1
|
Ahmad A, Noor AE, Anwar A, Majeed S, Khan S, Ul Nisa Z, Ali S, Gnanasekaran L, Rajendran S, Li H. Support based metal incorporated layered nanomaterials for photocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2024; 260:119481. [PMID: 38917930 DOI: 10.1016/j.envres.2024.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore Pakistan
| | - Arsh E Noor
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aneela Anwar
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Zaib Ul Nisa
- Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
2
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
3
|
Stachowiak M, Mlynarczyk DT, Dlugaszewska J. Wondrous Yellow Molecule: Are Hydrogels a Successful Strategy to Overcome the Limitations of Curcumin? Molecules 2024; 29:1757. [PMID: 38675577 PMCID: PMC11051891 DOI: 10.3390/molecules29081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin is a natural compound with a great pharmaceutical potential that involves anticancer, anti-inflammatory, antioxidant, and neuroprotective activity. Unfortunately, its low bioavailability, instability, and poor water solubility significantly deteriorate its clinical use. Many attempts have been made to overcome this issue, and encapsulating curcumin in a hydrogel matrix may improve those properties. Hydrogel formulation is used in many drug delivery forms, including classic types and novel forms such as self-assembly systems or responsive to external factors. Reviewed studies confirmed better properties of hydrogel-stabilized curcumin in comparison to pure compound. The main enhanced characteristics were chemical stability, bioavailability, and water solubility, which enabled these systems to be tested for various diseases. These formulations were evaluated for wound healing properties, effectiveness in treating skin diseases, and anticancer and regenerative activity. Hydrogel formulation significantly improved biopharmaceutical properties, opening the opportunity to finally see curcumin as a clinically approved substance and unravel its therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Liu C, Pang M, Wang Q, Yan M, Zhou Y, Yao H, Du B. Intestinal Absorption of Nanoparticles to Reduce Oxidative Stress and Vasoconstriction for Treating Diabetic Nephropathy. ACS Biomater Sci Eng 2024; 10:1517-1529. [PMID: 38377553 DOI: 10.1021/acsbiomaterials.3c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The etiology of diabetic nephropathy (DN) is complex, and the incidence is increasing year by year. The patient's kidney showed oxidative stress damage, increasing active oxygen species (ROS) content, and vasoconstriction. Due to poor drug solubility and low renal accumulation, the current treatment regimens have not effectively alleviated glomerulopathy and other kidney damage caused by DN. Therefore, it is of great significance to explore new treatment strategies and drug delivery systems. Here, we constructed an oral nanodelivery system (Tel/CAN@CS-DA) that reduced oxidative stress and vasoconstriction. Deoxycholic acid (DA)-modified nanoparticles entered into intestinal epithelial cells (Caco2 cells) via the bile acid biomimetic pathway, then escaped from the lysosomes and eventually spat out the cells, increasing the oral absorption of nanoparticles. Chitosan (CS) nanoparticles could achieve renal targeting through specific binding with a renal giant protein receptor and deliver drugs to renal tubule epithelial cells (HK-2 cells). In vitro studies also proved that telmisartan (Tel) and canagliflozin (CAN) effectively removed cellular reactive oxygen species (ROS) and reduced HK-2 cell apoptosis caused by high glucose. In the in vivo model induced by streptozotocin (STZ), the results showed that the nanosystem not only elevated AMPK protein expression, inhibited angiotensin II (Ang II) protein expression to effectively reduce oxidative stress level, dilated renal blood vessels but also reduced the degree of inflammation and fibrosis. Overall, Tel/CAN@CS-DA multifunctional oral nanosystem can effectively treat DN with low toxicity, which provides a new idea for the treatment of DN.
Collapse
Affiliation(s)
- Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengxue Pang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Qingyu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| |
Collapse
|
5
|
Jin Z, Al Amili M, Guo S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024; 12:417. [PMID: 38398021 PMCID: PMC10886702 DOI: 10.3390/biomedicines12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future.
Collapse
Affiliation(s)
- Zhu Jin
- Correspondence: (Z.J.); (S.G.)
| | | | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
6
|
Tiwari AK, Yadav PK, Saklani R, Rana R, Alam MN, Chourasia MK. Development and validation of simultaneous quantification method for gemcitabine and betulinic acid: augmenting industrial application. 3 Biotech 2023; 13:267. [PMID: 37431395 PMCID: PMC10329607 DOI: 10.1007/s13205-023-03668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Combinatorial treatment utilizing a nucleoside analogue gemcitabine (GEM), with a characteristic pentacyclic triterpenoid betulinic acid (BET), has exhibited empowering adequacy in the therapy of cancer. It lessens the advancement of collagen and upgrades the saturation of tumour medicines. With the advancement in nanotechnology, the co-loaded formulation urges for a validated method of estimation. The purposed work entails a robust, simple, and economical analytical method for the simultaneous estimation of GEM and BET through RP-HPLC. Orthophosphoric acid (0.1%)-acetonitrile was considered as the mobile phase for the detection of GEM and BET at 248 nm and 210 nm with retention times of 5 min and 13 min, respectively. The method was further validated as per the regulatory guidelines with all the parameters found within the limit. The developed method with adequate resolution and quantification was found to be linear, accurate, precise, robust, and stable with an intra- and inter-day variability of less than 2%. The method was found specific for GEM and BET with no matrix interference of drug-spiked FBS samples. To demonstrate the applicability of the developed method, a nano-formulation containing GEM and BET was prepared and assessed for various parameters including encapsulation efficiency, loading efficiency, drug release, and drug stability. The method developed can be a possible tool for the simultaneous quantification of GEM-BET in analytical and biological samples.
