1
|
Luo M, Ye Y, Tang L, Kan W, Chen L, Li C, Sheng L, Zhou Y, Li J, Xiong B, Wang H, Chen D. Design and development of a series of 4-(piperazin-1-yl)pyrimidines as irreversible menin inhibitors. Eur J Med Chem 2024; 280:116918. [PMID: 39366253 DOI: 10.1016/j.ejmech.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
The interaction between menin and MLL1 protein plays an important role in AML with MLL rearrangement and NPM1 mutation. Blocking the formation of menin-MLL complex can inhibit proliferation and induce differentiation in these cancer subtypes. In development of anticancer drugs, irreversible inhibitors are gaining spotlight as they may have better activities than the reversible analogs. Therefore, we designed and developed a novel series of covalent menin inhibitors. Among these compounds, 37 emerges as a selective and potent inhibitor of MLL fusion protein-expressing leukemic cells. The cellular study indicates 37 has a distinct mechanism of action, in both reducing menin protein levels and downregulating MEN1 transcription. This effect of 37 is not involved in proteasomal degradation, and may directly affect the synthesis of menin protein, which offers a significant advantage in addressing acquired resistance to menin inhibitors. Further study showed that compound 37 has prolonged anti-leukemic action and exhibits promising in vivo efficacy, making it a valuable probe for further menin-MLL interaction studies.
Collapse
Affiliation(s)
- Menglan Luo
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yunfei Ye
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Lu Tang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Weijuan Kan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Cong Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Li Sheng
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Jia Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Hanlin Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
4
|
Bai H, Yang Z, Lei H, Wu Y, Liu J, Yuan B, Ma M, Gao L, Zhang SQ, Xin M. Discovery of novel pyrrolo[2,3-d]pyrimidines as potent menin-mixed lineage leukemia interaction inhibitors. Eur J Med Chem 2024; 268:116226. [PMID: 38367493 DOI: 10.1016/j.ejmech.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 μM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 μM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.
Collapse
Affiliation(s)
- Huanrong Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Li Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
5
|
Wolffhardt TM, Ketzer F, Telese S, Wirth T, Ushmorov A. Dependency of B-Cell Acute Lymphoblastic Leukemia and Multiple Myeloma Cell Lines on MEN1 Extends beyond MEN1-KMT2A Interaction. Int J Mol Sci 2023; 24:16472. [PMID: 38003662 PMCID: PMC10670986 DOI: 10.3390/ijms242216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Menin/MEN1 is a scaffold protein that participates in proliferation, regulation of gene transcription, DNA damage repair, and signal transduction. In hematological malignancies harboring the KMT2A/MLL1 (MLLr) chromosomal rearrangements, the interaction of the oncogenic fusion protein MLLr with MEN1 has been shown to be essential. MEN1 binders inhibiting the MEN1 and KMT2A interaction have been shown to be effective against MLLr AML and B-ALL in experimental models and clinical studies. We hypothesized that in addition to the MEN1-KMT2A interaction, alternative mechanisms might be instrumental in the MEN1 dependency of leukemia. We first mined and analyzed data from publicly available gene expression databases, finding that the dependency of B-ALL cell lines on MEN1 did not correlate with the presence of MLLr. Using shRNA-mediated knockdown, we found that all tested B-ALL cell lines were sensitive to MEN1 depletion, independent of the underlying driver mutations. Most multiple myeloma cell lines that did not harbor MLLr were also sensitive to the genetic depletion of MEN1. We conclude that the oncogenic role of MEN1 is not limited to the interaction with KMT2A. Our results suggest that targeted degradation of MEN1 or the development of binders that induce global changes in the MEN1 protein structure may be more efficient than the inhibition of individual MEN1 protein interactions.
