1
|
Nemoto W, Yamagata R, Nakagawasai O, Hoshi T, Kobayashi R, Watanabe M, Tan-No K. Spinal ADAM17 contributes to the pathogenesis of painful diabetic neuropathy in leptin receptor-deficient mice. Biochem Pharmacol 2025; 233:116780. [PMID: 39880314 DOI: 10.1016/j.bcp.2025.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/10/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined. Thus, we studied the role of spinal ADAM17 in PDN. Leptin receptor-deficient db/db mice were used as a mouse model of type 2 diabetes. To inhibit ADAM17, we used DNA-modified siRNA against ADAM17 (siADAM17) or TAPI-1, an ADAM17 inhibitor. The number of ADAM17-positive neurons was increased in the spinal dorsal horn (lamina I-V) in db/db mice, while ADAM17-positive microglia were increased only in lamina I-II. Inhibition of spinal ADAM17 by siADAM17 or TAPI-1 significantly attenuated PDN observed in db/db mice. Among several substrates of ADAM17, angiotensin (Ang)-converting enzyme 2 (ACE2) expression was significantly decreased in the spinal plasma membrane of db/db mice. Intrathecal administration of Ang (1-7), a peptide generated by ACE2, to db/db mice produced an anti-hyperalgesic effect, which was abolished by the MAS1 receptor antagonist A779. Our findings reveal a critical role for spinal ADAM17 in the pathogenesis of PDN mediated by the degradation of ACE2, and suggest a novel pain control mechanism acting through the degradation of plasma membrane proteins in the cause of pathological pain.
Collapse
Affiliation(s)
- Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan.
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Tomohiro Hoshi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Ruka Kobayashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Mizuki Watanabe
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| |
Collapse
|
2
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
3
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
5
|
Xu K, Jiang P, Chen Z, Gu X, Zhang T. ADAM22 acts as a novel predictive biomarker for unfavorable prognosis and facilitates metastasis via PI3K/AKT signaling pathway in nasopharyngeal carcinoma. Pathol Res Pract 2024; 256:155264. [PMID: 38518731 DOI: 10.1016/j.prp.2024.155264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.
Collapse
Affiliation(s)
- Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zui Chen
- Department of Oncology, the Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
6
|
Yeo IJ, Yu JE, Kim SH, Kim DH, Jo M, Son DJ, Yun J, Han SB, Hong JT. TNF receptor 2 knockout mouse had reduced lung cancer growth and schizophrenia-like behavior through a decrease in TrkB-dependent BDNF level. Arch Pharm Res 2024; 47:341-359. [PMID: 38592583 PMCID: PMC11045614 DOI: 10.1007/s12272-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 μg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Mice, Knockout
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Humans
- Mice
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- A549 Cells
- Male
- Behavior, Animal/drug effects
- Cell Proliferation/drug effects
- Mice, Inbred C57BL
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Eun Yu
- College of Pharmacy, Mokpo National University, 1666, Yeongsan-ro, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Sung-Hyun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Miran Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
7
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
8
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
9
|
Markham M, Troeberg L. Using siRNA Silencing to Analyze ADAM17 in Macrophages. Methods Mol Biol 2024; 2747:119-129. [PMID: 38038936 DOI: 10.1007/978-1-0716-3589-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Silencing expression with short interfering RNA (siRNA) is a rapid and cost-effective way to analyze the involvement of target genes in a range of biological processes. Here we describe isolation of primary human monocytes from peripheral blood and their in vitro differentiation to macrophages, followed by electroporation with siRNA to silence expression of a disintegrin and metalloproteinase 17 (ADAM17). This enables evaluation of ADAM17's role in cleaving transmembrane proteins, such as its prototypic substrate tumor necrosis factor (TNF), by enzyme-linked immunosorbent assay (ELISA), flow cytometry, or immunoblotting.
Collapse
Affiliation(s)
- Matthew Markham
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
10
|
Ding T, Yu Y, Gao L, Xiang L, Xu B, Gu B, Chen H. Predictive Roles of ADAM17 in Patient Survival and Immune Cell Infiltration in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:17069. [PMID: 38069391 PMCID: PMC10707406 DOI: 10.3390/ijms242317069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the deadliest malignant tumour worldwide. The metalloproteinase ADAM17 is associated with tumour formation and development; however, its significance in HCC is unclear. This study aimed to investigate the role of ADAM17 in HCC and the correlation between its expression and immune cell infiltration. ADAM17 expression was analysed in pan-cancer and HCC tissues using The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Kaplan-Meier survival analysis displayed a negative association between ADAM17 expression and the overall survival of patients with HCC. High ADAM17 expression was linked to poor tumour/node (T/N) stage and alpha fetoprotein (AFP) levels. Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes analyses revealed the enrichment of several pathways, including epithelial-mesenchymal transition, inflammatory response, Hedgehog, and KRAS signalling, in patients with upregulated ADAM17. ADAM17 was shown to be positively correlated with immune cell infiltration and immune checkpoint expression via the Tumour Immune Estimation Resource (TIMER) database and immunohistochemistry analyses. Protein-protein interaction (PPI) network analysis revealed that ADAM17 plays a core role in cancer development and immune evasion. In vitro and in vivo experiments demonstrated that ADAM17 influences HCC growth and metastasis. In conclusion, ADAM17 is upregulated in most cancers, particularly HCC, and is critical in the development and immune evasion of HCC.
Collapse
Affiliation(s)
- Tianlong Ding
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Lei Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Lin Xiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Bo Xu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (Y.Y.); (L.G.); (L.X.); (B.X.); (B.G.)
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
| |
Collapse
|
11
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
12
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
13
|
Dixit G, Pappas BA, Bhardwaj G, Schanz W, Maretzky T. Functional Distinctions of Endometrial Cancer-Associated Mutations in the Fibroblast Growth Factor Receptor 2 Gene. Cells 2023; 12:2227. [PMID: 37759450 PMCID: PMC10526318 DOI: 10.3390/cells12182227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Functional analysis of somatic mutations in tumorigenesis facilitates the development and optimization of personalized therapy for cancer patients. The fibroblast growth factor receptor 2 (FGFR2) gene is frequently mutated in endometrial cancer (EC), but the functional implications of FGFR2 mutations in cancer development remain largely unexplored. In this study, we introduced a reliable and readily deployable screening method to investigate the effects of FGFR2 mutations. We demonstrated that distinct mutations in FGFR2 can lead to differential downstream consequences, specifically affecting a disintegrin- and metalloprotease 17 (ADAM17)-dependent shedding of the epidermal growth factor receptor (EGFR) ligand heparin-binding EGF-like growth factor (HB-EGF) and phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, we showed that the distribution of mutations within the FGFR2 gene can influence their oncogenic effects. Together, these findings provide important insights into the complex nature of FGFR2 mutations and their potential implications for EC. By unraveling the distinct effects of different mutations, our study contributes to the identification of personalized treatment strategies for patients with FGFR2-mutated cancers. This knowledge has the potential to guide the development of targeted therapies that specifically address the underlying molecular alterations associated with FGFR2 mutations, ultimately improving patient outcomes in EC and potentially other cancer types characterized by FGFR2 mutations.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Benjamin A. Pappas
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Willow Schanz
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
| | - Thorsten Maretzky
- Inflammation Program and Division of Infectious Diseases, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (G.D.); (B.A.P.); (W.S.)