Collapse
Affiliation(s)
- A. K. Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - P. K. Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - R. Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - R. Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
| | - M. N. Alam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
| | - M. K. Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
7
|
Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A. Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3304105. [PMID: 37313551 PMCID: PMC10260318 DOI: 10.1155/2023/3304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Metformin is a multipotential compound for treating diabetes II and controlling hormonal acne and skin cancer. This study was designed to enhance metformin skin penetration in melanoma using nanoparticles containing biocompatible polymers. Formulations with various concentrations of chitosan, hyaluronic acid, and sodium tripolyphosphate were fabricated using an ionic gelation technique tailored by the Box-Behnken design. The optimal formulation was selected based on the smallest particle size and the highest entrapment efficiency (EE%) and used in ex vivo skin penetration study. In vitro antiproliferation activity and apoptotic effects of formulations were evaluated using MTT and flow cytometric assays, respectively. The optimized formulation had an average size, zeta potential, EE%, and polydispersity index of 329 ± 6.30 nm, 21.94 ± 0.05 mV, 64.71 ± 6.12%, and 0.272 ± 0.010, respectively. The release profile of the optimized formulation displayed a biphasic trend, characterized by an early burst release, continued by a slow and sustained release compared to free metformin. The ex vivo skin absorption exhibited 1142.5 ± 156.3 μg/cm2 of metformin deposited in the skin layers for the optimized formulation compared to 603.2 ± 93.1 μg/cm2 for the free metformin. Differential scanning calorimetry confirmed the deformation of the drug from the crystal structure to an amorphous state. The attenuated total reflection Fourier transform infrared results approved no chemical interaction between the drug and other ingredients of the formulations. According to the MTT assay, metformin in nanoformulation exhibited a higher cytotoxic effect against melanoma cancer cells than free metformin (IC50: 3.94 ± 0.57 mM vs. 7.63 ± 0.26 mM, respectively, P < 0.001). The results proved that the optimized formulation of metformin could efficiently decrease cell proliferation by promoting apoptosis, thus providing a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azin Khanali
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Research Center, Coral Springs, FL, USA
| |
Collapse
|
8
|
Sarisuta K, Iwami M, Martín-Vaca B, Chanthaset N, Ajiro H. pH Effect on Particle Aggregation of Vanillin End-Capped Polylactides Bearing a Hydrophilic Group Connected by a Cyclic Acetal Moiety. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3994-4004. [PMID: 36877250 DOI: 10.1021/acs.langmuir.2c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To enhance the pH-responsiveness of poly(lactic acid) (PLA) particles, desired vanillin acetal-based initiators were synthesized and functional PLA was initiated at the chain end. PLLA-V6-OEG3 particles were prepared using polymers with various Mn values of 2400-4800 g/mol. PLLA-V6-OEG3 was appropriated to achieve a pH-responsive behavior under physiological conditions within 3 min via the six-membered ring diol-ketone acetal. Moreover, it was found that the polymer chain length (Mn) influenced the aggregation rate. TiO2 was selected as the blending agent to improve the aggregation rate. The PLLA-V6-OEG3 blended with TiO2 was found to accelerate the aggregation rate compared with that without TiO2, and the best ratio of polymer/TiO2 was 1:1. To study the effect of the chain end for stereocomplex polylactide (SC-PLA) particles, PLLA-V6-OEG4 and PDLA-V6-OEG4 were successfully synthesized. The obtained results of SC-PLA particle aggregation implied that the types of chain end and the molecular weight of polymer could influence the aggregation rate. The SC-V6-OEG4 blended with TiO2 could not make our target to aggregate under physiological conditions within 3 min. This study motivated us to control the particle aggregation rate under physiological conditions for applying as a target drug carrier which is significantly influenced by not only the molecular weight but also the hydrophilicity of the chain-end as well as the number of acetal bonds.
Collapse
Affiliation(s)
- Kamolchanok Sarisuta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, Toulouse F-31062, France
| | - Mizuho Iwami
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, Toulouse F-31062, France
| | - Nalinthip Chanthaset
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
9
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
10
|
Turning Microbial AhR Agonists into Therapeutic Agents via Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020506. [PMID: 36839828 PMCID: PMC9966334 DOI: 10.3390/pharmaceutics15020506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Developing therapeutics for inflammatory diseases is challenging due to physiological mucosal barriers, systemic side effects, and the local microbiota. In the search for novel methods to overcome some of these problems, drug delivery systems that improve tissue-targeted drug delivery and modulate the microbiota are highly desirable. Microbial metabolites are known to regulate immune responses, an observation that has resulted in important conceptual advances in areas such as metabolite pharmacology and metabolite therapeutics. Indeed, the doctrine of "one molecule, one target, one disease" that has dominated the pharmaceutical industry in the 20th century is being replaced by developing therapeutics which simultaneously manipulate multiple targets through novel formulation approaches, including the multitarget-directed ligands. Thus, metabolites may not only represent biomarkers for disease development, but also, being causally linked to human diseases, an unexploited source of therapeutics. We have shown the successful exploitation of this approach: by deciphering how signaling molecules, such as the microbial metabolite, indole-3-aldehyde, and the repurposed drug anakinra, interact with the aryl hydrocarbon receptor may pave the way for novel therapeutics in inflammatory human diseases, for the realization of which drug delivery platforms are instrumental.
