, Sun X, Gonzalez-Ericsson P, Hanna A, Taylor BC, Sanchez V, Bronzini J, Opalenik SR, Sanders ME, Wulfkuhle J, Gallagher RI, Gomez H, Isaacs C, Bharti V, Wilson JT, Ballinger TJ, Santa-Maria CA, Shah PD, Dees EC, Lehmann BD, Abramson VG, Hirst GL, Brown Swigart L, van ˈt Veer LJ, Esserman LJ, Petricoin EF, Pietenpol JA, Balko JM. Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1120-1134. [PMID: 38687247 PMCID: PMC11041871 DOI: 10.1158/2767-9764.crc-23-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Combinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1. SIGNIFICANCE This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target.
Collapse
Affiliation(s)
- Elizabeth C. Wescott
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaopeng Sun
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandie C. Taylor
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juliana Bronzini
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E. Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Claudine Isaacs
- Division of Hematology-Oncology, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Vijaya Bharti
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Tarah J. Ballinger
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Payal D. Shah
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth C. Dees
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Brian D. Lehmann
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vandana G. Abramson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gillian L. Hirst
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Laura J. van ˈt Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Laura J. Esserman
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Jennifer A. Pietenpol
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M. Balko
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Čeprnja T, Tomić S, Perić Balja M, Marušić Z, Blažićević V, Spagnoli GC, Juretić A, Čapkun V, Vuger AT, Pogorelić Z, Mrklić I. Prognostic Value of "Basal-like" Morphology, Tumor-Infiltrating Lymphocytes and Multi-MAGE-A Expression in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:4513. [PMID: 38674098 PMCID: PMC11050590 DOI: 10.3390/ijms25084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
"Basal-like" (BL) morphology and the expression of cancer testis antigens (CTA) in breast cancer still have unclear prognostic significance. The aim of our research was to explore correlations of the morphological characteristics and tumor microenvironment in triple-negative breast carcinomas (TNBCs) with multi-MAGE-A CTA expression and to determine their prognostic significance. Clinical records of breast cancer patients who underwent surgery between January 2017 and December 2018 in four major Croatian clinical centers were analyzed. A total of 97 non-metastatic TNBCs with available tissue samples and treatment information were identified. Cancer tissue sections were additionally stained with programmed death-ligand 1 (PD-L1) Ventana (SP142) and multi-MAGE-A (mAb 57B). BL morphology was detected in 47 (49%) TNBCs and was associated with a higher Ki-67 proliferation index and histologic grade. Expression of multi-MAGE-A was observed in 77 (79%) TNBCs and was significantly associated with BL morphology. Lymphocyte-predominant breast cancer (LPBC) status was detected in 11 cases (11.3%) and significantly correlated with the Ki-67 proliferation index, increased number of intratumoral lymphocytes (itTIL), and PD-L1 expression. No impact of BL morphology, multi-MAGE-A expression, histologic type, or LPBC status on disease-free survival was observed. Our data suggest that tumor morphology could help identify patients with potential benefits from CTA-targeting immunotherapy.
Collapse
Affiliation(s)
- Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
| | - Snježana Tomić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Melita Perić Balja
- Department of Pathology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Zlatko Marušić
- Department of Pathology, Zagreb University Hospital Center, 10000 Zagreb, Croatia
| | | | | | - Antonio Juretić
- Department of Oncology, University Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vesna Čapkun
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia
| | - Ana Tečić Vuger
- Department of Oncology, University Hospital “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, 21000 Split, Croatia
- Department of Surgery, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Mrklić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
19
|
Haiderali A, Huang M, Pan W, Akers KG, Maciel D, Frederickson AM. Pembrolizumab plus chemotherapy for first-line treatment of advanced triple-negative breast cancer. Future Oncol 2024; 20:1587-1600. [PMID: 38597713 PMCID: PMC11457619 DOI: 10.2217/fon-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: A systematic review and network meta-analysis (NMA) was performed to evaluate the efficacy of first-line treatments for locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) patients.Materials & methods: Databases were searched for randomized controlled trials evaluating first-line treatments for locally recurrent unresectable or metastatic TNBC patients. NMA was performed to estimate relative treatment effects on overall and progression-free survival between pembrolizumab + chemotherapy and other interventions.Results: NMA including eight trials showed that the relative efficacy of pembrolizumab + chemotherapy was statistically superior to that of other immunotherapy- or chemotherapy-based treatment regimens.Conclusion: Pembrolizumab + chemotherapy confers benefits in survival outcomes versus alternative interventions for the first-line treatment of locally recurrent unresectable or metastatic TNBC patients.
Collapse
Affiliation(s)
- Amin Haiderali
- Center for Observational & Real-World Evidence; Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Min Huang
- Center for Observational & Real-World Evidence; Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Wilbur Pan
- Center for Observational & Real-World Evidence; Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | | |
Collapse
|
20
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
21
|
Kheraldine H, Gupta I, Cyprian FS, Vranic S, Al-Farsi HF, Merhi M, Dermime S, Al Moustafa AE. Targeting HER2-positive breast cancer cells by a combination of dasatinib and BMS-202: Insight into the molecular pathways. Cancer Cell Int 2024; 24:94. [PMID: 38431613 PMCID: PMC10909263 DOI: 10.1186/s12935-023-03195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Recent investigations have reported the benefits of using a tyrosine kinase inhibitor, dasatinib (DA), as well as programmed death-ligand 1 (PD-L1) inhibitors in the management of several solid tumors, including breast cancer. Nevertheless, the outcome of the combination of these inhibitors on HER2-positive breast cancer is not explored yet. METHODS Herein, we investigated the impact of DA and PD-L1 inhibitor (BMS-202) combination on HER2-positive breast cancer cell lines, SKBR3 and ZR75. RESULTS Our data reveal that the combination significantly inhibits cell viability of both cancer cell lines as compared to monotreatment. Moreover, the combination inhibits epithelial-mesenchymal transition (EMT) progression and reduces cancer cell invasion by restoring E-cadherin and β-catenin expressions and loss of vimentin, major biomarkers of EMT. Additionally, the combination reduces the colony formation of both cell lines in comparison with their matched control. Also, the combination considerably inhibits the angiogenesis of the chorioallantoic membrane model compared with monotreatment. Molecular pathway analysis of treated cells shows that this combination blocks HER2, AKT, β-catenin, and JNK1/2/3 activities. CONCLUSION Our findings implicate that a combination of DA and BMS-202 could have a significant impact on the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Sidra Medicine, Doha, Qatar
| | - Farhan Sachal Cyprian
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Halema F Al-Farsi
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar.