- Immunology Graduate Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Chi M, Jie Y, Li Y, Wang D, Li M, Li D, E M, Li Y, Liu N, Gu A, Rong G. Novel structured ADAM17 small-molecule inhibitor represses ADAM17/Notch pathway activation and the NSCLC cells' resistance to anti-tumour drugs. Front Pharmacol 2023; 14:1189245. [PMID: 37456760 PMCID: PMC10338884 DOI: 10.3389/fphar.2023.1189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background and aims: The outcomes of current treatment for non-small cell lung cancer (NSCLC) are unsatisfactory and development of new and more efficacious therapeutic strategies are required. The Notch pathway, which is necessary for cell survival to avert apoptosis, induces the resistance of cancer cells to antitumour drugs. Notch pathway activation is controlled by the cleavage of Notch proteins/receptors mediated by A disintegrin and metalloproteinase 17 (ADAM17); therefore, ADAM17 is a reliable intervention target for anti-tumour therapy to overcome the drug resistance of cancer cells. This work aims to develop and elucidate the activation of Compound 2b, a novel-structured small-molecule inhibitor of ADAM17, which was designed and developed and its therapeutic efficacy in NSCLC was assessed via multi-assays. Methods and results: A lead compound for a potential inhibitor of ADAM17 was explored via pharmacophore modelling, molecular docking, and biochemical screening. It was augmented by substituting two important chemical groups [R1 and R2 of the quinoxaline-2,3-diamine (its chemical skeleton)]; subsequently, serial homologs of the lead compound were used to obtain anoptimized compound (2b) with high inhibitory activity compared with leading compound against ADAM17 to inhibit the cleavage of Notch proteins and the accumulation of the Notch intracellular domain in the nuclei of NSCLC cells. The inhibitory activity of compound 2b was demonstrated by quantitative polymerase chain reaction and Western blotting. The specificity of compound 2b on ADAM17 was confirmed via point-mutation. Compound 2b enhanced the activation of antitumor drugs on NSCLC cells, in cell lines and nude mice models, by targeting the ADAM17/Notch pathway. Conclusion: Compound 2b may be a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Duo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Man Li
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dan Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Yongwu Li
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Na Liu
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Dixit G, Gonzalez‐Bosquet J, Skurski J, Devor EJ, Dickerson EB, Nothnick WB, Issuree PD, Leslie KK, Maretzky T. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med 2023; 13:e1223. [PMID: 37165578 PMCID: PMC10172618 DOI: 10.1002/ctm2.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mutations in the receptor tyrosine kinase gene fibroblast growth factor receptor 2 (FGFR2) occur at a high frequency in endometrial cancer (EC) and have been linked to advanced and recurrent disease. However, little is known about how these mutations drive carcinogenesis. METHODS Differential transcriptomic analysis and two-step quantitative real-time PCR (qRT-PCR) assays were applied to identify genes differentially expressed in two cohorts of EC patients carrying mutations in the FGFR2 gene as well as in EC cells harbouring mutations in the FGFR2. Candidate genes and target signalling pathways were investigated by qRT-PCR assays, immunohistochemistry and bioinformatics analysis. The functional roles of differently regulated genes were analysed using in vitro and in vivo experiments, including 3D-orthotypic co-culture systems, cell proliferation and migration protocols, as well as colony and focus formation assays together with murine xenograft tumour models. The molecular mechanisms were examined using CRISPR/Cas9-based loss-of-function and pharmacological approaches as well as luciferase reporter techniques, cell-based ectodomain shedding assays and bioinformatics analysis. RESULTS We show that common FGFR2 mutations significantly enhance the sensitivity to FGF7-mediated activation of a disintegrin and metalloprotease (ADAM)17 and subsequent transactivation of the epidermal growth factor receptor (EGFR). We further show that FGFR2 mutants trigger the activation of ADAM10-mediated Notch signalling in an ADAM17-dependent manner, highlighting for the first time an intimate cooperation between EGFR and Notch pathways in EC. Differential transcriptomic analysis in EC cells in a cohort of patients carrying mutations in the FGFR2 gene identified a strong association between FGFR2 mutations and increased expression of members of the Notch pathway and ErbB receptor family. Notably, FGFR2 mutants are not constitutively active but require FGF7 stimulation to reprogram Notch and EGFR pathway components, resulting in ADAM17-dependent oncogenic growth. CONCLUSIONS These findings highlight a pivotal role of ADAM17 in the pathogenesis of EC and provide a compelling rationale for targeting ADAM17 protease activity in FGFR2-driven cancers.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Jesus Gonzalez‐Bosquet
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Joseph Skurski
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| | - Eric J. Devor
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Erin B. Dickerson
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Animal Cancer Care and Research ProgramUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Warren B. Nothnick
- Cell Biology and PhysiologyCenter for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Priya D. Issuree
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kimberly K. Leslie
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Division of Molecular MedicineDepartments of Internal Medicine and Obstetrics and GynecologyThe University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Thorsten Maretzky
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
16
|
Kumar AA, Vine KL, Ranson M. Recent Advances in Targeting the Urokinase Plasminogen Activator with Nanotherapeutics. Mol Pharm 2023. [PMID: 37119285 DOI: 10.1021/acs.molpharmaceut.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The aberrant proteolytic landscape of the tumor microenvironment is a key contributor of cancer progression. Overexpression of urokinase plasminogen activator (uPA) and/or its associated cell-surface receptor (uPAR) in tumor versus normal tissue is significantly associated with worse clinicopathological features and poorer patient survival across multiple cancer types. This is linked to mechanisms that facilitate tumor cell invasion and migration, via direct and downstream activation of various proteolytic processes that degrade the extracellular matrix─ultimately leading to metastasis. Targeting uPA has thus long been considered an attractive anticancer strategy. However, poor bioavailability of several uPA-selective small-molecule inhibitors has limited early clinical progress. Nanodelivery systems have emerged as an exciting method to enhance the pharmacokinetic (PK) profile of existing chemotherapeutics, allowing increased circulation time, improved bioavailability, and targeted delivery to tumor tissue. Combining uPA inhibitors with nanoparticle-based delivery systems thus offers a remarkable opportunity to overcome existing PK challenges associated with conventional uPA inhibitors, while leveraging potent candidates into novel targeted nanotherapeutics for an improved anticancer response in uPA positive tumors.