Collapse
Affiliation(s)
- Tatjana Magdalena Wolffhardt
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Franz Ketzer
- Center for Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Stefano Telese
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| | - Alexey Ushmorov
- Institute of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (T.M.W.); (S.T.)
| |
Collapse
|
6
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Karthikeyan SK, Nuo X, Ferguson JE, Rais-Bahrami S, Qin ZS, Manne U, Netto GJ, Chandrashekar DS, Varambally S. Identification of androgen response-related lncRNAs in prostate cancer. Prostate 2023; 83:590-601. [PMID: 36760203 PMCID: PMC10038919 DOI: 10.1002/pros.24494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA molecules with over 200 nucleotides that do not code for proteins, but are known to be widely expressed and have key roles in gene regulation and cellular functions. They are also found to be involved in the onset and development of various cancers, including prostate cancer (PCa). Since PCa are commonly driven by androgen regulated signaling, mainly stimulated pathways, identification and determining the influence of lncRNAs in androgen response is useful and necessary. LncRNAs regulated by the androgen receptor (AR) can serve as potential biomarkers for PCa. In the present study, gene expression data analysis were performed to distinguish lncRNAs related to the androgen response pathway. METHODS AND RESULTS We used publicly available RNA-sequencing and ChIP-seq data to identify lncRNAs that are associated with the androgen response pathway. Using Universal Correlation Coefficient (UCC) and Pearson Correlation Coefficient (PCC) analyses, we found 15 lncRNAs that have (a) highly correlated expression with androgen response genes in PCa and are (b) differentially expressed in the setting of treatment with an androgen agonist as well as antagonist compared to controls. Using publicly available ChIP-seq data, we investigated the role of androgen/AR axis in regulating expression of these lncRNAs. We observed AR binding in the promoter regions of 5 lncRNAs (MIR99AHG, DUBR, DRAIC, PVT1, and COLCA1), showing the direct influence of AR on their expression and highlighting their association with the androgen response pathway. CONCLUSION By utilizing publicly available multiomics data and by employing in silico methods, we identified five candidate lncRNAs that are involved in the androgen response pathway. These lncRNAs should be investigated as potential biomarkers for PCa.
Collapse
Affiliation(s)
| | - Xu Nuo
- Collat School of Business, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James E. Ferguson
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
10
|
Lei H, Zhang SQ, Bai H, Zhao HY, Sun J, Chuai H, Xin M. Discovery of Novel, Potent, and Selective Small-Molecule Menin-Mixed Lineage Leukemia Interaction Inhibitors through Attempting Introduction of Hydrophilic Groups. J Med Chem 2022; 65:13413-13435. [PMID: 36173787 DOI: 10.1021/acs.jmedchem.2c01313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction of the N,N-dimethylaminoethoxy group to pyrido[3,2-d]pyrimidine led to the discovery of menin-mixed lineage leukemia (MLL) interaction inhibitor C20. C20 showed strong binding affinity to menin protein and achieved sub-micromolar potency in cell growth inhibition. C20 had good selectivity for the inhibition of the interaction between menin and MLL in the kinase profile evaluation. Pharmacokinetic studies demonstrated that C20 possessed good stability and low clearance rate in liver microsomes and acceptable bioavailability in rats. Subsequent oral administration of C20 showed potent antitumor activity in the MV4;11 subcutaneous xenograft models of MLL-rearranged leukemia. The docking study showed that C20 bound highly with menin, and the N,N-dimethylaminoethoxy group occupied the F9 pocket of menin. This study proved that introducing a hydrophilic group into the F9 pocket of menin would be a new strategy for the design of menin-MLL interaction inhibitors with potent binding affinity and improved physical properties.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi710061, P. R. China
| |
Collapse
|
11
|
Shen X, Wang X, Lu X, Zhao Y, Guan W. Molecular biology of pancreatic neuroendocrine tumors: From mechanism to translation. Front Oncol 2022; 12:967071. [PMID: 36248960 PMCID: PMC9554633 DOI: 10.3389/fonc.2022.967071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are a group of heterogeneous tumors originated from progenitor cells. As these tumors are predominantly non-functional, most of them display asymptomatic characteristics, making it difficult to be realized from early onset. Therefore, patients with pNETs are usually diagnosed with metastatic disease or at a late disease stage. The relatively low incidence also limits our understanding of the biological background of pNETs, which largely impair the development of new effective drugs. The fact that up to 10% of pNETs develop in patients with genetic syndromes have promoted researchers to focus on the gene mutations and driver mutations in MEN1, DAXX/ATRX and mTOR signaling pathway genes have been implicated in disease development and progression. Recent advances in sequencing technologies have further enriched our knowledge of the complex molecular landscape of pNETs, pointing out crucial roles of genes in DNA damage pathways, chromosomal and telomere alterations and epigenetic dysregulation. These novel findings may not only benefit early diagnosis of pNETs, but also help to uncover tumor heterogeneity and shape the future of translational medical treatment. In this review, we focus on the current molecular biology of pNETs and decipher how these findings may translate into future development of targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- *Correspondence: Wenxian Guan, ; Yang Zhao,