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Lee YH, Huang CY, Hsieh YH, Yang CH, Hung YL, Chen YA, Lin YC, Lin CH, Lee JH, Wang MY, Kuo WH, Lin YY, Lu YS. A novel computer-assisted tool for 3D imaging of programmed death-ligand 1 expression in immunofluorescence-stained and optically cleared breast cancer specimens. BMC Cancer 2024; 24:121. [PMID: 38267903 PMCID: PMC10807239 DOI: 10.1186/s12885-023-11748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are the two most common immune checkpoints targeted in triple-negative breast cancer (BC). Refining patient selection for immunotherapy is non-trivial and finding an appropriate digital pathology framework for spatial analysis of theranostic biomarkers for PD-1/PD-L1 inhibitors remains an unmet clinical need. METHODS We describe a novel computer-assisted tool for three-dimensional (3D) imaging of PD-L1 expression in immunofluorescence-stained and optically cleared BC specimens (n = 20). The proposed 3D framework appeared to be feasible and showed a high overall agreement with traditional, clinical-grade two-dimensional (2D) staining techniques. Additionally, the results obtained for automated immune cell detection and analysis of PD-L1 expression were satisfactory. RESULTS The spatial distribution of PD-L1 expression was heterogeneous across various BC tissue layers in the 3D space. Notably, there were six cases (30%) wherein PD-L1 expression levels along different layers crossed the 1% threshold for admitting patients to PD-1/PD-L1 inhibitors. The average PD-L1 expression in 3D space was different from that of traditional immunohistochemistry (IHC) in eight cases (40%). Pending further standardization and optimization, we expect that our technology will become a valuable addition for assessing PD-L1 expression in patients with BC. CONCLUSION Via a single round of immunofluorescence imaging, our approach may provide a considerable improvement in patient stratification for cancer immunotherapy as compared with standard techniques.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Yen Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | - Ching-Hung Lin
- Department of Medical Oncology, Cancer Center Branch, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jih-Hsiang Lee
- Department of Oncology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Ming-Yang Wang
- Department of Surgical Oncology, Cancer Center Branch, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Yen-Shen Lu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist, Taipei, 100225, Taiwan.
| |
Collapse
|
23
|
Lopez-Gonzalez L, Sanchez Cendra A, Sanchez Cendra C, Roberts Cervantes ED, Espinosa JC, Pekarek T, Fraile-Martinez O, García-Montero C, Rodriguez-Slocker AM, Jiménez-Álvarez L, Guijarro LG, Aguado-Henche S, Monserrat J, Alvarez-Mon M, Pekarek L, Ortega MA, Diaz-Pedrero R. Exploring Biomarkers in Breast Cancer: Hallmarks of Diagnosis, Treatment, and Follow-Up in Clinical Practice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:168. [PMID: 38256428 PMCID: PMC10819101 DOI: 10.3390/medicina60010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer is a prevalent malignancy in the present day, particularly affecting women as one of the most common forms of cancer. A significant portion of patients initially present with localized disease, for which curative treatments are pursued. Conversely, another substantial segment is diagnosed with metastatic disease, which has a worse prognosis. Recent years have witnessed a profound transformation in the prognosis for this latter group, primarily due to the discovery of various biomarkers and the emergence of targeted therapies. These biomarkers, encompassing serological, histological, and genetic indicators, have demonstrated their value across multiple aspects of breast cancer management. They play crucial roles in initial diagnosis, aiding in the detection of relapses during follow-up, guiding the application of targeted treatments, and offering valuable insights for prognostic stratification, especially for highly aggressive tumor types. Molecular markers have now become the keystone of metastatic breast cancer diagnosis, given the diverse array of chemotherapy options and treatment modalities available. These markers signify a transformative shift in the arsenal of therapeutic options against breast cancer. Their diagnostic precision enables the categorization of tumors with elevated risks of recurrence, increased aggressiveness, and heightened mortality. Furthermore, the existence of therapies tailored to target specific molecular anomalies triggers a cascade of changes in tumor behavior. Therefore, the primary objective of this article is to offer a comprehensive review of the clinical, diagnostic, prognostic, and therapeutic utility of the principal biomarkers currently in use, as well as of their clinical impact on metastatic breast cancer. In doing so, our goal is to contribute to a more profound comprehension of this complex disease and, ultimately, to enhance patient outcomes through more precise and effective treatment strategies.
Collapse
Affiliation(s)
- Laura Lopez-Gonzalez
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Alicia Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Cristina Sanchez Cendra
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | | | - Javier Cassinello Espinosa
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Oscar Fraile-Martinez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Cielo García-Montero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Ana María Rodriguez-Slocker
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Soledad Aguado-Henche
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
| | - Jorge Monserrat
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Melchor Alvarez-Mon
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain; (A.S.C.); (C.S.C.); (E.D.R.C.); (J.C.E.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
| | - Miguel A. Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (L.J.-Á.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.L.-G.); (A.M.R.-S.); (S.A.-H.); (R.D.-P.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (O.F.-M.); (C.G.-M.); (L.G.G.); (M.A.-M.); (L.P.); (M.A.O.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| |
Collapse
|
24
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
25
|
Bardhan M, Dey D, Suresh V, Javed B, Venur VA, Joe N, Kalidindi R, Ozair A, Khan M, Mahtani R, Lo S, Odia Y, Ahluwalia MS. An overview of the therapeutic strategies for neoplastic meningitis due to breast cancer: when and why? Expert Rev Neurother 2024; 24:77-103. [PMID: 38145503 DOI: 10.1080/14737175.2023.2293223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Neoplastic meningitis (NM), also known as leptomeningeal carcinomatosis, is characterized by the infiltration of tumor cells into the meninges, and poses a significant therapeutic challenge owing to its aggressive nature and limited treatment options. Breast cancer is a common cause of NM among solid tumors, further highlighting the urgent need to explore effective therapeutic strategies. This review aims to provide insights into the evolving landscape of NM therapy in breast cancer by collating existing research, evaluating current treatments, and identifying potential emerging therapeutic options. AREAS COVERED This review explores the clinical features, therapeutic strategies, recent advances, and challenges of managing NM in patients with breast cancer. Its management includes multimodal strategies, including systemic and intrathecal chemotherapy, radiation therapy, and supportive care. This review also emphasizes targeted drug options and optimal drug concentrations, and discusses emerging therapies. Additionally, it highlights the variability in treatment outcomes and the potential of combination regimens to effectively manage NM in breast cancer. EXPERT OPINION Challenges in treating NM include debates over clinical trial end points and the management of adverse effects. Drug resistance and low response rates are significant hurdles, particularly inHER2-negative breast cancer. The development of more precise and cost-effective medications with improved selectivity is crucial. Additionally, global efforts are needed for infrastructure development and cancer control considering the diverse nature of the disease.