Collapse
Affiliation(s)
- Ashna A Kumar
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
17
|
Yang JT, Lee IN, Huang C, Huang HC, Wu YP, Chong ZY, Chen JC. ADAM17 Confers Temozolomide Resistance in Human Glioblastoma Cells and miR-145 Regulates Its Expression. Int J Mol Sci 2023; 24:ijms24097703. [PMID: 37175410 PMCID: PMC10178422 DOI: 10.3390/ijms24097703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor, commonly treated with temozolomide (TMZ). Upregulation of A disintegrin and metalloproteinases (ADAMs) is correlated to malignancy; however, whether ADAMs modulate TMZ sensitivity in GBM cells remains unclear. To explore the role of ADAMs in TMZ resistance, we analyzed changes in ADAM expression following TMZ treatment using RNA sequencing and noted that ADAM17 was markedly upregulated. Hence, we established TMZ-resistant cell lines to elucidate the role of ADAM17. Furthermore, we evaluated the impact of ADAM17 knockdown on TMZ sensitivity in vitro and in vivo. Moreover, we predicted microRNAs upstream of ADAM17 and transfected miRNA mimics into cells to verify their effects on TMZ sensitivity. Additionally, the clinical significance of ADAM17 and miRNAs in GBM was analyzed. ADAM17 was upregulated in GBM cells under serum starvation and TMZ treatment and was overexpressed in TMZ-resistant cells. In in vitro and in vivo models, ADAM17 knockdown conferred greater TMZ sensitivity. miR-145 overexpression suppressed ADAM17 and sensitized cells to TMZ. ADAM17 upregulation and miR-145 downregulation in clinical specimens are associated with disease progression and poor prognosis. Thus, miR-145 enhances TMZ sensitivity by inhibiting ADAM17. These findings offer insights into the development of therapeutic approaches to overcome TMZ resistance.
Collapse
Affiliation(s)
- Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi 61363, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu 30013, Taiwan
- Center for Teacher Education, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Zhi-Yong Chong
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| |
Collapse
|
18
|
Badenes M, Burbridge E, Oikonomidi I, Amin A, de Carvalho É, Kosack L, Mariano C, Domingos P, Faísca P, Adrain C. The ADAM17 sheddase complex regulator iTAP/Frmd8 modulates inflammation and tumor growth. Life Sci Alliance 2023; 6:e202201644. [PMID: 36720499 PMCID: PMC9889915 DOI: 10.26508/lsa.202201644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.
Collapse
Affiliation(s)
- Marina Badenes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal
- Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | | | | | - Pedro Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
19
|
Shoykhet M, Waschke J, Yeruva S. Cardiomyocyte cohesion is increased after ADAM17 inhibition. Front Cell Dev Biol 2023; 11:1021595. [PMID: 36733457 PMCID: PMC9887658 DOI: 10.3389/fcell.2023.1021595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
A Disintegrin And Metalloprotease (ADAM) family proteins are involved in several cardiac diseases, and some ADAMs have been associated with cardiomyopathies. ADAM17 is known to cleave desmoglein 2 (DSG2), one of the proteins involved in the pathogenesis of arrhythmogenic cardiomyopathy (AC). Desmosomal stability is impaired in AC, an inheritable genetic disease, the underlying causes of which can be mutations in genes coding for proteins of the desmosome, such as DSG2, desmoplakin (DP), plakoglobin (PG), plakophilin 2 or desmocollin 2. Stabilizing desmosomal contacts can therefore be a treatment option. In the heart of the murine Jup -/- AC model, (Jup being the gene coding for PG) mice, elevated levels of p38MAPK, an activator of ADAM17, were found. However, ADAM17 levels were unaltered in Jup -/- mice hearts. Nonetheless, inhibition of ADAM17 led to enhanced cardiomyocyte cohesion in both Jup +/+ and Jup -/- mice, and in HL-1 cardiomyocytes. Further, enhanced cohesion in HL-1 cardiomyocytes after acute inhibition of ADAM17 was paralleled by enhanced localization of DSG2 and DP at the membrane, whereas no changes in desmosomal assembly or the desmosomal complex were observed. In conclusion, acute inhibition of ADAM17 might lead to reduced cleavage of DSG2, thereby stabilizing the desmosomal adhesion, evidenced by increased DSG2 and DP localization at cell borders and eventually cardiomyocyte cohesion. We believe that similar mechanisms exist in AC.
Collapse
Affiliation(s)
| | | | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University (LMU), Munich, Germany
| |
Collapse
|
20
|
Liu Y, Han J, Kong T, Xiao N, Mei Q, Liu J. DriverMP enables improved identification of cancer driver genes. Gigascience 2022; 12:giad106. [PMID: 38091511 PMCID: PMC10716827 DOI: 10.1093/gigascience/giad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer is widely regarded as a complex disease primarily driven by genetic mutations. A critical concern and significant obstacle lies in discerning driver genes amid an extensive array of passenger genes. FINDINGS We present a new method termed DriverMP for effectively prioritizing altered genes on a cancer-type level by considering mutated gene pairs. It is designed to first apply nonsilent somatic mutation data, protein‒protein interaction network data, and differential gene expression data to prioritize mutated gene pairs, and then individual mutated genes are prioritized based on prioritized mutated gene pairs. Application of this method in 10 cancer datasets from The Cancer Genome Atlas demonstrated its great improvements over all the compared state-of-the-art methods in identifying known driver genes. Then, a comprehensive analysis demonstrated the reliability of the novel driver genes that are strongly supported by clinical experiments, disease enrichment, or biological pathway analysis. CONCLUSIONS The new method, DriverMP, which is able to identify driver genes by effectively integrating the advantages of multiple kinds of cancer data, is available at https://github.com/LiuYangyangSDU/DriverMP. In addition, we have developed a novel driver gene database for 10 cancer types and an online service that can be freely accessed without registration for users. The DriverMP method, the database of novel drivers, and the user-friendly online server are expected to contribute to new diagnostic and therapeutic opportunities for cancers.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Jiyun Han
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Tongxin Kong
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Nannan Xiao
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Qinglin Mei
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| |
Collapse
|
21
|
Nectin-4 as Blood-Based Biomarker Enables Detection of Early Ovarian Cancer Stages. Cancers (Basel) 2022; 14:cancers14235867. [PMID: 36497350 PMCID: PMC9739558 DOI: 10.3390/cancers14235867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy and has the highest mortality rate. Owing to unspecific symptoms, ovarian cancer is not detected until an advanced stage in about two-thirds of cases. Therefore, it is crucial to establish reliable biomarkers for the early stages to improve the patients’ prognosis. The aim of this study is to investigate whether the ADAM17 substrates Nectin-4, Heparin-binding EGF-like growth factor (HB-EGF) and Amphiregulin (AREG) could function as potential tumor markers for ovarian cancer. In this study a set of 231 sera consisting of 131 ovarian cancer patients and 100 healthy age-matched controls were assembled. Nectin-4, HB-EGF and AREG levels of preoperatively collected sera were determined by enzyme-linked immunosorbent assay (ELISA). Our analysis revealed that Nectin-4 and HB-EGF were significantly increased compared to the age-matched control group (p < 0.0001, p = 0.016). Strikingly, significantly higher Nectin-4 and HB-EGF levels were detected in early-stage FIGO I/II (p <0.001; p = 0.025) compared to healthy controls. Eighty-four percent (16/19) of patients with low Ca-125 levels showed increased Nectin-4 levels. Our study proposes Nectin-4 and HB-EGF as promising blood-based biomarkers for the detection of early stages of ovarian cancer patients that would not have been detected by Ca-125.