| |
Collapse
|
12
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
13
|
Karbalivand M, Almada LL, Ansell SM, Fernandez-Zapico ME, Elsawa SF. MLL1 inhibition reduces IgM levels in Waldenström macroglobulinemia. Leuk Res 2022; 116:106841. [DOI: 10.1016/j.leukres.2022.106841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022]
|
14
|
A Pan-Cancer Study of KMT2 Family as Therapeutic Targets in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3982226. [PMID: 35058979 PMCID: PMC8766195 DOI: 10.1155/2022/3982226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Objective Exome sequencing studies have shown that the histone-lysine N-methyltransferase 2 (KMT2) gene is one of the most commonly mutated genes in a range of human malignancies and is linked to some of the most common and deadly solid tumors. However, the connection between this gene family's function and tumor type, immunological subtype, and molecular subtype dependency is still unknown. Methods We examine the expression patterns of the histone-lysine N-methyltransferase 2 (KMT2) gene, as well as their relationship to patient survival. We also used a pan-cancer analysis to link their function to immunological subtypes, the tumor microenvironment, and treatment sensitivity. Results Using the TCGA pan-cancer data, researchers looked at and examined KMT2 expression patterns and their links to patient survival and the tumor microenvironment in 33 cancer types. The expression of the KMT2 family changes significantly across and within cancer types, indicating significant inter- and intracancer heterogeneity. Patients' overall survival was often linked to the expression of KMT2 family members. However, the direction of the link differed depending on the KMT2 isoform and cancer type studied. Notably, in all cancer types examined, nearly all KMT2 family members were substantially linked with overall survival in patients with renal clear cell carcinoma (KIRC). Furthermore, all KMT2 genes have a strong relationship with immune infiltrate subtypes, as well as varying degrees of stromal cell infiltration and tumor cell stemness. Finally, we discovered that higher expression of KMT2s, particularly KMT2F and KMT2G, was linked to greater chemotherapeutic sensitivity in several cell lines. Conclusions The necessity to investigate each KMT2 member as a distinct entity inside each particular cancer type is highlighted by our comprehensive investigation of KMT2 gene expression and its relationship with immune infiltrates, tumor microenvironment, and cancer patient outcomes. Our research also confirmed the identification of KMT2 as a potential therapeutic target in cancer, but further laboratory testing is required.
Collapse
|
15
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Lei H, Zhang SQ, Fan S, Bai HR, Zhao HY, Mao S, Xin M. Recent Progress of Small Molecule Menin-MLL Interaction Inhibitors as Therapeutic Agents for Acute Leukemia. J Med Chem 2021; 64:15519-15533. [PMID: 34726905 DOI: 10.1021/acs.jmedchem.1c00872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mixed lineage leukemia (MLL) gene rearrangements are associated with acute leukemia. The protein menin is regarded as a critical oncogenic cofactor of the resulting MLL fusion proteins in acute leukemia. A direct interaction between menin and the MLL amino terminal sequences is necessary for MLL fusion protein-mediated leukemogenesis. Thus, inhibition of the interaction between menin and MLL has emerged as a novel therapeutic strategy. Recent improvements in structural biology and chemical reactivity have promoted the design and development of selective and potent menin-MLL interaction inhibitors. In this Perspective, different classes of menin-MLL interaction inhibitors are comprehensively summarized. Further research potential, challenges, and opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Huan-Rong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| |
Collapse
|
17
|
Machine Learning Applied to the Modeling of Pharmacological and ADMET Endpoints. Methods Mol Biol 2021. [PMID: 34731464 DOI: 10.1007/978-1-0716-1787-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The well-known concept of quantitative structure-activity relationships (QSAR) has been gaining significant interest in the recent years. Data, descriptors, and algorithms are the main pillars to build useful models that support more efficient drug discovery processes with in silico methods. Significant advances in all three areas are the reason for the regained interest in these models. In this book chapter we review various machine learning (ML) approaches that make use of measured in vitro/in vivo data of many compounds. We put these in context with other digital drug discovery methods and present some application examples.