Collapse
Affiliation(s)
- Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Vinay Suresh
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vyshak Alva Venur
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Neha Joe
- St John's Medical College Hospital, Bengaluru, India
| | | | - Ahmad Ozair
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Reshma Mahtani
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yazmin Odia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
26
|
Kumari L, Mishra L, Patel P, Sharma N, Gupta GD, Kurmi BD. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target 2023; 31:889-907. [PMID: 37539789 DOI: 10.1080/1061186x.2023.2245579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), has clinical features including a high degree of invasiveness, an elevated risk of metastasis, tendency to relapse, and poor prognosis. It constitutes around 10-15% of all breast cancer, and having heredity of BRCA1 mutated breast cancer could be a reason for the occurrence of TNBC in women. Overexpression of cellular and molecular targets, i.e. CD44 receptor, EGFR receptor, Folate receptor, Transferrin receptor, VEGF receptor, and Androgen receptor, have emerged as promising targets for treating TNBC. Signalling pathways such as Notch signalling and PI3K/AKT/mTOR also play a significant role in carrying out and managing crucial pro-survival and pro-growth cellular processes that can be utilised for targeted therapy against triple-negative breast cancer. This review sheds light on various targeting strategies, including cellular and molecular targets, signalling pathways, poly (ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immune checkpoint inhibitors PARP, immunotherapy, ADCs have all found a place in the current TNBC therapeutic paradigm. The role of photothermal therapy (PTT) and photodynamic therapy (PDT) has also been explored briefly.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, Punjab, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| |
Collapse
|
27
|
Zdrenka M, Kowalewski A, Borowczak J, Łysik-Miśkurka J, Andrusewicz H, Nowikiewicz T, Szylberg Ł. Diagnostic biopsy does not accurately reflect the PD-L1 expression in triple-negative breast cancer. Clin Exp Med 2023; 23:5121-5127. [PMID: 37804360 PMCID: PMC10725333 DOI: 10.1007/s10238-023-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
PD-L1 expression is known to predict the benefits of immune checkpoint inhibitor therapy for triple-negative breast cancer (TNBC). We examined whether the PD-L1 expression evaluated in biopsy specimens accurately reflects its expression in the whole tumor. Immunohistochemistry was performed on 81 biopsy and resection specimens from patients with TNBC to determine their PD-L1 status. We found PD-L1-positive tumors in 23 (28%) biopsy specimens and primarily PD-L1-negative tumors in 58 (72%). The PD-L1 status was reevaluated in matching postoperative specimens of primarily PD-L1-negative tumors. Of them, 31% (18/58) were positive, whereas 69% (40/58) were negative. Considering the pre- and postoperative analyses, 41 (51%) patients had PD-L1-positive tumors, while 40 had PD-L1-negative tumors. We found 18 (22%) more PD-L1-positive tumors while examining the resection specimens compared to biopsies, and the difference was statistically significant (p = 0.0038). Diagnostic biopsies do not fully reflect the PD-L1 expression in TNBC. Our results suggest that a significant subset of TNBC patients may be misclassified as PD-L1-negative and disqualified from anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz ul. Romanowska, 85-796, Bydgoszcz, Poland
| | - Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz ul. Romanowska, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology, Placentology, and Clinical Hematopathology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Joanna Łysik-Miśkurka
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz ul. Romanowska, 85-796, Bydgoszcz, Poland
| | - Hanna Andrusewicz
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz ul. Romanowska, 85-796, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Clinical Department of Breast Cancer and Reconstructive Surgery, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Surgical Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz ul. Romanowska, 85-796, Bydgoszcz, Poland.
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology, Placentology, and Clinical Hematopathology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
28
|
Mohammed EE, Türkel N, Yigit UM, Dalan AB, Sahin F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol Trace Elem Res 2023; 201:5692-5707. [PMID: 36940038 DOI: 10.1007/s12011-023-03632-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Despite the initial clinical response obtained with the widely used conventional chemotherapy, an improved prognosis for breast cancer patients has been missing in the clinic because of the high toxicity to normal cells, induction of drug resistance, and the potential immunosuppressive effects of these agents. Therefore, we aimed to investigate the potential anti-carcinogenic effect of some boron derivatives (sodium pentaborate pentahydrate (SPP) and sodium perborate tetrahydrate (SPT)), which showed a promising effect on some types of cancers in the literature, on breast cancer cell lines, as well as immuno-oncological side effects on tumor-specific T cell activity. These findings suggest that both SPP and SPT suppressed proliferation and induced apoptosis in MCF7 and MDA-MB-231 cancer cell lines through downregulation of the monopolar spindle-one-binder (MOB1) protein. On the other hand, these molecules increased the expression of PD-L1 protein through their effect on the phosphorylation level of Yes-associated protein (Phospho-YAP (Ser127). In addition, they reduced the concentrations of pro-inflammatory cytokines such as IFN-γ and cytolytic effector cytokines such as sFasL, perforin, granzyme A, Granzyme B, and granulysin and increased the expression of PD-1 surface protein in activated T cells. In conclusion, SPP, SPT, and their combination could have growth inhibitory (antiproliferative) effects and could be a potential treatment for breast cancer. However, their stimulatory effects on the PD-1/PD-L1 signaling pathway and their effects on cytokines could ultimately account for the observed repression of the charging of specifically activated effector T cells against breast cancer cells.