Collapse
|
22
|
Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proc Natl Acad Sci U S A 2022; 119:e2213744119. [PMID: 36215509 PMCID: PMC9586293 DOI: 10.1073/pnas.2213744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
23
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|
24
|
Single Shot vs. Cocktail: A Comparison of Mono- and Combinative Application of miRNA-Targeted Mesyl Oligonucleotides for Efficient Antitumor Therapy. Cancers (Basel) 2022; 14:cancers14184396. [PMID: 36139555 PMCID: PMC9496860 DOI: 10.3390/cancers14184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Current approaches to the treatment of oncological diseases are still suffering from a lack of efficiency and selectivity and are accompanied by pronounced non-specific toxic effects. This study evaluated the antitumor potential of highly selective multitarget antisense downregulation of small non-coding RNA molecules—microRNAs—where dysregulation in cells frequently triggers oncotransformation and tumor development. We report herein that combinations of recently developed mesyl phosphoramidate oligonucleotides, targeted to multifunctional miRNA regulators miR-17, miR-21 and miR-155, exhibited potent synergistic antiproliferative and antimigrative effects on highly aggressive tumor cells. Furthermore, the significant antitumor activity of a cocktail of three antisense oligonucleotides targeted to miR-21, miR-17, and miR-155 almost completely suppressed lymphosarcoma RLS40 tumor growth and exerted prominent antimetastatic effects in a melanoma B16 model. Such treatment elicited no sign of in vivo toxicity and even exhibited remedial effects on the liver of tumor-bearing mice. Abstract Rational combinations of sequence-specific inhibitors of pro-oncogenic miRNAs can efficiently interfere with specific tumor survival pathways, offering great promise for targeted therapy of oncological diseases. Herein, we uncovered the potential of multicomponent therapy by double or triple combinations of highly potent mesyl phosphoramidate (µ) antisense oligodeoxynucleotides targeted to three proven pro-oncogenic microRNAs—miR-17, miR-21, and miR-155. A strong synergism in the inhibition of proliferation and migration of B16 melanoma cells was demonstrated in vitro for pairs of µ-oligonucleotides, which resulted in vivo in profound inhibition (up to 85%) of lung metastases development after intravenous injection of µ-oligonucleotide-transfected B16 cells in mice. A clear benefit of µ-21-ON/µ-17-ON and µ-17-ON/µ-155-ON/µ-21-ON combination antitumor therapy was shown for the lymphosarcoma RLS40 solid tumor model. In vivo administration of the µ-17-ON/µ-155-ON/µ-21-ON cocktail into RLS40-bearing mice elicited fourfold delay of tumor growth as a result of strong inhibition of tumor mitotic activity. It was discovered that the cocktail of µ-21-ON/µ-17-ON/µ-155-ON led to a twofold decrease in total destructive changes in murine liver, which indicates both the reduction in toxic tumor burden and the absence of specific toxicity of the proposed therapy.
Collapse
|
25
|
Hu J, Dong F, He Y, Xia X, Cheng F, Chen S, Hou X, Zhang P, Liu G, Li Y, Gao Q, Dong M, Li T, Li W, Xiao Q, Li X, Yu X, Xi G, Guo D, Wu X, Wang B. LRIG2 promotes glioblastoma progression by modulating innate antitumor immunity through macrophage infiltration and polarization. J Immunother Cancer 2022; 10:jitc-2021-004452. [PMID: 36096529 PMCID: PMC9472135 DOI: 10.1136/jitc-2021-004452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor with poor clinical outcomes. Immunotherapy has recently been an attractive and promising treatment of extracranial malignancies, however, most of clinical trials for GBM immunotherapy failed due to predominant accumulation of tumor-associated microglia/macrophages (TAMs). Results High level of LRIG2/soluble LRIG2 (sLRIG2) expression activates immune-related signaling pathways, which are associated with poor prognosis in GBM patients. LRIG2/sLRIGs promotes CD47 expression and facilitates TAM recruitment. Blockade of CD47–SIRPα interactions and inhibition of sLRIG2 secretion synergistically suppress GBM progression in an orthotropic murine GBM model. Conclusions GBM cells with high level LRIG2 escape the phagocytosis by TAM via the CD47-SIRPα axis, highlighting a necessity for an early stage of clinical trial targeting LRIG2 and CD47-SIRPα as a novel treatment for patients with GBM.