Collapse
|
11
|
Ndongwe T, Witika BA, Mncwangi NP, Poka MS, Skosana PP, Demana PH, Summers B, Siwe-Noundou X. Iridoid Derivatives as Anticancer Agents: An Updated Review from 1970-2022. Cancers (Basel) 2023; 15:770. [PMID: 36765728 PMCID: PMC9913650 DOI: 10.3390/cancers15030770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The rise of cancer cases has coincided with the urgent need for the development of potent chemical entities and/or modification of existing commodities to improve their efficacy. Increasing evidence suggests that cancer remains one of the leading causes of death globally, with colon cancer cases alone likely to rise exponentially by 2030. The exponential rise in cancer prevalence is largely attributable to the growing change toward a sedentary lifestyle and modern diets, which include genetically modified foods. At present, the prominent treatments for cancer are chemotherapy, surgery, and radiation. Despite slowing cancer progression, these treatments are known to have devastating side effects that may deteriorate the health of the patient, thus, have a low risk-benefit ratio. In addition, many cancer drugs have low bioavailability, thereby limiting their therapeutic effects in cancer patients. Moreover, the drastic rise in the resistance of neoplastic cells to chemotherapeutic agents is rendering the use of some drugs ineffective, thereby signaling the need for more anticancer chemical entities. As a result, the use of natural derivatives as anticancer agents is gaining considerable attention. Iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs, which synergistically have the potential to increase their effects. Published studies have identified the role of iridoids, which, if fully explored, may result in cheaper and less toxic alternative/adjuvant cancer drugs. The subject of this article is natural and synthetic iridoid derivatives and their potential therapeutic roles as anticancer agents.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Phumzile P. Skosana
- Department of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Patrick H. Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Beverley Summers
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Medunsa 0204, South Africa
| |
Collapse
|
12
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
13
|
Iravani S, Varma RS. Alginate-Based Micro- and Nanosystems for Targeted Cancer Therapy. Mar Drugs 2022; 20:598. [PMID: 36286422 PMCID: PMC9604960 DOI: 10.3390/md20100598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
Alginates have been widely explored due to their salient advantages of hydrophilicity, biocompatibility, mucoadhesive features, bioavailability, environmentally-benign properties, and cost-effectiveness. They are applied for designing micro- and nanosystems for controlled and targeted drug delivery and cancer therapy as alginate biopolymers find usage in encapsulating anticancer drugs to improve their bioavailability, sustained release, pharmacokinetics, and bio-clearance. Notably, these nanomaterials can be applied for photothermal, photodynamic, and chemodynamic therapy of cancers/tumors. Future explorations ought to be conducted to find novel alginate-based (nano)systems for targeted cancer therapy using advanced drug delivery techniques with benefits of non-invasiveness, patient compliance, and convenience of drug administration. Thus, some critical parameters such as mucosal permeability, stability in the gastrointestinal tract environment, and drug solubility ought to be considered. In addition, the comprehensive clinical translational studies along with the optimization of synthesis techniques still need to be addressed. Herein, we present an overview of the current state of knowledge and recent developments pertaining to the applications of alginate-based micro- and nanosystems for targeted cancer therapy based on controlled drug delivery, photothermal therapy, and chemodynamic/photodynamic therapy approaches, focusing on important challenges and future directions.
Collapse
|
14
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
15
|
Pathak N, Singh P, Singh PK, Sharma S, Singh RP, Gupta A, Mishra R, Mishra VK, Tripathi M. Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front Nutr 2022; 9:963413. [PMID: 35911098 PMCID: PMC9334696 DOI: 10.3389/fnut.2022.963413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, effective cancer therapy is a global concern, and recent advances in nanomedicine are crucial. Cancer is one of the major fatal diseases and a leading cause of death globally. Nanotechnology provides rapidly evolving delivery systems in science for treating diseases in a site-specific manner using natural bioactive compounds, which are gaining widespread attention. Nanotechnology combined with bioactives is a very appealing and relatively new area in cancer treatment. Natural bioactive compounds have the potential to be employed as a chemotherapeutic agent in the treatment of cancer, in addition to their nutritional benefits. Alginate, pullulan, cellulose, polylactic acid, chitosan, and other biopolymers have been effectively used in the delivery of therapeutics to a specific site. Because of their biodegradability, biopolymeric nanoparticles (BNPs) have received a lot of attention in the development of new anticancer drug delivery systems. Biopolymer-based nanoparticle systems can be made in a variety of ways. These systems have developed as a cost-effective and environmentally friendly solution to boost treatment efficacy. Effective drug delivery systems with improved availability, increased selectivity, and lower toxicity are needed. Recent research findings and current knowledge on the use of BNPs in the administration of bioactive chemicals in cancer therapy are summarized in this review.