Collapse
Affiliation(s)
- Eslam Essam Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Nezaket Türkel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | | | - Altay Burak Dalan
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey.
| |
Collapse
|
29
|
Kanoujia J, Das A, Raina N, Kaur G, Singh SK, Tuli HS, Garg A, Gupta M. Recent advances in BCRP-induced breast cancer resistance treatment with marine-based natural products. IUBMB Life 2023; 75:896-910. [PMID: 37439402 DOI: 10.1002/iub.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
Breast cancer is the prominent cause of cancer-related death in women globally in terms of incidence and mortality. Despite, recent advances in the management of breast cancer, there are still a lot of cases of resistance to medicines, which is currently one of the biggest problems faced by researchers across the globe. Out of several mechanisms, breast cancer resistance protein (BCRP) arbitrated drug resistance is a major concern. Hormonal, cytotoxic and immunotherapeutic drugs are used in the systemic therapy of breast cancer. It is vital to choose drugs based on the clinical and molecular attributes of the tumor to provide better treatment with greater efficacy and minimal harm. Given the aforementioned necessity, the use of marine flora in treating breast cancer cannot be neglected. The scientists also stressed the value of marine-derived goods in avoiding breast cancer resistance. Future research into the identification of anticancer drugs will heavily draw upon the marine environment's ample supply of marine-derived natural products (MNPs), which have a wide range of biological functions. Cell cycle arrest, induction of apoptosis and anti-angiogenic, anti-proliferative and anti-metastasis actions are all part of their processes. The overview of breast cancer, the mechanisms underlying its resistance, recent clinical trials based on marine-derived products in breast cancer and the use of marine products in the treatment of breast cancer are highlighted in this paper. Moreover, the authors also emphasised the importance of marine-derived products in preventing breast cancer resistance.
Collapse
Affiliation(s)
- Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, India
| | - Anjali Das
- Center of Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | | | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Ashish Garg
- Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University Jabalpur, Jabalpur, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
30
|
Hernández-Aceves JA, Cervantes-Torres J, Torres-García D, Zuñiga-Flores FJ, Patiño-Chávez OJ, Peña Agudelo JA, Aguayo-Flores JE, Garfias Y, Montero-León L, Romero-Romero L, Pérez-Torres A, Fragoso G, Sciutto E. GK-1 effectively reduces angiogenesis and prevents T cell exhaustion in a breast cancer murine experimental model. Cancer Immunol Immunother 2023; 72:3825-3838. [PMID: 37736849 PMCID: PMC10576684 DOI: 10.1007/s00262-023-03538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Torres-García
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco J Zuñiga-Flores
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Yonathan Garfias
- Unidad de Investigación, Conde de Valenciana, Instituto de Oftalmología, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Montero-León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Romero-Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
31
|
Zhang Q, Yang Z, Hao X, Dandreo LJ, He L, Zhang Y, Wang F, Wu X, Xu L. Niclosamide improves cancer immunotherapy by modulating RNA-binding protein HuR-mediated PD-L1 signaling. Cell Biosci 2023; 13:192. [PMID: 37848943 PMCID: PMC10583380 DOI: 10.1186/s13578-023-01137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) represents a revolutionary advance in cancer treatment but remains limited success in triple-negative breast cancer (TNBC). Here we aim to explore the mechanism of RNA-binding protein (RBP) HuR in cancer immune evasion by post-transcriptionally regulating PD-L1 and evaluate the potential of HuR inhibition to improve immune response. METHODS The binding between HuR and PD-L1 mRNA was determined by ribonucleoprotein immunoprecipitation and RNA pull-down assays. The HuR knockout clones were established by CRISPR/Cas9 technology. The protein levels were assessed by Western blot, immunohistochemistry, and immunocytochemistry. The function and molecular mechanism of HuR-PD-L1 were determined by in vitro T cell activation and killing assay and in vivo efficacy assay. RESULTS We found that HuR directly bound to and stabilized PD-L1 mRNA. Knocking out HuR reduced PD-L1 levels and promoted T cell activation. We discovered that niclosamide reduced PD-L1 by inhibiting HuR cytoplasmic translocation, and diminished glycosylation of PD-L1. Niclosamide enhanced T cell-mediated killing of cancer cells and significantly improved the efficacy of anti-PD-1 immunotherapy in two syngeneic animal tumor models. CONCLUSION We identified HuR as a novel posttranscriptional regulator of PD-L1, which plays an important role in tumor immune evasion. Niclosamide might be a promising repurposed drug to improve the patient response to immunotherapy by targeting HuR-PD-L1 axis. Our study demonstrates a novel strategy for targeting HuR/PD-L1 and provides the first proof-of-principle for repurposing niclosamide as a HuR inhibitor to overcome cancer immune evasion and improve response to ICB immunotherapy.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA
| | - Zhe Yang
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA
| | - Xinbao Hao
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA
| | - Lauren J Dandreo
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA
| | - Lily He
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fen Wang
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaoqing Wu
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA.
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, 1567 Irving Hill Rd, Lawrence, KS, 66045-7534, USA.
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
32
|
Abaza A, Sid Idris F, Anis Shaikh H, Vahora I, Moparthi KP, Al Rushaidi MT, Muddam MR, Obajeun OA, Jaramillo AP, Khan S. Programmed Cell Death Protein 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Immunotherapy: A Promising Breakthrough in Cancer Therapeutics. Cureus 2023; 15:e44582. [PMID: 37667784 PMCID: PMC10475160 DOI: 10.7759/cureus.44582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/06/2023] Open
Abstract
The advent of immune checkpoint inhibitors has revolutionized cancer therapy by leveraging the body's immune system to combat malignancies effectively. Among these groundbreaking agents, programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have emerged as pivotal therapeutic approaches. PD-L1, a key protein expressed on the surface of various cells, including cancer cells, plays a central role in immune regulation by interacting with the programmed cell death protein 1 (PD-1) receptor on T-cells leading to immune suppression. The substantial increase in PD-L1 expression on cancer cell surfaces has driven the exploration of PD-1/PD-L1 inhibitors as potential immunotherapeutic agents. These inhibitors are monoclonal antibodies designed to impede the PD-L1 and PD-1 interaction and disrupt the immunosuppressive signal, thereby reinvigorating the anti-tumor immune response mediated by activated T-cells. Clinical trials investigating PD-1/PD-L1 inhibitors have demonstrated remarkable efficacy in the treatment of diverse advanced or metastatic cancers, including leukemia, non-small cell lung (NSCLC), hepatocellular, melanoma, gastric, colorectal, and breast cancers, among others. Regulatory approvals have been granted for both monotherapy and combination therapy with other cancer treatments, encompassing chemotherapy and additional immune checkpoint inhibitors. While PD-1/PD-L1 inhibitors have exhibited significant success, they are not devoid of challenges. The emergence of intrinsic or acquired resistance, as well as immune-related adverse events, warrants thorough investigation and management. Consequently, researchers have embarked on combination trials to augment the therapeutic potential of PD-1/PD-L1 inhibitors and surmount resistance mechanisms.