Collapse
Affiliation(s)
- Jinyang Hu
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China.,Department of Neurosurgery, The First People's Hospital of Yichang, China Three Gorges University People's Hospital, Yichang, Hubei, China
| | - Feng Dong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Laboratory of Neuro-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - You He
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xianyou Xia
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Fangling Cheng
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Sui Chen
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Po Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Guohao Liu
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Ying Li
- Experimental Medicine Center, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical Colleg, Wuhan, Hubei, China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing, China.,Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Minhai Dong
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Wei Li
- Tianjin First Central Hospital, Tianjin, China
| | - Qungen Xiao
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xiaopeng Li
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guifa Xi
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Abbott Molecular Inc, Des Plaines, Illinois, USA
| | - Dongsheng Guo
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Cancer Institute and Hospital, Department of Cell Biology, Tianjin Medical University, Tianjin, China .,Department of Neurosurgery, Laboratory of Neuro-Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Wuhan, Hubei, China
| |
Collapse
|
26
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
27
|
Genetic polymorphism of ADAM17 and decreased bilirubin levels are associated with allergic march in the Korean population. BMC Med Genomics 2022; 15:21. [PMID: 35130903 PMCID: PMC8822644 DOI: 10.1186/s12920-022-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background The “allergic march” refers to changes in the frequency and intensity of allergic diseases with age. Classically, the allergic march begins with atopic dermatitis in infancy and leads to asthma and rhinitis as it continues. There are many factors that induce the allergic march; however, TNF-α may play an important role in inducing inflammation. Therefore, the therapeutic potential of TNF alpha-targeting agents is being considered for allergic march treatment. Methods We performed a correlation study to determine whether genetic polymorphisms of ADAM17 and clinical serum values between allergic and normal groups affect disease development by using the cohort data of the Korean genome epidemiologic research project. Gene association study was performed using PLINK version 1.07 (http://pngu.mgh.harvard.edu/–purcell/plink) and other statistical analysis was performed using PASW Statistics (version 18.0, SPSS Inc. Chicago, IL, USA). Results ADAM17 (also called TNF-α converting enzyme or TACE) showed a statistically significant association with the allergic march. The 13 and 8 SNPs in ADAM17 were significantly associated with asthma and allergies, respectively. Among them, on average, SNP of rs6432011 showed the greatest statistical correlation with asthma (P = 0.00041, OR = 1.95, 95% CI 1.35–2.82) and allergies (P = 0.02918, OR = 1.35, 95% CI 1.03–1.78). The effect of SNPs in ADAM17 on transcription factor binding was confirmed using RegulomeDB. The six SNPs are located in the genomic expression quantitative trait loci (eQTL) region and can affect transcription factor binding and gene expression. In clinical serum analysis, bilirubin levels were significantly decreased in the allergic group. The multivariate logistic regression analysis revealed that the low-bilirubin groups indicated a 3.22-fold increase in the prevalence of asthma compared with the high-bilirubin group. Conclusions The ADAM17 gene and low bilirubin levels are associated with the allergic march in the Korean population, which can provide new guidelines for managing this disease progression phenomena. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01170-7.
Collapse
|
28
|
Huang Z, Peng K, Hong Z, Zhang P, Kang M. Nomogram for predicting recurrence and metastasis of stage IA lung adenocarcinoma treated by video-assisted thoracoscopic surgery lobectomy. Asian J Surg 2022; 45:2691-2699. [DOI: 10.1016/j.asjsur.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
|
29
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
30
|
Bienstein M, Minond D, Schwaneberg U, Davari MD, Yildiz D. In Silico and Experimental ADAM17 Kinetic Modeling as Basis for Future Screening System for Modulators. Int J Mol Sci 2022; 23:1368. [PMID: 35163294 PMCID: PMC8835787 DOI: 10.3390/ijms23031368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms of modulators' action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17's broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New 'exosite' (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.
Collapse
Affiliation(s)
- Marian Bienstein
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (M.B.); (U.S.)
| | - Dmitriy Minond
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (M.B.); (U.S.)
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Center for Human and Molecular Biology (ZHMB), University of Saarland, Kirrbergerstr., 66421 Homburg, Germany
| |
Collapse
|
31
|
Agrawal A, Bhattacharya S. Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy. Curr Drug Res Rev 2022; 14:171-187. [PMID: 35440332 DOI: 10.2174/2589977514666220418085658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.
Collapse
Affiliation(s)
- Amaiyya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| |
Collapse
|
32
|
Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1. Oncogene 2022; 41:280-292. [PMID: 34743207 DOI: 10.1038/s41388-021-02097-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
We previously found the SLC3A2-NRG1 (S-N) fusion gene in a lung adenocarcinoma specimen without known driver mutations and validated this in 59 invasive mucinous adenocarcinoma (IMA) samples. Interestingly, KRAS mutation coexisted (62.5%) in 10 out of 16 NRG1 fusions. In this study, we examined the role of mutant KRAS in regulating the S-N fusion protein in KRAS mutant (H358) and wild-type (Calu-3) cells. KRAS mutation-mediated increase in MEK1/2 and ERK1/2 activity enhanced disintegrin and metalloproteinase (ADAM)17 activity, which increased the shedding of NRG1 from the S-N fusion protein. The cleavage of NRG1 also increased the phosphorylation of ERBB2-ERBB3 heterocomplex receptors and their downstream signalling pathways, including PI3K/Akt/mTOR, even under activated KRAS mutation signalling. The concurrence of S-N fusion and KRAS mutation synergistically increased cell proliferation, colony formation, tumour growth, and the cells' resistance to EGFR kinase inhibitors more than KRAS mutation alone. Targeted inhibition of MEK1/2, and ADAM17 significantly induced apoptosis singly and when combined with each mutation singly or with chemotherapy in both the concurrent KRAS mutant and S-N fusion xenograft and lung orthotopic models. Taken together, this is the first study to report that KRAS mutation increased NRG1 cleavage from the S-N fusion protein through ADAM17, thereby enhancing the Ras/Raf/MEK/ERK and ERBB/PI3K/Akt/mTOR pathways. Moreover, the coexistence of KRAS mutant and S-N fusion in lung tumours renders them vulnerable to MEK1/2 and/or ADAM17 inhibitors, at least in part, due to their dependency on the strong positive loop between KRAS mutation and S-N fusion.
Collapse
|
33
|
Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics (Basel) 2021; 11:diagnostics11122370. [PMID: 34943606 PMCID: PMC8700640 DOI: 10.3390/diagnostics11122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
To increase the effectiveness of anticancer therapy based on immune checkpoint (IC) inhibition, some ICs are being investigated in addition to those used in clinic. We reviewed data on the relationship between PD-L1, B7-H3, B7-H4, IDO1, Galectin-3 and -9, CEACAM1, CD155, Siglec-15 and ADAM17 expression with cancer development in complex with the results of clinical trials on their inhibition. Increased expression of the most studied ICs—PD-L1, B7-H3, and B7-H4—is associated with poor survival; their inhibition is clinically significant. Expression of IDO1, CD155, and ADAM17 is also associated with poor survival, including gastric cancer (GC). The available data indicate that CD155 and ADAM17 are promising targets for immune therapy. However, the clinical trials of anti-IDO1 antibodies have been unsatisfactory. Expression of Galectin-3 and -9, CEACAM1 and Siglec-15 demonstrates a contradictory relationship with patient survival. The lack of satisfactory results of these IC inhibitor clinical trials additionally indicates the complex nature of their functioning. In conclusion, in many cases it is important to analyze the expression of other participants of the immune response besides target IC. The PD-L1, B7-H3, B7-H4, IDO1 and ADAM17 may be considered as candidates for prognosis markers for GC patient survival.
