1
|
Duan Z, Yang M, Yang J, Wu Z, Zhu Y, Jia Q, Ma X, Yin Y, Zheng J, Yang J, Jiang S, Hu L, Zhang J, Liu D, Huo Y, Yao L, Sun Y. AGFG1 increases cholesterol biosynthesis by disrupting intracellular cholesterol homeostasis to promote PDAC progression. Cancer Lett 2024; 598:217130. [PMID: 39089666 DOI: 10.1016/j.canlet.2024.217130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.
Collapse
Affiliation(s)
- Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China; Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Zheng Wu
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yuheng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qinyuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xueshiyu Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yifan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jiahao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Shuheng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lipeng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
2
|
Gu D, Ye M, Zhu G, Bai J, Chen J, Yan L, Yu P, Lu F, Hu C, Zhong Y, Liu P, He Q, Tang Q. Hypoxia upregulating ACSS2 enhances lipid metabolism reprogramming through HMGCS1 mediated PI3K/AKT/mTOR pathway to promote the progression of pancreatic neuroendocrine neoplasms. J Transl Med 2024; 22:93. [PMID: 38263056 PMCID: PMC10804556 DOI: 10.1186/s12967-024-04870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Pancreatic neuroendocrine neoplasms (pNENs) are relatively rare. Hypoxia and lipid metabolism-related gene acetyl-CoA synthetase 2 (ACSS2) is involved in tumor progression, but its role in pNENs is not revealed. This study showed that hypoxia can upregulate ACSS2, which plays an important role in the occurrence and development of pNENs through lipid metabolism reprogramming. However, the precise role and mechanisms of ACSS2 in pNENs remain unknown. METHODS mRNA and protein levels of ACSS2 and 3-hydroxy-3-methylglutaryl-CoA synthase1 (HMGCS1) were detected using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The effects of ACSS2 and HMGCS1 on cell proliferation were examined using CCK-8, colony formation assay and EdU assay, and their effects on cell migration and invasion were examined using transwell assay. The interaction between ACSS2 and HMGCS1 was verified by Co-immunoprecipitation (Co-IP) experiments, and the functions of ACSS2 and HMGCS1 in vivo were determined by nude mouse xenografts. RESULTS We demonstrated that hypoxia can upregulate ACSS2 while hypoxia also promoted the progression of pNENs. ACSS2 was significantly upregulated in pNENs, and overexpression of ACSS2 promoted the progression of pNENs and knockdown of ACSS2 and ACSS2 inhibitor (ACSS2i) treatment inhibited the progression of pNENs. ACSS2 regulated lipid reprogramming and the PI3K/AKT/mTOR pathway in pNENs, and ACSS2 regulated lipid metabolism reprogramming through the PI3K/AKT/mTOR pathway. Co-IP experiments indicated that HMGCS1 interacted with ACSS2 in pNENs. Overexpression of HMGCS1 can reverse the enhanced lipid metabolism reprogramming and tumor-promoting effects of knockdown of ACSS2. Moreover, overexpression of HMGCS1 reversed the inhibitory effect of knockdown of ACSS2 on the PI3K/AKT/mTOR pathway. CONCLUSION Our study revealed that hypoxia can upregulate the lipid metabolism-related gene ACSS2, which plays a tumorigenic effect by regulating lipid metabolism through activating the PI3K/AKT/mTOR pathway. In addition, HMGCS1 can reverse the oncogenic effects of ACSS2, providing a new option for therapeutic strategy.
Collapse
Affiliation(s)
- Danyang Gu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Guoqin Zhu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Yuan Zhong
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangsu, China.
| | - Qibin He
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China.
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
3
|
Rebelo A, Kleeff J, Sunami Y. Cholesterol Metabolism in Pancreatic Cancer. Cancers (Basel) 2023; 15:5177. [PMID: 37958351 PMCID: PMC10650553 DOI: 10.3390/cancers15215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer's substantial impact on cancer-related mortality, responsible for 8% of cancer deaths and ranking fourth in the US, persists despite advancements, with a five-year relative survival rate of only 11%. Forecasts predict a 70% surge in new cases and a 72% increase in global pancreatic cancer-related deaths by 2040. This review explores the intrinsic metabolic reprogramming of pancreatic cancer, focusing on the mevalonate pathway, including cholesterol biosynthesis, transportation, targeting strategies, and clinical studies. The mevalonate pathway, central to cellular metabolism, significantly shapes pancreatic cancer progression. Acetyl coenzyme A (Acetyl-CoA) serves a dual role in fatty acid and cholesterol biosynthesis, fueling acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) development. Enzymes, including acetoacetyl-CoA thiolase, 3-hydroxy-3methylglutaryl-CoA (HMG-CoA) synthase, and HMG-CoA reductase, are key enzymes in pancreatic cancer. Inhibiting HMG-CoA reductase, e.g., by using statins, shows promise in delaying PanIN progression and impeding pancreatic cancer. Dysregulation of cholesterol modification, uptake, and transport significantly impacts tumor progression, with Sterol O-acyltransferase 1 (SOAT1) driving cholesterol ester (CE) accumulation and disrupted low-density lipoprotein receptor (LDLR) expression contributing to cancer recurrence. Apolipoprotein E (ApoE) expression in tumor stroma influences immune suppression. Clinical trials targeting cholesterol metabolism, including statins and SOAT1 inhibitors, exhibit potential anti-tumor effects, and combination therapies enhance efficacy. This review provides insights into cholesterol metabolism's convergence with pancreatic cancer, shedding light on therapeutic avenues and ongoing clinical investigations.