Collapse
Affiliation(s)
- Abdelrahman Abaza
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Faten Sid Idris
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Humna Anis Shaikh
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ilma Vahora
- General Surgery, Saint George's University School of Medicine, Chicago, USA
| | - Kiran Prasad Moparthi
- College of Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Majdah T Al Rushaidi
- Psychology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Meghana Reddy Muddam
- General Practice, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- College of Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
| | - Omobolanle A Obajeun
- Paediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
33
|
Nguyen VP, Campbell KM, Nowicki TS, Elumalai N, Medina E, Baselga-Carretero I, DiNome ML, Chang HR, Oseguera DK, Ribas A, Glaspy JA. A Pilot Study of Neoadjuvant Nivolumab, Ipilimumab, and Intralesional Oncolytic Virotherapy for HER2-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1628-1637. [PMID: 37621406 PMCID: PMC10445661 DOI: 10.1158/2767-9764.crc-23-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Purpose Neoadjuvant combination immune checkpoint blockade and intralesional oncolytic virotherapy have the potential to activate antitumor responses in patients with breast cancer. Experimental Design Eligibility for this pilot phase I trial included patients with localized HER2-negative breast cancer who received systemic nivolumab and ipilimumab and intratumor talimogene laherparepvec (T-VEC; NCT04185311). The primary objective was to evaluate the safety and adverse event profile of immunotherapy combined with T-VEC in patients with localized, HER2-negative breast cancer. Results Six patients were enrolled, 4 having relapses after prior neoadjuvant chemotherapy and 2 who were previously untreated. Toxicities included 1 patient having grade 3 hypotension and type 1 diabetes mellitus, 3 patients with hypothyroidism, and all patients having constitutional symptoms known to be associated with the administration of T-VEC. One patient had a pathologic complete response, 3 patients had pathologic partial responses, 1 showed no significant response, and 1 had disease progression. Biopsies demonstrated increased immune cell infiltration in samples from patients who responded to therapy. Conclusions This triple immunotherapy regimen provided responses in patients with advanced or relapsed HER2-negative breast cancer, at the expense of long-term toxicities. Significance Systemic immune checkpoint blockade with a programmed death receptor 1 and a CTL antigen-4 blocking antibody, combined with intralesional oncolytic virotherapy, is a chemotherapy-free combination aimed at inducing an antitumor immune response locally and systemic immunity.
Collapse
Affiliation(s)
- Vina P. Nguyen
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Katie M. Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Theodore S. Nowicki
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of California, Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Nila Elumalai
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Maggie L. DiNome
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
| | - Helena R. Chang
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
| | - Denise K. Oseguera
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology and Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - John A. Glaspy
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Aldahlawi A, Basingab F, Alrahimi J, Zaher K, Pushparaj PN, Hassan MA, Al-Sakkaf K. Herpesvirus entry mediator as a potential biomarker in breast cancer compared with conventional cytotoxic T‑lymphocyte‑associated antigen 4. Biomed Rep 2023; 19:56. [PMID: 37560313 PMCID: PMC10407466 DOI: 10.3892/br.2023.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 08/11/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with 2.3 million cases recorded in 2020. Despite improvements in cancer treatment, patients with BC still succumb to the disease, due to regional and distant metastases when diagnosed at later stages. Several immune checkpoint inhibitors have been approved for BC treatment, based on their expression and role in maintaining immunosurveillance against tumors. The present study aimed to evaluate the expression of 12 immune checkpoints in patients with BC, and assess their role as diagnostic and therapeutic markers. Expression levels were measured using reverse transcription-quantitative polymerase chain reaction. Among the 12 immune markers, herpesvirus entry mediator (HVEM) was found to be significantly upregulated in patients with malignant BC compared to non-malignant controls, with a relative fold change (FC) of 1.46 and P=0.012. A similar finding was observed for cytotoxic T-lymphocyte-associated antigen 4 (CTLA4; FC=1.47 and P=0.035). In addition, receiver operating characteristic curve analysis revealed that HVEM expression allowed significant differentiation between groups, with an area under the curve of 0.74 (P=0.013). Upregulation in both HVEM and CTLA4 was revealed to be significantly associated with the human epidermal growth factor receptor-2 (HER2)-enriched phenotype (FC=3.53, P=0.009 and FC=5.98, P=0.002, respectively), while only HVEM was significantly associated with the triple-negative phenotype (FC=2.07, P=0.016). Furthermore, HVEM was significantly higher in patients with grade III tumors (FC=1.88, P=0.025) and negative vascular invasion (FC=1.67, P=0.046) compared with non-malignant controls. Serum protein levels were assessed by multiplex immunoassay, and a significant increase in HVEM was detected in patients with malignant BC compared with that in non-malignant controls (P=0.035). These data indicated that HVEM may serve as a potential biomarker and target for immunotherapy, especially for certain types of BC.
Collapse
Affiliation(s)
- Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kawther Zaher
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammed A. Hassan
- Department of Medical Basic Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Republic of Yemen
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaltoom Al-Sakkaf
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Porta FM, Sajjadi E, Venetis K, Frascarelli C, Cursano G, Guerini-Rocco E, Fusco N, Ivanova M. Immune Biomarkers in Triple-Negative Breast Cancer: Improving the Predictivity of Current Testing Methods. J Pers Med 2023; 13:1176. [PMID: 37511789 PMCID: PMC10381494 DOI: 10.3390/jpm13071176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant challenge in terms of prognosis and disease recurrence. The limited treatment options and the development of resistance to chemotherapy make it particularly difficult to manage these patients. However, recent research has been shifting its focus towards biomarker-based approaches for TNBC, with a particular emphasis on the tumor immune landscape. Immune biomarkers in TNBC are now a subject of great interest due to the presence of tumor-infiltrating lymphocytes (TILs) in these tumors. This characteristic often coincides with the presence of PD-L1 expression on both neoplastic cells and immune cells within the tumor microenvironment. Furthermore, a subset of TNBC harbor mismatch repair deficient (dMMR) TNBC, which is frequently accompanied by microsatellite instability (MSI). All of these immune biomarkers hold actionable potential for guiding patient selection in immunotherapy. To fully capitalize on these opportunities, the identification of additional or complementary biomarkers and the implementation of highly customized testing strategies are of paramount importance in TNBC. In this regard, this article aims to provide an overview of the current state of the art in immune-related biomarkers for TNBC. Specifically, it focuses on the various testing methodologies available and sheds light on the immediate future perspectives for patient selection. By delving into the advancements made in understanding the immune landscape of TNBC, this study aims to contribute to the growing body of knowledge in the field. The ultimate goal is to pave the way for the development of more personalized testing strategies, ultimately improving outcomes for TNBC patients.