Collapse
|
34
|
ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119141. [PMID: 34610348 DOI: 10.1016/j.bbamcr.2021.119141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.
Collapse
|
35
|
Safavi A, Ghodousi ES, Ghavamizadeh M, Sabaghan M, Azadbakht O, veisi A, Babaei H, Nazeri Z, Darabi MK, Zarezade V. Computational investigation of novel farnesyltransferase inhibitors using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation studies: A new insight into cancer treatment. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
37
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
38
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
39
|
Dawson RE, Jenkins BJ, Saad MI. IL-6 family cytokines in respiratory health and disease. Cytokine 2021; 143:155520. [PMID: 33875334 DOI: 10.1016/j.cyto.2021.155520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
40
|
Saad MI, McLeod L, Hodges C, Vlahos R, Rose-John S, Ruwanpura S, Jenkins BJ. ADAM17 Deficiency Protects against Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021; 64:183-195. [PMID: 33181031 DOI: 10.1165/rcmb.2020-0214oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary emphysema is the major debilitating component of chronic obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality worldwide. The ADAM17 (A disintegrin and metalloproteinase 17) protease mediates inflammation via ectodomain shedding of numerous proinflammatory cytokines, cytokine receptors, and adhesion molecules; however, its role in the pathogenesis of emphysema and COPD is poorly understood. This study aims to define the role of the protease ADAM17 in the pathogenesis of pulmonary emphysema. ADAM17 protein expression and activation was investigated in lung biopsies from patients with emphysema, as well as lungs of the emphysematous gp130F/F mouse model and an acute (4 d) cigarette smoke (CS)-induced lung pathology model. The Adam17ex/ex mice, which display significantly reduced global ADAM17 expression, were coupled with emphysema-prone gp130F/F mice to produce gp130F/F:Adam17ex/ex. Both Adam17ex/ex and wild-type mice were subjected to acute CS exposure. Histological, immunohistochemical, immunofluorescence, and molecular analyses as well as lung function tests were performed to assess pulmonary emphysema, inflammation, and alveolar cell apoptosis. ADAM17 was hyperphosphorylated in the lungs of patients with emphysema and also in emphysematous gp130F/F and CS-exposed mice. ADAM17 deficiency ameliorated the development of pulmonary emphysema in gp130F/F mice by suppressing elevated alveolar cell apoptosis. In addition, genetic blockade of ADAM17 protected mice from CS-induced pulmonary inflammation and alveolar cell apoptosis. Our study places the protease ADAM17 as a central molecular switch implicated in the development of pulmonary emphysema, which paves the way for using ADAM17 inhibitors as potential therapeutic agents to treat COPD and emphysema.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Saleela Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
41
|
Borlak F, Reutzel-Selke A, Schirmeier A, Gogolok J, von Hoerschelmann E, Sauer IM, Pratschke J, Bahra M, Schmuck RB. Notch Signaling Pathway in Pancreatobiliary Tumors. ACTA ACUST UNITED AC 2021; 57:medicina57020105. [PMID: 33498866 PMCID: PMC7911049 DOI: 10.3390/medicina57020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Background and Objectives: The Notch signaling pathway plays an important role both in the development of the ductal systems of the pancreas and the bile ducts as well as in cancer development and progression. The aim of this study was to examine the expression of central proteins of the Notch signaling pathway in pancreatobiliary tumors and its influence on patient survival. Materials and Methods: We compared the receptors (Notch1, Notch4), activating splicing factors (ADAM17), and target genes (HES1) of the Notch pathway and progenitor cell markers with relevance for the Notch signaling pathway (CD44, MSI1) between pancreatic adenocarcinomas (PDAC, n = 14), intrahepatic cholangiocarcinoma (iCC, n = 24), and extrahepatic cholangiocarcinoma (eCC, n = 22) cholangiocarcinomas via immunohistochemistry and ImageJ software-assisted analysis. An Immunohistochemistry (IHC)-score was determined by the percentage and intensity of stained (positive) cells (scale 0–7) and normal and malignant tissue was compared. In the IHC results, patients’ (gender, age) and tumor (TNM Classification of Malignant Tumors, Union Internationale contre le Cancer (UICC) stages, grading, and lymphangitic carcinomatosa) characteristics were correlated to patient survival. Results: For eCC, the expression of CD44 (p = 0.043, IHC-score 3.94 vs. 3.54) and for iCC, the expression of CD44 (p = 0.026, IHC-score 4.04 vs. 3.48) and Notch1 (p < 0.001, IHC-score 2.87 vs. 1.78) was significantly higher in the tumor compared to non-malignant tissue. For PDAC, the expression of ADAM17 (p = 0.008, IHC-score 3.43 vs. 1.73), CD44 (p = 0.012, IHC-score 3.64 vs. 2.27), Notch1 (p = 0.012, IHC-score 2.21 vs. 0.64), and Notch4 (p = 0.008, IHC-score 2.86 vs. 0.91) was significantly higher in the tumor tissue. However, none of the analyzed Notch-signaling related components showed an association to patient survival. Conclusion: A significant overexpression of almost all studied components of the Notch signaling pathway can be found in the tumor tissue, however, without a significant influence on patient survival. Therefore, further studies are warranted to draw conclusions on Notch pathway’s relevance for patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rosa B. Schmuck
- Correspondence: ; Tel.: +49-30450652184; Fax: +49-304507652184
| |
Collapse
|
42
|
Functional Characterization of Colon-Cancer-Associated Variants in ADAM17 Affecting the Catalytic Domain. Biomedicines 2020; 8:biomedicines8110463. [PMID: 33143292 PMCID: PMC7692748 DOI: 10.3390/biomedicines8110463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Although extensively investigated, cancer is still one of the most devastating and lethal diseases in the modern world. Among different types, colorectal cancer (CRC) is most prevalent and mortal, making it an important subject of research. The metalloprotease ADAM17 has been implicated in the development of CRC due to its involvement in signaling pathways related to inflammation and cell proliferation. ADAM17 is capable of releasing membrane-bound proteins from the cell surface in a process called shedding. A deficiency of ADAM17 activity has been previously shown to have protective effects against CRC in mice, while an upregulation of ADAM17 activity is suspected to facilitate tumor development. In this study, we characterize ADAM17 variants found in tissue samples of cancer patients in overexpression studies. We here focus on point mutations identified within the catalytic domain of ADAM17 and could show a functional dysregulation of the CRC-associated variants. Since the catalytic domain of ADAM17 is the only region structurally determined by crystallography, we study the effect of each point mutation not only to learn more about the role of ADAM17 in cancer, but also to investigate the structure–function relationships of the metalloprotease.