Collapse
|
18
|
New Advances in the Research of Resistance to Neoadjuvant Chemotherapy in Breast Cancer. Int J Mol Sci 2021; 22:ijms22179644. [PMID: 34502549 PMCID: PMC8431789 DOI: 10.3390/ijms22179644] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of medicine today, the clinical application of neoadjuvant chemotherapy has brought new hope to the treatment of breast cancer. Although the efficacy of neoadjuvant chemotherapy has been confirmed, drug resistance is one of the main reasons for its treatment failure, contributing to the difficulty in the treatment of breast cancer. This article focuses on multiple mechanisms of action and expounds a series of recent research advances that mediate drug resistance in breast cancer cells. Drug metabolizing enzymes can mediate a catalytic reaction to inactivate chemotherapeutic drugs and develop drug resistance. The drug efflux system can reduce the drug concentration in breast cancer cells. The combination of glutathione detoxification system and platinum drugs can cause breast cancer cells to be insensitive to drugs. Changes in drug targets have led to poorer efficacy of HER2 receptor inhibitors. Moreover, autophagy, epithelial–mesenchymal transition, and tumor microenvironment can all contribute to the development of resistance in breast cancer cells. Based on the relevant research on the existing drug resistance mechanism, the current treatment plan for reversing the resistance of breast cancer to neoadjuvant chemotherapy is explored, and the potential drug targets are analyzed, aiming to provide a new idea and strategy to reverse the resistance of neoadjuvant chemotherapy drugs in breast cancer.
Collapse
|
19
|
Antisense Oligonucleotide-Based Therapeutic against Menin for Triple-Negative Breast Cancer Treatment. Biomedicines 2021; 9:biomedicines9070795. [PMID: 34356858 PMCID: PMC8301388 DOI: 10.3390/biomedicines9070795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumor suppressor menin has dual functions, acting either as a tumor suppressor or as an oncogene/oncoprotein, depending on the oncological context. Triple-negative breast cancer (TNBC) is characterized by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (ERBB2/HER2) and is often a basal-like breast cancer. TNBC is associated with a dismal prognosis and an insufficient response to chemotherapies. Previously, menin was shown to play a proliferative role in ER-positive breast cancer; however, the functions of menin in TNBC remain unknown. Here, we have demonstrated that menin is expressed in various TNBC subtypes with the strongest expression in the TNBC Hs 578T cells. The depletion of menin by an antisense oligonucleotide (ASO) inhibits cell proliferation, enhances apoptosis in Hs 578T cells, highlighting the oncogenic functions of menin in this TNBC model. ASO-based menin silencing also delays the tumor progression of TNBC xenografts. Analysis of the menin interactome suggests that menin could drive TNBC tumorigenesis through the regulation of MLL/KMT2A-driven transcriptional activity, mRNA 3′-end processing and apoptosis. The study provides a rationale behind the use of ASO-based therapy, targeting menin in monotherapy or in combination with chemo or PARP inhibitors for menin-positive TNBC treatments.
Collapse
|
20
|
Zhang M, Aguilar A, Xu S, Huang L, Chinnaswamy K, Sleger T, Wang B, Gross S, Nicolay BN, Ronseaux S, Harvey K, Wang Y, McEachern D, Kirchhoff PD, Liu Z, Stuckey J, Tron AE, Liu T, Wang S. Discovery of M-1121 as an Orally Active Covalent Inhibitor of Menin-MLL Interaction Capable of Achieving Complete and Long-Lasting Tumor Regression. J Med Chem 2021; 64:10333-10349. [PMID: 34196551 DOI: 10.1021/acs.jmedchem.1c00789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.