Collapse
Affiliation(s)
- Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| |
Collapse
|
36
|
Chuangchot N, Jamjuntra P, Yangngam S, Luangwattananun P, Thongchot S, Junking M, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Enhancement of PD-L1-attenuated CAR-T cell function through breast cancer-associated fibroblasts-derived IL-6 signaling via STAT3/AKT pathways. Breast Cancer Res 2023; 25:86. [PMID: 37480115 PMCID: PMC10362675 DOI: 10.1186/s13058-023-01684-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Carcinoma-associated fibroblasts (CAFs) play a critical role in cancer progression and immune cell modulation. In this study, it was aimed to evaluate the roles of CAFs-derived IL-6 in doxorubicin (Dox) resistance and PD-L1-mediated chimeric antigenic receptor (CAR)-T cell resistance in breast cancer (BCA). METHODS CAF conditioned-media (CM) were collected, and the IL-6 level was measured by ELISA. CAF-CM were treated in MDA-MB-231 and HCC70 TNBC cell lines and siIL-6 receptor (IL-6R) knocked down (KD) cells to determine the effect of CAF-derived IL-6 on Dox resistance by flow cytometry and on increased PD-L1 through STAT3, AKT and ERK1/2 pathways by Western blot analysis. After pre-treating with CM, the folate receptor alpha (FRα)-CAR T cell cytotoxicity was evaluated in 2D and 3D spheroid culture assays. RESULTS The results showed a significant level of IL-6 in CAF-CM compared to that of normal fibroblasts (NFs). The CM with high IL-6 level significantly induced Dox resistance; and PD-L1 expression through STAT3 and AKT pathways in MDA-MB-231 and HCC70 cells. These induction effects were attenuated in siIL-6R KD cells. Moreover, the TNBC cell lines that were CM-treated with STAT3 and an AKT inhibitor had a reduced effect of IL-6 on PD-L1 expression. BCA cells with high IL-6 containing-CM treatment had resistance to cancer cell killing by FRα CAR-T cells compared to untreated cells. CONCLUSION These results highlight CAF-derived IL-6 in the resistance of chemotherapy and T cell therapy. Using inhibitors of IL6-STAT3/AKT-PD-L1 axis may provide a potential benefit of Dox and CAR-T cell therapies in BCA patients.
Collapse
Affiliation(s)
- Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supaporn Yangngam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
37
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
38
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
39
|
Nabi R, Musarrat F, Menk P. Lima JC, Langohr IM, Chouljenko VN, Kousoulas KG. The Oncolytic herpes simplex virus type-1 (HSV-1) vaccine strain VC2 causes intratumor infiltration of functionally active T cells and inhibition of tumor metastasis and pro-tumor genes VEGF and PDL1 expression in the 4T1/Balb/c mouse model of stage four breast cancer. Front Mol Biosci 2023; 10:1199068. [PMID: 37388243 PMCID: PMC10303929 DOI: 10.3389/fmolb.2023.1199068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Oncolytic viruses (OVs) provide new modalities for cancer therapy either alone or in combination with synergistic immunotherapies and/or chemotherapeutics. Engineered Herpes Simplex Virus Type-1 (HSV-1) has shown strong promise for the treatment of various cancers in experimental animal models as well as in human patients, with some virus strains licensed to treat human melanoma and gliomas. In the present study we evaluated the efficacy of mutant HSV-1 (VC2) in a late stage, highly metastatic 4T1 murine syngeneic. Method: VC2 was constructed VC2 using double red recombination technology. For in-vivo efficacy we utilized a late stage 4T1 syngeneic and immunocompetent BALB/cJ mouse model breast cancer model which exhibits efficient metastasis to the lung and other organs. Results: VC2 replicated efficiently in 4T1 cells and in cell culture, achieving titers similar to those in African monkey kidney (Vero) cells. Intra-tumor treatment with VC2 did not appreciably reduce average primary tumor sizes but a significant reduction of lung metastasis was noted in mice treated intratumorally with VC2, but not with ultraviolet-inactivated VC2. This reduction of metastasis was associated with increased T cell infiltration comprised of CD4+ and CD4+CD8+ double-positive T cells. Characterization of purified tumor infiltrating T cells revealed a significant improvement in their proliferation ability compared to controls. In addition, significant T cell infiltration was observed in the metastatic nodules associated with reduction of pro-tumor PD-L1 and VEGF gene transcription. Conclusion: These results show that VC2 therapy can improve anti-tumor response associated with a better control of tumor metastasis. improve T cell responses and reduce pro-tumor biomarker gene transcription. VC2 holds promise for further development as an oncolytic and immunotherapeutic approach to treat breast and other cancers.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Farhana Musarrat
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jose Cesar Menk P. Lima
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Ingeborg M. Langohr
- Global Discovery Pathology, Translational Models Research Platform, Sanofi, Cambridge, MA, United States
| | - Vladimir N. Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
40
|
Dabo-Trubelja A, Gottumukkala V. Review of cancer therapies for the perioperative physician. Perioper Med (Lond) 2023; 12:25. [PMID: 37312150 PMCID: PMC10262136 DOI: 10.1186/s13741-023-00315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
Advances in cancer treatments over the past decades combining chemotherapy with novel technologies in immunotherapies, radiation therapies, and interventional radiology have prolonged life expectancy. Patients have more options for treatments of their primary or metastatic diseases. Increased procedural techniques amid an aging population with multiple comorbidities present risks and challenges in the perioperative period.Chemotherapy remains the mainstay of cancer treatment, can be given intraoperatively, and is combined with other treatment modalities. Immunotherapy is particular to cancer cells while being less toxic to healthy cells. Cancer vaccines stimulate the immune system to stop disease progression. Oncolytic viruses enhance the immune system's cytotoxic effect and show promise to halt metastatic disease progression if present in the perioperative period. Novel techniques in radiation therapy combined with traditional treatments show enhanced survival. This review focuses on current cancer treatments encountered in the perioperative period.