Collapse
|
43
|
Xu R, Kang HF, Liu HB, Qian JB. Role of a disintegrin and metalloproteinase 17 in malignant tumors of the digestive system. Shijie Huaren Xiaohua Zazhi 2020; 28:986-991. [DOI: 10.11569/wcjd.v28.i19.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-alpha converting enzyme, is widely distributed in mammalian cells and closely related to cell adhesion, migration, leukocyte recruitment, proteolysis, and other functions. ADAM17 plays an important role in the development of malignant tumors. On the one hand, it activates signaling pathways by mediating membrane protein shedding to participate in cell proliferation and angiogenesis. On the other hand, it plays an important role in tumor invasion and metastasis by degrading the cell basement membrane and extracellular matrix. Therefore, ADAM17 may be used as a potential target for tumor therapy. This article reviews the role of ADAM17 in malignant tumors of the digestive system.
Collapse
Affiliation(s)
- Rong Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Hai-Feng Kang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Hong-Bin Liu
- Department of Pathology, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| | - Jun-Bo Qian
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
44
|
Lv T, Lv H, Fei J, Xie Y, Lian D, Hu J, Tang L, Shi X, Wang J, Zhang S, Li F, Jiang X, Yi Y. p53-R273H promotes cancer cell migration via upregulation of neuraminidase-1. J Cancer 2020; 11:6874-6882. [PMID: 33123278 PMCID: PMC7591995 DOI: 10.7150/jca.44718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that hotspot p53 mutants have gain-of-function in promoting cell migration and tumor metastasis. However, the molecular mechanisms are not completely understood. Here, we show that a hotspot mutation, p53-R273H, promotes non-small cell lung cancer (NSCLC) cell migration and upregulates the mRNA and protein expression of neuraminidase-1 (NEU1), a sialidase involved in cell proliferation, cell migration and tumorigenesis. Silencing of NEU1 leads to upregulation of integrin β4 which significantly inhibits NSCLC cell migration induced by p53-R273H. Mechanistically, p53-R273H promotes NEU1 transcription via activation of AKT signaling. Importantly, NEU1 expression is upregulated in human NSCLC samples harboring mutant p53 and is associated with poor clinical outcome. Overall, this study highlights an important role of NEU1 in p53-R273H-induced NSCLC cell migration and provides a potential target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Lv
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Hong Lv
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China 400016
| | - Daqing Lian
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiang Hu
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Lizhou Tang
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xiaodong Shi
- Center for Yunnan Plateau Biological Resources Protection Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Shibo Zhang
- Hematology Department, The First People's Hospital of Qujing, Qujing, Yunnan, China 655000
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| | - Xianjie Jiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, and Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 610064
| |
Collapse
|
45
|
Brooks AJ, Putoczki T. JAK-STAT Signalling Pathway in Cancer. Cancers (Basel) 2020; 12:cancers12071971. [PMID: 32698360 PMCID: PMC7409105 DOI: 10.3390/cancers12071971] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andrew J. Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Qld 4072, Australia
- Correspondence:
| | - Tracy Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
| |
Collapse
|
46
|
Shi J, Huang Y, Wen C, He S, Wu L, Zhou H. Genome-wide identification and characterization of long non-coding RNAs involved in acquired resistance to gefitinib in non-small-cell lung cancer. Comput Biol Chem 2020; 87:107288. [PMID: 32521497 DOI: 10.1016/j.compbiolchem.2020.107288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Acquired resistance is a major obstacle to the therapeutic efficacy of gefitinib in non-small-cell lung cancer (NSCLC). Current knowledge about the role of long non-coding RNAs (lncRNAs) in this phenomenon is insufficient. In this study, we searched RNA sequencing data for lncRNAs associated with acquired resistance to gefitinib in NSCLC, and constructed a functional lncRNA-mRNA co-expression network and protein-protein interaction (PPI) network to analyze their putative target genes and biological functions. The expression levels of 14 outstanding dysregulated lncRNAs and mRNA were verified using real-time PCR. Changes in the expression levels of 39 lncRNAs and 121 mRNAs showed common patterns in our two pairs of gefitinib-sensitive and gefitinib-resistant NSCLC cell lines. The co-expression network included 1235 connections among these common differentially expressed lncRNAs and mRNAs. The significantly enriched signaling pathways based on dysregulated mRNAs were mainly involved in the Hippo signaling pathway; proteoglycans in cancer; and valine, leucine, and isoleucine biosynthesis. The results show that LncRNAs play an important part in acquired gefitinib resistance in NSCLC by regulating mRNA expression and function, and may represent potential new molecular biomarkers and therapeutic targets for gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Jingjing Shi
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yutang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chunjie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shuai He
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China; Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| |
Collapse
|
47
|
Wang L, Li J, Li Y, Pang LB. Hsa-let-7c exerts an anti-tumor function by negatively regulating ANP32E in lung adenocarcinoma. Tissue Cell 2020; 65:101372. [PMID: 32746998 DOI: 10.1016/j.tice.2020.101372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/12/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
We attempted to investigate the relationship between hsa-let-7c and ANP32E, as well as their influence on the cells phenotype of lung adenocarcinoma. Expression of hsa-let-7c and prognostic values were assessed by bioinformatics analysis based on TCGA database. Quantitative real-time PCR and western blot was employed to measure relative expression of hsa-let-7c or ANP32E. The targeting relationship between let-7c and ANP32E was predicted by biological software and validated by dual luciferase reporter assay. With gene transfection technology, cell proliferation, invasion and migration were appraised by cell counting Kit-8, clone formation and Transwell assays. The results showed that hsa-let-7c was downregulated in lung adenocarcinoma. Downregulation of hsa-let-7c notably led to a poor survival. ANP32E was forecasted and confirmed as a directly target of hsa-let-7c, and was upregulated in lung adenocarcinoma. Furthermore, upregulation of ANP32E had a significant correlation with unsatisfactory survival. Meanwhile, the levels of ANP32E were negatively regulated by hsa-let-7c. Upregulation of hsa-let-7c remarkably suppressed the Calu-3 cell proliferation, invasion and migration, while ANP32E overexpression plasmids rescued the downtrend. Inversely, hsa-let-7c silencing in NCI-H209 cells presented the opposite outcomes. Collectively, hsa-let-7c shows an anti-tumor effect in lung adenocarcinoma by targeting ANP32E and is expected to be a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, Shandong Jining NO.1 People's Hospital, Jining, Shandong 272001, PR China
| | - Jun Li
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Cheeloo Colleage of Medicine, Shandong University, Jinan, Shandong 250013, PR China
| | - Yan Li
- Jining Center for Disease Control and Prevention, Jining, Shandong 272000, PR China
| | - Long-Bin Pang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Cheeloo Colleage of Medicine, Shandong University, Jinan, Shandong 250013, PR China.