Collapse
Affiliation(s)
- Meng Zhang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilin Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Taryn Sleger
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Bo Wang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Brandon N Nicolay
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Sebastien Ronseaux
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Kaitlin Harvey
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adriana E Tron
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Tao Liu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:biology10070581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
|
22
|
Spatiotemporal Patterns of Menin Localization in Developing Murine Brain: Co-Expression with the Elements of Cholinergic Synaptic Machinery. Cells 2021; 10:cells10051215. [PMID: 34065662 PMCID: PMC8156519 DOI: 10.3390/cells10051215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Menin, a product of MEN1 (multiple endocrine neoplasia type 1) gene is an important regulator of tissue development and maintenance; its perturbation results in multiple tumors—primarily of the endocrine tissue. Despite its abundance in the developing central nervous system (CNS), our understanding of menin’s role remains limited. Recently, we discovered menin to play an important role in cholinergic synaptogenesis in the CNS, whereas others have shown its involvement in learning, memory, depression and apoptosis. For menin to play these important roles in the CNS, its expression patterns must be corroborated with other components of the synaptic machinery imbedded in the learning and memory centers; this, however, remains to be established. Here, we report on the spatio-temporal expression patterns of menin, which we found to exhibit dynamic distribution in the murine brain from early development, postnatal period to a fully-grown adult mouse brain. We demonstrate here that menin expression is initially widespread in the brain during early embryonic stages, albeit with lower intensity, as determined by immunohistochemistry and gene expression. With the progression of development, however, menin expression became highly localized to learning, memory and cognition centers in the CNS. In addition to menin expression patterns throughout development, we provide the first direct evidence for its co-expression with nicotinic acetylcholine, glutamate and GABA (gamma aminobutyric acid) receptors—concomitant with the expression of both postsynaptic (postsynaptic density protein PSD-95) and presynaptic (synaptotagamin) proteins. This study is thus the first to provide detailed analysis of spatio-temporal patterns of menin expression from initial CNS development to adulthood. When taken together with previously published studies, our data underscore menin’s importance in the cholinergic neuronal network assembly underlying learning, memory and cognition.
Collapse
|
23
|
Ozyerli‐Goknar E, Nizamuddin S, Timmers HTM. A Box of Chemistry to Inhibit the MEN1 Tumor Suppressor Gene Promoting Leukemia. ChemMedChem 2021; 16:1391-1402. [PMID: 33534953 PMCID: PMC8252030 DOI: 10.1002/cmdc.202000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Targeting protein-protein interactions (PPIs) with small-molecule inhibitors has become a hotbed of modern drug development. In this review, we describe a new class of PPI inhibitors that block menin from binding to MLL proteins. Menin is encoded by the MEN1 tumor suppressor, but acts as an essential cofactor for MLL/KMT2A-rearranged leukemias. The most promising menin-MLL inhibitors belong to the thienopyrimidine class and have recently entered phase I/II clinical trials for treating acute leukemias characterized by MLL/KMT2A translocations or NPM1 mutations. As single agents, thienopyrimidine compounds eradicate leukemia in a xenograft models of primary leukemic cells belonging to the MLL-rearranged or NPM1-mutant subtypes. These compounds are well tolerated with few or no side effects, which is remarkable given the tumor-suppressor function of menin. The menin-MLL inhibitors highlight how leukemia patients could benefit from a targeted epigenetic therapy with novel PPI inhibitors obtained by directed chemical evolution.