Collapse
Affiliation(s)
- Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Pankaj Singh
- Biotechnology Programme, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Swati Sharma
- Department of Biosciences, Integral University, Lucknow, India
| | - Rajat Pratap Singh
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Anmol Gupta
- Department of Biosciences, Integral University, Lucknow, India
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Vivek Kumar Mishra
- Department of Microbiology, King George Medical University, Lucknow, India
| | - Manikant Tripathi
- Biotechnology Programme, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
- *Correspondence: Manikant Tripathi
| |
Collapse
|
16
|
Rahman MM, Islam MR, Akash S, Harun-Or-Rashid M, Ray TK, Rahaman MS, Islam M, Anika F, Hosain MK, Aovi FI, Hemeg HA, Rauf A, Wilairatana P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed Pharmacother 2022; 153:113305. [PMID: 35717779 DOI: 10.1016/j.biopha.2022.113305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Nanoscale engineering is one of the innovative approaches to heal multitudes of ailments, such as varieties of malignancies, neurological problems, and infectious illnesses. Therapeutics for neurodegenerative diseases (NDs) may be modified in aspect because of their ability to stimulate physiological response while limiting negative consequences by interfacing and activating possible targets. Nanomaterials have been extensively studied and employed for cancerous therapeutic strategies since nanomaterials potentially play a significant role in medical transportation. When compared to conventional drug delivery, nanocarriers drug delivery offers various benefits, such as excellent reliability, bioactivity, improved penetration and retention impact, as well as precise targeting and administering. Upregulation of drug efflux transporters, dysfunctional apoptotic mechanisms, and a hypoxic atmosphere are all elements that lead to cancer treatment sensitivity in humans. It has been possible to target these pathways using nanoparticles and increase the effectiveness of multidrug resistance treatments. As innovative strategies of tumor chemoresistance are uncovered, nanomaterials are being developed to target specific pathways of tumor resilience. Scientists have recently begun investigating the function of nanoparticles in immunotherapy, a field that is becoming increasingly useful in the care of malignancies. Nanoscale therapeutics have been explored in this scientific literature and represent the most current approaches to neurodegenerative illnesses and cancer therapy. In addition, current findings and various biomedical nanomaterials' future promise for tissue regeneration, prospective medication design, and the synthesis of novel delivery approaches have been emphasized.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Kawser Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Quadir SS, Saharan V, Choudhary D, Harish, Jain CP, Joshi G. Nano-strategies as Oral Drug Delivery Platforms for Treatment of Cancer: Challenges and Future Perspectives. AAPS PharmSciTech 2022; 23:152. [PMID: 35606661 DOI: 10.1208/s12249-022-02301-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oral drug administration is the oldest and widely used method for drug administration. The objectives behind developing an oral drug delivery for the treatment of cancer are to achieve low cost treatment by utilizing novel techniques to target cancer through gut-associated lymphoid tissue (GALT) and to enhance patient comfort and compliance through a hospital-free treatment leading to "Chemotherapy at Home." Unfortunately, due to the physiological environment of the GIT and physicochemical properties of drug candidate, the efficacy of oral drug delivery methods is limited in the treatment of cancer. Due to their low hydrophilicity, high P-gp efflux and restricted intestinal permeability most of the anti-cancer drugs fail to achieve oral bioavailability. The review focuses on the efforts, challenges, opportunities and studies conducted by scientists worldwide on the oral administration of anticancer medications via nanocarriers such as liposomes, SLNs and dendrimers, because of their potential to overcome the epithelial barrier associated with GALT, as well as the applications of different polymers in targeting the cancer. The oral delivery can set newer horizons in cancer therapy to make it more patient friendly.
Collapse
|
18
|
Ye S, Wei B, Zeng L. Advances on Hydrogels for Oral Science Research. Gels 2022; 8:gels8050302. [PMID: 35621600 PMCID: PMC9140480 DOI: 10.3390/gels8050302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are biocompatible polymer systems, which have become a hotspot in biomedical research. As hydrogels mimic the structure of natural extracellular matrices, they are considered as good scaffold materials in the tissue engineering area for repairing dental pulp and periodontal damages. Combined with different kinds of stem cells and growth factors, various hydrogel complexes have played an optimistic role in endodontic and periodontal tissue engineering studies. Further, hydrogels exhibit biological effects in response to external stimuli, which results in hydrogels having a promising application in local drug delivery. This review summarized the advances of hydrogels in oral science research, in the hopes of providing a reference for future applications.
Collapse
Affiliation(s)
- Shengjia Ye
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
| | - Bin Wei
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Department of Stomatology Special Consultation Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| | - Li Zeng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China
- Correspondence: (B.W.); (L.Z.)
| |
Collapse
|
19
|
Saleem A, Akhtar N, Minhas MU, Mahmood A, Khan KU, Abdullah O. Highly Responsive Chitosan-Co-Poly (MAA) Nanomatrices through Cross-Linking Polymerization for Solubility Improvement. Gels 2022; 8:gels8030196. [PMID: 35323309 PMCID: PMC8950559 DOI: 10.3390/gels8030196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, we report the highly responsive chitosan-based chemically cross-linked nanomatrices, a nano-version of hydrogels developed through modified polymerization reaction for solubility improvement of poorly soluble drug simvastatin. The developed nanomatrices were characterized for solubilization efficiency, swelling studies, sol-gel analysis, in vitro drug release studies, DSC, FTIR, XRD, SEM, particle size analysis, and stability studies. An in vivo acute toxicity study was conducted on female Winstor rats, the result of which endorsed the safety and biocompatibility of the system. A porous and fluffy structure was observed under SEM analysis, which supports the great swelling tendency of the system that further governs the in vitro drug release. Zeta sizer analyzed the particle size in the range of 227.8 ± 17.8 nm. Nano sizing and grafting of hydrophilic excipients to the nanomatrices system explains this shift of trend towards the enhancement of solubilization efficiency, and, furthermore, the XRD results confirmed the amorphous nature of the system. FTIR and DSC analysis confirmed the successful grafting and stability to the system. The developed nanomatrices enhanced the release characteristics and solubility of simvastatin significantly and could be an effective technique for solubility and bioavailability enhancement of other BCS class-II drugs. Due to enhanced solubility, efficient method of preparation, excellent physico-chemical features, and rapid and high dissolution and bio-compatibility, the developed nanomatrices may be a promising approach for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Anam Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.S.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: or ; Tel.: +92-331-9750053
| | - Arshad Mahmood
- College of Pharmacy, Abu Dhabi Campus, Al Ain University, Abu Dhabi 51133, United Arab Emirates;
| | | | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Science, Hamdard University Islamabad, Islamabad 45600, Pakistan;
| |
Collapse
|
20
|
Li J, Liu Y, Abdelhakim HE. Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules 2022; 27:1803. [PMID: 35335167 PMCID: PMC8952381 DOI: 10.3390/molecules27061803] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most serious health problems and the second leading cause of death worldwide, and with an ageing and growing population, problems related to cancer will continue. In the battle against cancer, many therapies and anticancer drugs have been developed. Chemotherapy and relevant drugs are widely used in clinical practice; however, their applications are always accompanied by severe side effects. In recent years, the drug delivery system has been improved by nanotechnology to reduce the adverse effects of the delivered drugs. Among the different candidates, core-sheath nanofibres prepared by coaxial electrospinning are outstanding due to their unique properties, including their large surface area, high encapsulation efficiency, good mechanical property, multidrug loading capacity, and ability to govern drug release kinetics. Therefore, encapsulating drugs in coaxial electrospun nanofibres is a desirable method for controlled and sustained drug release. This review summarises the drug delivery applications of coaxial electrospun nanofibres with different structures and drugs for various cancer treatments.