Collapse
Affiliation(s)
- Anahita Dabo-Trubelja
- Department of Anesthesiology and Critical Care, Onco-Anesthesia Fellowship, Perioperative Echocardiography and Ultrasound, Memorial Sloan Kettering Cancer Center of Weill Cornell Medical Center, 1274 York Ave C-330, New York, NY, 10065, USA.
| | - Vijaya Gottumukkala
- Department of Anesthesiology and Perioperative Medicine Program for Advancement of Perioperative Cancer Care, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
41
|
Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol 2023; 13:1188371. [PMID: 37251941 PMCID: PMC10213421 DOI: 10.3389/fonc.2023.1188371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
TSC2 is a tumor suppressor gene as well as a disease-causing gene for autosomal dominant disorder tuberous sclerosis complex (TSC). Research has found that some tumor tissues have lower TSC2 expression levels than normal tissues. Furthermore, low expression of TSC2 is associated with poor prognosis in breast cancer. TSC2 acts as a convergence point of a complex network of signaling pathways and receives signals from the PI3K, AMPK, MAPK, and WNT pathways. It also regulates cellular metabolism and autophagy through inhibition of a mechanistic target of rapamycin complex, which are processes relevant to the progression, treatment, and prognosis of breast cancer. In-depth study of TSC2 functions provides significant guidance for clinical applications in breast cancer, including improving the treatment efficacy, overcoming drug resistance, and predicting prognosis. In this review, protein structure and biological functions of TSC2 were described and recent advances in TSC2 research in different molecular subtypes of breast cancer were summarized.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhe-Min He
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Pekarek L, Sánchez Cendra A, Roberts Cervantes ED, Sánchez Cendra C, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Torres-Carranza D, Lopez-Gonzalez L, Aguado-Henche S, Rios-Parra A, García-Puente LM, García-Honduvilla N, Bujan J, Alvarez-Mon M, Saez MA, Ortega MA. Clinical and Translational Applications of Serological and Histopathological Biomarkers in Metastatic Breast Cancer: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24098396. [PMID: 37176102 PMCID: PMC10178988 DOI: 10.3390/ijms24098396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is one of the most common malignancies worldwide and the most common form of cancer in women. A large proportion of patients begin with localized disease and undergo treatment with curative intent, while another large proportion of patients debuts with disseminated metastatic disease. In the last subgroup of patients, the prognosis in recent years has changed radically, given the existence of different targeted therapies thanks to the discovery of different biomarkers. Serological, histological, and genetic biomarkers have demonstrated their usefulness in the initial diagnosis, in the follow-up to detect relapses, to guide targeted treatment, and to stratify the prognosis of the most aggressive tumors in those with breast cancer. Molecular markers are currently the basis for the diagnosis of metastatic disease, given the wide variety of chemotherapy regions and existing therapies. These markers have been a real revolution in the therapeutic arsenal for breast cancer, and their diagnostic validity allows the classification of tumors with higher rates of relapse, aggressiveness, and mortality. In this sense, the existence of therapies targeting different molecular alterations causes a series of changes in tumor biology that can be assessed throughout the course of the disease to provide information on the underlying pathophysiology of metastatic disease, which allows us to broaden our knowledge of the different mechanisms of tissue invasion. Therefore, the aim of the present article is to review the clinical, diagnostic, predictive, prognostic utility and limitations of the main biomarkers available and under development in metastatic breast cancer.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | | | | | | | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Soledad Aguado-Henche
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Luis M García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
43
|
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers (Basel) 2023; 15:2204. [PMID: 37190133 PMCID: PMC10137302 DOI: 10.3390/cancers15082204] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore 54000, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Janaína Artem Ataide
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil
| | - Valdimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
44
|
Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol 2023; 14:1094823. [PMID: 36993955 PMCID: PMC10040566 DOI: 10.3389/fimmu.2023.1094823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Metastatic breast cancer is one of the most common and well-known causes of death for women worldwide. The inflammatory tumor cell and other cancer hallmarks dictate the metastatic form and dissemination of breast cancer. Taking these into account, from various components of the tumor microenvironment, a pro-inflammatory infiltrative cell known as Th-17 plays an immense role in breast cancer proliferation, invasiveness, and metastasis. It has been demonstrated that IL-17, a pleiotropic pro-inflammatory cytokine generated by Th-17, is upregulated in a metastatic form of breast cancer. Recent research updates stated that chronic inflammation and mediators like cytokines and chemokines are causative hallmarks in many human cancers, including breast cancer. Therefore, IL-17 and its multiple downward signaling molecules are the centers of research attention to develop potent treatment options for cancer. They provide information on the role of IL-17-activated MAPK, which results in tumor cell proliferation and metastasis via NF-kB-mediated expression of MMP signaling. Overall, this review article emphasizes IL-17A and its intermediate signaling molecules, such as ERK1/2, NF-kB, MMPs, and VEGF, as potential molecular targets for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
- *Correspondence: Birhanu Ayelign,
| |
Collapse
|
45
|
Li K, Cao L, Li C, Wu J, Chen B, Zhang G, Li X, Wen L, Jia M, Wei G, Lin J, Li Y, Zhang Y, Mok H, Ren C, Wang Y, Qi X, Guo L, Che Y, Liao N. Genomic alteration profile and PD-L1 expression among different breast cancer subtypes in Chinese population and their correlations. Cancer Med 2023; 12:5195-5208. [PMID: 36404592 PMCID: PMC10028068 DOI: 10.1002/cam4.5314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUD There were limitations existing in programmed cell-death ligand 1 (PD-L1) as predictive biomarkers for breast cancer (BC), hence exploring the correlation between PD-L1 levels and other biomarkers in BC may become a very useful therapeutic clinical tool. METHODS A total of 301 Chinese patients with different BC subtypes including 47 HR+/HER2+, 185 HR+/HER2-, 38 HR-/HER2+, and 31 triple-negative breast cancer (TNBC) were enrolled in our study. Next-generation sequencing based Yuansu450 gene panel was used for genomic alteration identification and PD-L1 expression was tested using immunohistochemistry. RESULTS The most prevalent BC-related mutations were TP53 mutations, followed by mutations in PIK3CA, ERBB2, CDK12, and GATA3 in our Chinese cohort. We found that mutations DDR2 and MYCL were only mutated in HR-/HER2+ subtype, whereas H3-3A and NRAS mutations were only occurred in HR-/HER2- subtype. The percentage of patients with PD-L1-positive expression was higher in patients with HR-/HER2- mainly due to the percentage of PD-L1-high level. Mutational frequencies of TP53, MYC, FAT4, PBRM1, PREX2 were observed to have significant differences among patients with different BC subtypes based on PD-L1 levels. Moreover, a positive correlation was observed between TMB and PD-L1 level in HR+/HER2- subtype, and showed that the proportion of patients with high PD-L1 expression was higher than that of patients with low PD-L1 expression in the HR+/HER2- and HR+/HER2+ cohorts with high Ki67 expression. CONCLUSIONS The genomic alterations based on PD-L1 and other biomarkers of different cohorts may provide more possibilities for the treatment of BC with different subtypes.