Collapse
Affiliation(s)
- Ezgi Ozyerli‐Goknar
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| |
Collapse
|
24
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Kato I, Kasukabe T, Kumakura S. Menin‑MLL inhibitors induce ferroptosis and enhance the anti‑proliferative activity of auranofin in several types of cancer cells. Int J Oncol 2020; 57:1057-1071. [PMID: 32945449 DOI: 10.3892/ijo.2020.5116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022] Open
Abstract
Menin‑mixed‑lineage leukemia (MLL) inhibitors have potential for use as therapeutic agents for MLL‑rearranged leukemia. They are also effective against solid cancers, such as breast cancer. The present study demonstrated that menin‑MLL inhibitors, such as MI‑463, unexpectedly induced the ferroptotic cell death of several cancer cell lines. MI‑463 at a double‑digit nM concentration markedly decreased the viable number of OVCAR‑8 ovarian cancer cells for 3 days. Ferrostatin‑1 (a ferroptosis inhibitor) almost completely abrogated the MI‑463‑induced decrease in viable cell numbers. Furthermore, the cancer cell‑killing activity was inhibited by N‑acetylcysteine [a scavenger of reactive oxygen species (ROS)], deferoxamine (DFO, an iron chelator), PD146176 (a specific inhibitor of arachidonate 15‑lipoxygenase), idebenone (a membrane‑permeable analog of CoQ10) and oleic acid [a monounsaturated fatty acid and one of the end products of stearoyl‑CoA desaturase 1 (SCD1)], whereas Z‑VAD‑FMK (an apoptosis inhibitor) had a negligible effect on cell death. It was also found that MI‑463 in combination with auranofin (a thioredoxin reductase inhibitor) synergistically increased cancer the death of breast, ovarian, pancreatic and lung cancer cell lines (88%, 14/16 cell lines). The synergistic induction of cell death was abrogated by ferroptosis inhibitor and DFO. Inhibitors of SCD1, similar to MI‑463, also enhanced cancer cell death synergistically with auranofin, while inhibitors of SCD1 and MI‑463 did not additively induce cell death. Treatment with zinc protoporphyrin‑9, a specific inhibitor of heme oxygenase‑1 (HO‑1), markedly attenuated the cell death induced by MI‑463 plus auranofin. On the whole, these results suggest that the MI‑463‑induced decrease in cell viability may be at least partly associated with the inhibition of SCD1 activity. In addition, the potent induction of HO‑1 contributed to the synergistic effects of MI‑463 plus auranofin. Therefore, menin‑MLL inhibitors, such as MI‑463, in combination with auranofin represent an effective therapeutic approach for several types of cancer via the induction of ferroptosis.
Collapse
Affiliation(s)
- Ichiroh Kato
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693‑8501, Japan
| |
Collapse
|
26
|
Forgione MO, McClure BJ, Yeung DT, Eadie LN, White DL. MLLT10 rearranged acute leukemia: Incidence, prognosis, and possible therapeutic strategies. Genes Chromosomes Cancer 2020; 59:709-721. [PMID: 32720323 DOI: 10.1002/gcc.22887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rearrangements of the MLLT10 gene occur in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), most commonly T-lineage ALL (T-ALL), in patients of all ages. MLLT10 rearranged (MLLT10r) acute leukemia presents a complex diagnostic and therapeutic challenge due to frequent presentation of immature or mixed phenotype, and a lack of consensus regarding optimal therapy. Cases of MLLT10r AML or T-ALL bearing immature phenotype are at high risk of poor outcome, but the underlying molecular mechanisms and sensitivity to targeted therapies remain poorly characterized. This review addresses the incidence and prognostic significance of MLLT10r in acute leukemia, and how the aberrant gene expression profile of this disease can inform potential targeted therapeutic strategies. Understanding the underlying genomics of MLLT10r acute leukemia, both clinically and molecularly, will improve prognostic stratification and accelerate the development of targeted therapeutic strategies, to improve patient outcomes.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Hudson Institute, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Kurmasheva RT, Bandyopadhyay A, Favours E, Pozo VD, Ghilu S, Phelps DA, McGeehan GM, Erickson SW, Smith MA, Houghton PJ. Evaluation of VTP-50469, a menin-MLL1 inhibitor, against Ewing sarcoma xenograft models by the pediatric preclinical testing consortium. Pediatr Blood Cancer 2020; 67:e28284. [PMID: 32333633 DOI: 10.1002/pbc.28284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND VTP-50469 is a potent inhibitor of the menin-MLL1 interaction and is implicated in signaling downstream of EWSR1-FLI1. PROCEDURE VTP-50469 was evaluated against seven Ewing sarcoma (EwS) xenograft models and in vitro against EwS cell lines. RESULTS VTP-50469 showed limited antitumor activity, statistically significantly slowing tumor progression in four tumor models but with no evidence of tumor regression. In vitro, the IC50 concentration was 10 nM for the mixed lineage leukemia (MLL)-rearranged leukemia cell line MV4;11, but > 3 μM for EwS cell lines. CONCLUSIONS In contrast to its high level of activity against MLL1-rearranged leukemia xenografts, VTP-50469 shows little activity against EwS models.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Abhik Bandyopadhyay
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Edward Favours
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Vanessa Del Pozo
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Samson Ghilu
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | - Doris A Phelps
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| | | | | | | | - Peter J Houghton
- UT Health San Antonio, Greehey Children's Cancer Research Institute, San Antonio, Texas
| |
Collapse
|