Collapse
Affiliation(s)
| | | | - Hend E. Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (Y.L.)
| |
Collapse
|
21
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
22
|
Synthesis of oleanolic acid hydrazide-hydrazone hybrid derivatives and investigation of their cytotoxic effects on A549 human lung cancer cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|
24
|
Le T, Aguilar B, Mangal JL, Acharya AP. Oral drug delivery for immunoengineering. Bioeng Transl Med 2022; 7:e10243. [PMID: 35111945 PMCID: PMC8780903 DOI: 10.1002/btm2.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022] Open
Abstract
The systemic pharmacotherapeutic efficacy of immunomodulatory drugs is heavily influenced by its route of administration. A few common routes for the systemic delivery of immunotherapeutics are intravenous, intraperitoneal, and intramuscular injections. However, the development of novel biomaterials, in adjunct to current progress in immunoengineering, is providing an exciting area of interest for oral drug delivery for systemic targeting. Oral immunotherapeutic delivery is a highly preferred route of administration due to its ease of administration, higher patient compliance, and increased ability to generate specialized immune responses. However, the harsh environment and slow systemic absorption, due to various biological barriers, reduces the immunotherapeutic bioavailability, and in turn prevents widespread use of oral delivery. Nonetheless, cutting edge biomaterials are being synthesized to combat these biological barriers within the gastrointestinal (GI) tract for the enhancement of drug bioavailability and targeting the immune system. For example, advancements in biomaterials and synthesized drug agents have provided distinctive methods to promote localized drug absorption for the modulation of local or systemic immune responses. Additionally, novel breakthroughs in the immunoengineering field show promise in the development of vaccine delivery systems for disease prevention as well as combating autoimmune diseases, inflammatory diseases, and cancer. This review will discuss current progress made within the field of biomaterials and drug delivery systems to enhance oral immunotherapeutic availability, and how these new delivery platforms can be utilized to deliver immunotherapeutics for resolution of immune-related diseases.
Collapse
Affiliation(s)
- Tien Le
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
| | - Brian Aguilar
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Joslyn L. Mangal
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeArizonaUSA
- Biomedical Engineering, School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Biological Design, School for Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and energyArizona State UniversityTempeArizonaUSA
- Biodesign Center for Immunotherapy, Vaccines and VirotherapyArizona State UniversityTempeArizonaUSA
| |
Collapse
|
25
|
Almeida A, Günday-Türeli N, Sarmento B. A scale-up strategy for the synthesis of chitosan derivatives used in micellar nanomedicines. Int J Pharm 2021; 609:121151. [PMID: 34600053 DOI: 10.1016/j.ijpharm.2021.121151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022]
Abstract
Nanomedicines have been increasingly investigated and used by pharmaceutical industry due to their potential in solving various public health problems. However, standardizing and approving nanomedicines remains a significant challenge, as the translation from the laboratory to the market is still limited. These constraints are due to a lack of reproducibility and standardization of procedures, small batch sizes due to inability to scale-up, or the associated production costs as a result of the production methods chosen. In this work, two chitosan derivatives, methoxypolyethylene glycol-chitosan (mPEG-CS) and methoxypolyethylene glycol-chitosan-oleic acid (mPEG-CS-OA), produced at the lab scale were implemented in a pharmaceutical industry to achieve the scale-up production using cross flow filtration (CFF). The two copolymers were shown to be capable of retaining their physicochemical properties when produced in larger batch sizes, with reduced production time and increased yield. Also, both chitosan derivatives presented no in vitro cytotoxicity independent of the method of production. Furthermore, after scale-up, polymeric micelles produced from mPEG-CS-OA were tested for storage stability, demonstrating that micelles remained stable at - 20 °C for at least 6 months. This study demonstrated the feasibility of producing polymers and polymeric micelles closer to the bedside due to their suitability for GMP production.
Collapse
Affiliation(s)
- Andreia Almeida
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
26
|
Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19:354. [PMID: 34717658 PMCID: PMC8557561 DOI: 10.1186/s12951-021-01100-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Abstract Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - Polina Buzaeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Daria Nigovora
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Alexey Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry Kostyushev
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia
| | - Vladimir Chulanov
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia.,Department of Infectious Diseases, Sechenov University, 119991, Moscow, Russia
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7X, UK.