| |
Collapse
|
48
|
Murumkar PR, Ghuge RB, Chauhan M, Barot RR, Sorathiya S, Choudhary KM, Joshi KD, Yadav MR. Recent developments and strategies for the discovery of TACE inhibitors. Expert Opin Drug Discov 2020; 15:779-801. [PMID: 32281878 DOI: 10.1080/17460441.2020.1744559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION TNF-α plays a central role in certain autoimmune diseases as well as in inflammation. The current strategy for excluding TNF-α from circulation is to selectively inhibit TNF-α converting enzyme (TACE), an enzyme that cleaves mTNF-α to active TNF-α. Various TACE inhibitors have been discovered by using different strategies to control inflammatory diseases, cancer, and cardiac hypertrophy. AREAS COVERED The present article summarizes the design and discovery of novel TACE inhibitors that have been reported in the literature since 2012 onwards. It also includes some reports concerning the new role that TACE plays in cancer and cardiac hypertrophy. EXPERT OPINION So far, undertaken studies that have looked to design and develop small TACE inhibitors have been discouraging due to the failure of any TACE inhibitors to hit the market. However, some of the latest developments, such as with tartrate-based inhibitors, has given hope to the potentiality of a viable novel selective TACE inhibitor therapeutic in the future. Indeed, some of the novel peptidomimetics and monoclonal antibodies have great potential to pave the way for an effective and safe therapy by selectively inhibiting TACE enzyme.
Collapse
Affiliation(s)
- Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Rahul B Ghuge
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Rahul R Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Sharmishtha Sorathiya
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Kailash M Choudhary
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Karan D Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda , Vadodara, India
| |
Collapse
|
49
|
Li N, Hao W, Yang J, Guo Y, Guo Y, Du Y. Long non-coding RNA colon cancer-associated transcript-1 regulates tumor cell proliferation and invasion of non-small-cell lung cancer through suppressing miR-152. Geriatr Gerontol Int 2020; 20:629-636. [PMID: 32227563 DOI: 10.1111/ggi.13914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/17/2023]
Abstract
AIM Lung cancer serves as one of the most common cancers in the world, and approximately 50% of non-small-cell lung cancer (NSCLC) patients are found to be aged >70 when diagnosed. In this study, we aimed to explore the effect of long non-coding RNAs colon cancer-associated transcript-1 (CCAT1) in NSCLC. METHODS A total of 72 clinical samples from older NSCLC patients were collected for analysis. The relative mRNA level of CCAT1 was detected through real-time polymerase chain reaction. Overall survival of NSCLC patients was detected through Kaplan-Meier survival analysis. MTT assays were used to detect cell proliferation. Cell invasion was determined by transwell assay. Protein levels were detected through western blot. RESULTS CCAT1 expression levels significantly increased in NSCLC tumor tissues and were associated with poor overall survival of NSCLC patients. CCAT1 promotes cell proliferation, cell invasion and epithelial-mesenchymal transition of NSCLC cell lines. CCAT1 binds with miR-152, and the effect of si-CCAT1 in NSCLC cell proliferation, cell invasion and epithelial-mesenchymal transition was partially reversed by anti-miR-152. CONCLUSIONS Long non-coding RNA CCAT1 regulates tumor cell proliferation and invasion in NSCLC through suppressing miR-152. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, China
| | - Weiwei Hao
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, China
| | - Junfang Yang
- Department of Gastroenterology, First Affiliated Hospital of Pingdingshan University, Pingdingshan, China
| | - Yali Guo
- Department of Aspiration, First Affiliated Hospital of Pingdingshan University, Pingdingshan, China
| | - Yonggang Guo
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, China
| | - Ying Du
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, China
| |
Collapse
|
50
|
Hsiao TF, Wang CL, Wu YC, Feng HP, Chiu YC, Lin HY, Liu KJ, Chang GC, Chien KY, Yu JS, Yu CJ. Integrative Omics Analysis Reveals Soluble Cadherin-3 as a Survival Predictor and an Early Monitoring Marker of EGFR Tyrosine Kinase Inhibitor Therapy in Lung Cancer. Clin Cancer Res 2020; 26:3220-3229. [PMID: 32156745 DOI: 10.1158/1078-0432.ccr-19-3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE EGFR tyrosine kinase inhibitors (EGFR-TKI) benefit patients with advanced lung adenocarcinoma (ADC) harboring activating EGFR mutations. We aimed to identify biomarkers to monitor and predict the progression of patients receiving EGFR-TKIs via a comprehensive omic analysis. EXPERIMENTAL DESIGN We applied quantitative proteomics to generate the TKI resistance-associated pleural effusion (PE) proteome from patients with ADC with or without EGFR-TKI resistance. Candidates were selected from integrated genomic and proteomic datasets. The PE (n = 33) and serum (n = 329) levels of potential biomarkers were validated with ELISAs. Western blotting was applied to detect protein expression in tissues, PEs, and a cell line. Gene knockdown, TKI treatment, and proliferation assays were used to determine EGFR-TKI sensitivity. Progression-free survival (PFS) and overall survival (OS) were assessed to evaluate the prognostic values of the potential biomarkers. RESULTS Fifteen proteins were identified as potential biomarkers of EGFR-TKI resistance. Cadherin-3 (CDH3) was overexpressed in ADC tissues compared with normal tissues. CDH3 knockdown enhanced EGFR-TKI sensitivity in ADC cells. The PE level of soluble CDH3 (sCDH3) was increased in patients with resistance. The altered sCDH3 serum level reflected the efficacy of EGFR-TKI after 1 month of treatment (n = 43). Baseline sCDH3 was significantly associated with PFS and OS in patients with ADC after EGFR-TKI therapy (n = 76). Moreover, sCDH3 was positively associated with tumor stage in non-small cell lung cancer (n = 272). CONCLUSIONS We provide useful marker candidates for drug resistance studies. sCDH3 is a survival predictor and real-time indicator of treatment efficacy in patients with ADC treated with EGFR-TKIs.
Collapse
Affiliation(s)
- Ting-Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Chuan Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|