Collapse
Affiliation(s)
- Kai Li
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Li Cao
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Cheukfai Li
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jundong Wu
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and TreatmentCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xueri Li
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Minghan Jia
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Guangnan Wei
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yingzi Li
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yuchen Zhang
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yulei Wang
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | | | | | | | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
46
|
Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Canine mammary carcinoma (CMC) is the most common neoplasm in bitches, and it shares many biological similarities with breast cancer in humans. Drug resistance, high epigenetic mutations, and relapse rates are among the challenges which eventually urge the need for a veterinary oncologist to discover new therapeutic approaches that are more effective and safer. Therefore, in this review, we also cover the current therapeutic strategies from human medicine for the future perspectives of tumor immunotherapy in veterinary medicine. These strategies have great potential to be employed as therapeutic or prophylactic options due to their ability to modulate a specific and potent immune response against CMC. As we acquire a better understanding of canine tumor immunology, we can move towards a brighter prognosis. Additionally, we report on the recent successful studies in breast cancer that may benefit canines as well.
Collapse
|
47
|
Artham S, Chang CY, McDonnell DP. Eosinophilia in cancer and its regulation by sex hormones. Trends Endocrinol Metab 2023; 34:5-20. [PMID: 36443206 PMCID: PMC10122120 DOI: 10.1016/j.tem.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Gender differences in the functionality of the immune system have been attributed, in part, to direct and indirect effects of sex steroids, especially estrogens, on immune cell repertoire and activity. Notable are studies that have defined roles for estrogens in the regulation of the biology of dendritic cells (DCs), macrophages, T cells and natural killer (NK) cells. Although estrogens can modulate eosinophil function, the mechanisms by which this occurs and how it contributes to the pathobiology of different diseases remains underexplored. Furthermore, although the importance of eosinophils in infection is well established, it remains unclear as to how these innate immune cells, which are present in different tumors, impact the biology of cancer cells and/or response to therapeutics. The observation that eosinophilia influences the efficacy of immune checkpoint blockers (ICBs) is significant considering the role of estrogens as regulators of eosinophil function and recent studies suggesting that response to ICBs is impacted by gender. Thus, in this review, we consider what is known about the roles of estrogen(s) in regulating tissue eosinophilia/eosinophil function and how this influences the pathobiology of breast cancer (in particular). This information provides the context for a discussion of how estrogens/the estrogen receptor (ER) signaling axis can be targeted in eosinophils and how this would be expected to influence the activity of standard-of-care interventions and contemporary immunotherapy regimens in cancer(s).
Collapse
Affiliation(s)
- Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
48
|
Provenzano E, Shaaban AM. Pathology of neoadjuvant therapy and immunotherapy testing for breast cancer. Histopathology 2023; 82:170-188. [PMID: 36482270 DOI: 10.1111/his.14771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Neoadjuvant chemotherapy (NACT) has become the standard of care for high-risk breast cancer, including triple-negative (TNBC) and HER2-positive disease. As a result, handling and reporting of breast specimens post-NACT is part of routine practice, and it is important for pathologists to recognise the changes in tumour cells, tumour-associated stroma and background breast tissue induced by NACT. Familiarity with characteristic stromal features enables identification of the pre-treatment tumour site and allows confident diagnosis of pathological complete response (pCR) which is important for decisions concerning adjuvant therapy. Neoadjuvant endocrine therapy (NAET) is used less frequently than NACT; however, the SARS-COVID-19 pandemic has changed practice, with increased use as bridging therapy if surgery is delayed. NAET also induces characteristic changes in the tumour and stroma. Changes in the tumour microenvironment following NACT and NAET are also described. Immunotherapy is approved for use in advanced TNBC, and there are several trials exploring its role in early TNBC in the neoadjuvant setting. The current biomarker to determine eligibility for treatment with immune checkpoint inhibitors is programmed death ligand-1 (PD-L1) immunohistochemistry; however, this is complicated by lack of standardisation with different drugs linked to tests using different antibodies with different scoring systems. The situation in the neoadjuvant setting is further complicated by improved pCR rates for PD-L1-positive tumours in both immune therapy and placebo arms. Alternative biomarkers are urgently needed to identify which patients will derive benefit from immunotherapy and key candidates are discussed.
Collapse
Affiliation(s)
- Elena Provenzano
- Department of Histopathology, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Abeer M Shaaban
- Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
50
|
Co-Targeting Luminal B Breast Cancer with S-Adenosylmethionine and Immune Checkpoint Inhibitor Reduces Primary Tumor Growth and Progression, and Metastasis to Lungs and Bone. Cancers (Basel) 2022; 15:cancers15010048. [PMID: 36612044 PMCID: PMC9818024 DOI: 10.3390/cancers15010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BCa) is the most prevalent cancer in females and has a high rate of mortality, especially due to increased metastasis to skeletal and non-skeletal sites. Despite the marked clinical accomplishment of immune checkpoint inhibitor (CPI) therapy in patients with several cancers, it has had limited success in luminal subtypes of BCa. Accordingly, recent efforts have focused on combination therapy with CPI, including epigenetic modulators, to increase response rates of CPI in luminal BCa. We have previously shown that S-adenosylmethionine (SAM), the ubiquitous methyl donor, has strong anti-cancer effects in various cancers, including all subtypes of BCa. In the current study, we took a novel approach and examined the effect of CPI alone and in combination with SAM on tumor growth and metastasis in a syngeneic mouse model of luminal B BCa. We showed that SAM decreases cell proliferation, colony-formation (survival), and invasion of luminal B BCa cell lines (Eo771, R221A) in vitro. In in vivo studies, in Eo771 tumor-bearing mice, either SAM or anti-PD-1 antibody treatment alone significantly reduced tumor growth and progression, while the SAM+anti-PD-1 combination treatment had the highest anti-cancer efficacy of all groups. The SAM+anti-PD-1 combination reduced the percentage of animals with lung metastasis, as well as total metastatic lesion area, compared to control. Additionally, the SAM+anti-PD-1 combination significantly reduced the skeletal lesion area and protected tibial integrity to a greater extent than the monotherapies in an Eo771 bone metastasis model. Transcriptome analysis of Eo771 primary tumors revealed significant downregulation of pro-metastatic genes, including Matrix metalloproteinases (MMPs) and related pathways. On the other hand, CD8+ T cell infiltration, CD8+ T cell cytotoxicity (elevated granzymes), and immunostimulatory genes and pathways were significantly upregulated by the combination treatment. The results presented point to a combination of SAM with CPI as a possible treatment for luminal B BCa that should be tested in clinical studies.
Collapse
|