| |
Collapse
|
27
|
Fatima SW, Imtiyaz K, Alam Rizvi MM, Khare SK. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Adv 2021; 11:34613-34630. [PMID: 35494746 PMCID: PMC9042677 DOI: 10.1039/d1ra04513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among women. With the aim of decreasing the toxicity of conventional breast cancer treatments, an alternative that could provide appropriate and effective drug utilization was envisioned. Thus, we contemplated and compared the in vitro effects of microbial transglutaminase nanoflowers (MTGase NFs) on breast cancer cells (MCF-7). Transglutaminase is an important regulatory enzyme acting as a site-specific cross-linker for proteins. With the versatility of MTGase facilitating the nanoflower formation by acting as molecular glue, it was demonstrated to have anti-cancer properties. The rational drug design based on a transglutaminase enzyme-assisted approach led to the uniform shape of petals in these nanoflowers, which had the capacity to act directly as an anti-cancer drug. Herein, we report the anti-cancer characteristics portrayed by enzymatic MTGase NFs, which are biocompatible in nature. This study demonstrated the prognostic and therapeutic significance of MTGase NFs as a nano-drug in breast cancer treatment. The results on MCF-7 cells showed a significantly improved in vitro therapeutic efficacy. MTGase NFs were able to exhibit inhibitory effects on cell viability (IC50-8.23 μg ml−1) within 24 h of dosage. To further substantiate its superior anti-proliferative role, the clonogenic potential was measured to be 62.8%, along with migratory inhibition of cells (3.76-fold change). Drastic perturbations were induced (4.61-fold increase in G0/G1 phase arrest), pointed towards apoptotic induction with a 58.9% effect. These results validated the role of MTGase NFs possessing a cytotoxic nature in mitigating breast cancer. Thus, MTGase bestows distinct functionality towards therapeutic nano-modality, i.e., nanoflowers, which shows promise in cancer treatment. Development of a novel therapeutic nano-modality in the form of enzymatic transglutaminase nanoflowers; endowed with anti-cancerous action against breast cancers.![]()
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| | - Khalid Imtiyaz
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Mohammad M Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| |
Collapse
|
28
|
Safety Analysis of Apatinib Combined with Chemotherapy in the Treatment of Advanced Gastric Carcinoma: A Randomised Controlled Trial. JOURNAL OF ONCOLOGY 2021; 2021:5177140. [PMID: 34422049 PMCID: PMC8371638 DOI: 10.1155/2021/5177140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
Objective To study the safety of apatinib combined with chemotherapy in the treatment of advanced gastric carcinoma (GCA). Methods 74 patients with advanced GCA treated in the oncology department of Weifang People's Hospital (January 2019–January 2020) were enrolled in this study and equally split into study group (SG) and reference group (RG) according to the odd and even admission numbers. RG underwent chemotherapy alone, while SG received apatinib combined with chemotherapy. The clinical indicators of serum matrix metalloproteinase 9 (MMP-9), serum interleukin-2 receptor (SIL-2R), and immune cell level were detected in the two groups before and after treatment to analyze the therapeutic effect of different treatment methods on patients with advanced gastric carcinoma. Results No obvious differences in gender ratio, average age, average BMI, pathological staging, pathological types, organ metastasis types, and residence were observed between the two groups (P > 0.05). The short-term follow-up results showed that the disease control rate (DCR) in SG was markedly higher compared with RG (P < 0.05). The MMP-9 and SIL-2R levels in both groups after treatment decreased (P < 0.05), and the levels in SG after treatment were notably lower compared with RG (P < 0.001). Compared with RG, CD3+, CD4+, and CD4+/CD8+ levels in SG after treatment were notably higher (P < 0.001), while the CD8+ level was notably lower (P < 0.001). The median progression-free survival (MPFS) and overall survival (OS) in SG were markedly higher compared with RG (P < 0.001). The GQOLI-74 scores in both groups after treatment increased (P < 0.001), and the GQOLI-74 score in SG after treatment was markedly higher compared with RG (P < 0.001). The total incidence of adverse reactions was lower in SG than in RG (P < 0.05). Conclusion Apatinib combined with chemotherapy is superior to chemotherapy alone in effectively improving treatment outcomes in patients with advanced GCA.
Collapse
|
29
|
Borówko M, Staszewski T. Adsorption on Ligand-Tethered Nanoparticles. Int J Mol Sci 2021; 22:ijms22168810. [PMID: 34445511 PMCID: PMC8396279 DOI: 10.3390/ijms22168810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
We use coarse-grained molecular dynamics simulations to study adsorption on ligand-tethered particles. Nanoparticles with attached flexible and stiff ligands are considered. We discuss how the excess adsorption isotherm, the thickness of the polymer corona, and its morphology depend on the number of ligands, their length, the size of the core, and the interaction parameters. We investigate the adsorption-induced structural transitions of polymer coatings. The behavior of systems involving curved and flat "brushes" is compared.
Collapse
|
30
|
Abedi Gaballu F, Cho WCS, Dehghan G, Zarebkohan A, Baradaran B, Mansoori B, Abbaspour-Ravasjani S, Mohammadi A, Sheibani N, Aghanejad A, Ezzati Nazhad Dolatabadi J. Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy. Genes (Basel) 2021; 12:genes12071102. [PMID: 34356120 PMCID: PMC8303903 DOI: 10.3390/genes12071102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.
Collapse
Affiliation(s)
- Fereydoon Abedi Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | | | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
- Correspondence: or (G.D.); (J.E.N.D.); Tel.: +98-33392739 (G.D.); +98-41-33367914 (J.E.N.D.); Fax: +98-33356027 (G.D.); +98-41-33367929 (J.E.N.D.)
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | | | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | - Jafar Ezzati Nazhad Dolatabadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
- Correspondence: or (G.D.); (J.E.N.D.); Tel.: +98-33392739 (G.D.); +98-41-33367914 (J.E.N.D.); Fax: +98-33356027 (G.D.); +98-41-33367929 (J.E.N.D.)
| |
Collapse
|
31
|
Rizwanullah M, Perwez A, Mir SR, Alam Rizvi MM, Amin S. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: optimization, in vitrocharacterization and cell culture studies. NANOTECHNOLOGY 2021; 32:415101. [PMID: 34198267 DOI: 10.1088/1361-6528/ac1098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLHNPs) are novel nanoplatforms for the effective delivery of a lipophilic drug in the management of a variety of solid tumors. The present work was designed to develop exemestane (EXE) encapsulated D-alpha-tocopheryl polyethylene glycol succinate (TPGS) based PLHNPs (EXE-TPGS-PLHNPs) for controlled delivery of EXE for breast cancer management. EXE-TPGS-PLHNPs were formulated by single-step nano-precipitation technique and statistically optimized by a 33Box-Behnken design using Design expert®software. The polycaprolactone (PCL;X1), phospholipon 90 G (PL-90G;X2), and surfactant (X3) were selected as independent factors while particles size (PS;Y1), polydispersity index (PDI;Y2), and %entrapment efficiency (%EE;Y3) were chosen as dependent factors. The average PS, PDI, and %EE of the optimized EXE-TPGS-PLHNPs was observed to be 136.37 ± 3.27 nm, 0.110 ± 0.013, and 88.56 ± 2.15% respectively. The physical state of entrapped EXE was further validated by Fourier-transform infrared spectroscopy, differential scanning calorimetry, and powder x-ray diffraction that revealed complete encapsulation of EXE in the hybrid matrix of PLHNPs with no sign of significant interaction between drug and excipients.In vitrorelease study in simulated gastrointestinal fluids revealed initial fast release for 2 h after that controlled release profile up to 24 h of study. Moreover, optimized EXE-TPGS-PLHNPs exhibited excellent stability in gastrointestinal fluids as well as colloidal stability in different storage concentrations. Furthermore, EXE-TPGS-PLHNPs exhibited distinctively higher cellular uptake and time and dose-dependent cytotoxicity against MCF-7 breast tumor cells compared to EXE-PLHNPs without TPGS and free EXE. The obtained results suggested that EXE-TPGS-PLHNPs can be a promising platform for the controlled delivery of EXE for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Mohd Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Saima Amin
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
32
|
Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers (Basel) 2021; 13:1717. [PMID: 34074020 PMCID: PMC8197416 DOI: 10.3390/polym13111717] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer remains one of the world's most dangerous diseases because of the difficulty of finding cost-effective and specific targets for effective and efficient treatment methods. The biodegradability and biocompatibility properties of chitosan-based nanoparticles (ChNPs) have good prospects for targeted drug delivery systems. ChNPs can transfer various antitumor drugs to targeted sites via passive and active targeting pathways. The modification of ChNPs has attracted the researcher to the loading of drugs to targeted cancer cells. The objective of our review was to summarize and discuss the modification in ChNPs in delivering anticancer drugs against breast cancer cells from published papers recorded in Scopus, PubMed, and Google Scholar. In order to improve cellular uptake, drug accumulation, cytotoxicity, and selectivity, we examined different kinds of modification of ChNPs. Notably, these forms of ChNPs use the characteristics of the enhanced permeability and retention (EPR) effect as a proper parameter and different biological ligands, such as proteins, peptides, monoclonal antibodies, and small particles. In addition, as a targeted delivery system, ChNPs provided and significantly improved the delivery of drugs into specific breast cancer cells (MDA-MB-231, 4T1 cells, SK-BR-3, MCF-7, T47D). In conclusion, a promising technique is presented for increasing the efficacy, selectivity, and effectiveness of candidate drug carriers in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (Y.H.); (N.W.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (Y.H.); (N.W.)
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - I Made Joni
- Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21 Jatinangor, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
33
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in Nano-Enabled Platforms for the Treatment of Depression. Polymers (Basel) 2021; 13:polym13091431. [PMID: 33946703 PMCID: PMC8124207 DOI: 10.3390/polym13091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology has aided in the advancement of drug delivery for the treatment of several neurological disorders including depression. Depression is a relatively common mental disorder which is characterized by a severe imbalance of neurotransmitters. Several current therapeutic regimens against depression display drawbacks which include low bioavailability, delayed therapeutic outcome, undesirable side effects and drug toxicity due to high doses. The blood–brain barrier limits the entry of the drugs into the brain matrix, resulting in low bioavailability and tissue damage due to drug accumulation. Due to their size and physico-chemical properties, nanotechnological drug delivery systems present a promising strategy to enhance the delivery of nanomedicines into the brain matrix, thereby improving bioavailability and limiting toxicity. Furthermore, ligand-complexed nanocarriers can improve drug specificity and antidepressant efficacy and reduce drug toxicity. Biopolymers and nanocarriers can also be employed to enhance controlled drug release and reduce the hepatic first-pass effect, hence reducing the dosing frequency. This manuscript reviews recent advances in different biopolymers, such as polysaccharides and other nanocarriers, for targeted antidepressant drug delivery to the brain. It probes nano-based strategies that can be employed to enhance the therapeutic efficacy of antidepressants through the oral, intranasal, and parenteral routes of administration.
Collapse
|
35
|
Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.
Collapse
|
36
|
Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeb4b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Cancer remains one of the leading cause of death worldwide. Current therapies are still ineffective in completely eradicating the disease. In the last two decades, the use of nanodelivery systems has emerged as an effective way to potentiate the therapeutic properties of anti-cancer drugs by improving their solubility and stability, prolong drug half-lives in plasma, minimize drug’s toxicity by reducing its off-target distribution, and promote drugs’ accumulation at the desired target site. Liposomes and polymer nanoparticles are the most studied and have demonstrated to be the most effective delivery systems for anti-cancer drugs. However, both liposomes and polymeric nanoparticles suffer from limitations, including high instability, rapid drug release, limited drug loading capacity, low biocompatibility and lack of suitability for large-scale production. To overcome these limitations, lipid-polymer hybrid nanoparticles (LPHNPs) have been developed to merge the advantages of both lipid- and polymer-based nanocarriers, such as high biocompatibility and stability, improved drug loading and controlled release, as well as increased drug half-lives and therapeutic efficacy. This review provides an overview on the synthesis, properties and application of LPHNPs for cancer therapy.
Collapse
|
37
|
Theoretical analysis of the structural and electronic properties of the interaction of boron nitride diamantane nanocrystal with the drug hydroxyurea as an anticancer drug. J Mol Model 2021; 27:90. [PMID: 33611723 DOI: 10.1007/s00894-021-04711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The density functional theory calculations with hybrid B3LYP/6-31G(d,p) basis sets have been used to examine the structural and electronic properties of boron nitride (BN) diamantane interacted with the drug hydroxyurea (HU) as an anticancer drug. The findings have been shown that there is a decrease in the total energy after combining the drug with diamantane. The energy levels of HOMO and LUMO analyses indicate that the value of HOMO energy increased slightly, while the value of LUMO energy decreased significantly in these systems in the HU/BN diamantane. In addition, the decreasing of the energy gap between HOMO and LUMO confirms a strong bond between the drug hydroxyurea and BN diamantane. Finally, the drug's stability and reactivity with BN diamantane were investigated by measuring chemical reaction characteristics such as chemical potential, electron affinity, global hardness, and electrophilicity index. As a result, the nanocrystal of BN diamantane can be considered a vector for the delivery of anticancer drugs within biological systems.
Collapse
|
38
|
Hussein Y, Loutfy SA, Kamoun EA, El-Moslamy SH, Radwan EM, Elbehairi SEI. Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: Preparation and in vitro bioevaluation. Int J Biol Macromol 2020; 170:107-122. [PMID: 33358954 DOI: 10.1016/j.ijbiomac.2020.12.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
This study targets to develop curcumin-loaded polyvinyl alcohol/cellulose nanocrystals (PVA/CNCs) membrane as localized delivery system for breast/liver cancer. A novel strategy was developed for enhancing encapsulation capacity and maximizing therapeutic efficiency of curcumin-loaded PVA/CNCs membranes. Membranes were prepared by solution-casting method using citric acid as crosslinker. SEM revealed that PVA/CNCs ratio (80:20) was chosen as the optimum for loading curcumin. FT-IR indicated that, curcumin was incorporated into PVA/CNCs in amorphous-phase via intermolecular hydrogen bond between curcumin and membrane components. Curcumin showed biphasic-release through burst-release of 41% of curcumin during the first hour, followed by sustained-release of 70% and 94% during 24 h and 48 h, respectively. In vitro cytotoxicity of PVA/CNCs/Curcumin membrane exhibited a selective inhibition proliferation of breast and liver cancer cells in a concentration-dependent without any toxic effect on normal cells. At high concentration (8 mg/ml) of PVA/CNCs/Curcumin, reduced viability to 35% and 7% of MCF-7 and Huh-7 cells, respectively; meanwhile high HFB-4 normal cell viability ≥80% was investigated. Antimicrobial activity of PVA/CNCs/Curcumin was investigated by multi-drug-resistant strains, and MIC values. PVA/CNCs/Curcumin membranes with concentration (40 mg/ml) showed broad-spectrum antimicrobial activities, thus inhibited ~96-99% of microbial growth. PVA/CNCs/Curcumin membranes could be as promised anti-infective biomaterials for breast and liver cancer wound healing.
Collapse
Affiliation(s)
- Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt.
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Shahira H El-Moslamy
- Bioprocess Development Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - Enas M Radwan
- Clinical Pathology Dep., National Cancer Institute, Cairo University, Egypt
| | - Serag Eldin I Elbehairi
- Cell Culture Lab., Egyptian Organization for Biological Products and Vaccines (VACSERA), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt; Biology Dep., Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| |
Collapse
|
39
|
Peng SL, Lai CH, Chu PY, Hsieh JT, Tseng YC, Chiu SC, Lin YH. Nanotheranostics With the Combination of Improved Targeting, Therapeutic Effects, and Molecular Imaging. Front Bioeng Biotechnol 2020; 8:570490. [PMID: 33042972 PMCID: PMC7523243 DOI: 10.3389/fbioe.2020.570490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
There is an increasing interest in the design of targeted carrier systems with combined therapeutic and diagnostic modalities. Therapeutic modalities targeting tumors with single ligand-based targeting nanocarriers are insufficient for proficient delivery and for targeting two different surface receptors that are overexpressed in cancer cells. Here, we evaluated an activated nanoparticle delivery system comprising fucoidan/hyaluronic acid to improve therapeutic efficacy. The system comprised polyethylene glycol-gelatin-encapsulated epigallocatechin gallate (EGCG), poly (D,L-lactide-co-glycolide; PLGA), and stable iron oxide nanoparticles (IOs). The latter enables targeting of prostate cancers in their molecular images. We demonstrate the transfer of nanoparticles and their entry into prostate cancer cells through ligand-specific recognition. This system may prove the benefits of drug delivery that enhances the inhibition of cell growth through apoptosis induction. Moreover, the improved targeting of nanotheranostics significantly suppressed orthotopic prostate tumor growth and more accurately targeted tumors compared with systemic combination therapy. In the presence of nanoparticles with iron oxides, the hypointensity of the prostate tumor was visualized on a T2-weignted magnetic resonance image. The diagnostic ability of this system was demonstrated by accumulating fluorescent nanoparticles in the prostate tumor from the in vivo imaging system, computed tomography. It is suggested that theranostic nanoparticles combined with a molecular imaging system can be a promising cancer therapy in the future.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Yi Chu
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yen-Chun Tseng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsin Lin
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Institute of Biopharmaceutical Science, Department and Institute of Pharmacology, Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
40
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|