Collapse
Affiliation(s)
| | | | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; (A.R.); (J.K.)
| |
Collapse
|
4
|
Zhang K, Shen F, Lei W, Han Y, Ma X, Lu Y, Hou Y, Liu W, Jiang M, Zhang T, Bai G. Ligustilide covalently binds to Cys129 of HMGCS1 to ameliorate dyslipidemia. Biomed Pharmacother 2023; 166:115323. [PMID: 37579692 DOI: 10.1016/j.biopha.2023.115323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wei Lei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| |
Collapse
|
5
|
Xiao MY, Li FF, Xie P, Qi YS, Xie JB, Pei WJ, Luo HT, Guo M, Gu YL, Piao XL. Gypenosides suppress hepatocellular carcinoma cells by blocking cholesterol biosynthesis through inhibition of MVA pathway enzyme HMGCS1. Chem Biol Interact 2023; 383:110674. [PMID: 37604220 DOI: 10.1016/j.cbi.2023.110674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
6
|
Chen Y, Zhang J, Zhang Y, Zhu L. Effect of statin use on risk and mortality of gastric cancer: a meta-analysis. Anticancer Drugs 2023; 34:901-909. [PMID: 37227032 DOI: 10.1097/cad.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of statins on gastric cancer risk is still controversial. And studies on the association between statins and gastric cancer mortality are very limited. Therefore, we conducted this systemic review and meta-analysis to evaluate the association between the use of statin and gastric cancer. Searched studies were published before November 2022. Odds ratios (ORs)/relative risks (RRs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) were computed using STATA 12.0 software. The study showed that the statin use group showed a significantly lower risk of gastric cancer, compared to no statin use group (OR/RR, 0.74; 95% CI: 0.67-0.80, P < 0.001). The study showed that the statin use group showed significantly lower all-cause mortality and cancer-specific mortality of gastric cancer, compared to no statin use group (all-cause mortality: HR, 0.70; 95% CI: 0.52-0.95, P = 0.021; cancer-specific mortality: HR, 0.70; 95% CI: 0.58-0.84, P < 0.001). Overall, results from this meta-analysis showed the protective effect of statins exposure on the risk and prognosis of gastric cancer; however, we still need more well designed, large-scale studies and randomized clinical trials to pinpoint the effect of statins on gastric cancer in future clinical practice.
Collapse
Affiliation(s)
- Yi Chen
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
7
|
Zheng YK, Zhou ZS, Wang GZ, Tu JY, Cheng HB, Ma SZ, Ke C, Wang Y, Jian QP, Shu YH, Wu XW. MiR-122-5p regulates the mevalonate pathway by targeting p53 in non-small cell lung cancer. Cell Death Dis 2023; 14:234. [PMID: 37005437 PMCID: PMC10067850 DOI: 10.1038/s41419-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The 5-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MicroRNAs (miRNAs) are involved in the occurrence of NSCLC. miR-122-5p interacts with wild-type p53 (wtp53), and wtp53 affects tumor growth by inhibiting the mevalonate (MVA) pathway. Therefore, this study aimed to evaluate the role of these factors in NSCLC. The role of miR-122-5p and p53 was established in samples from NSCLC patients, and human NSCLC cells A549 using the miR-122-5p inhibitor, miR-122-5p mimic, and si-p53. Our results showed that inhibiting miR-122-5p expression led to the activation of p53. This inhibited the progression of the MVA pathway in the NSCLC cells A549, hindered cell proliferation and migration, and promoted apoptosis. miR-122-5p was negatively correlated with p53 expression in p53 wild-type NSCLC patients. The expression of key genes in the MVA pathway in tumors of p53 wild-type NSCLC patients was not always higher than the corresponding normal tissues. The malignancy of NSCLC was positively correlated with the high expression of the key genes in the MVA pathway. Therefore, miR-122-5p regulated NSCLC by targeting p53, providing potential molecular targets for developing targeted drugs.
Collapse
Affiliation(s)
- Yu-Kun Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Shi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Guang-Zhong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Ji-Yuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Huan-Bo Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi-Pan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Hang Shu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
ERRα Up-Regulates Invadopodia Formation by Targeting HMGCS1 to Promote Endometrial Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:ijms24044010. [PMID: 36835419 PMCID: PMC9964422 DOI: 10.3390/ijms24044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.
Collapse
|
9
|
Zhang L, Wang H, Guo J, Xu H, Qian Y, Sun M. High level of ANO1 promotes pancreatic cancer growth in concert with oncogenic KRAS. Mol Biol Rep 2023; 50:3297-3307. [PMID: 36715788 DOI: 10.1007/s11033-023-08293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anoctamin-1 (ANO1) was identified as an unfavorable prognostic marker in pancreatic cancer. However, the exact implication of ANO1 in pancreatic cancer is still poorly understood. Here we investigated the effect of ANO1 in pancreatic cancer progression under the context of oncogenic KRAS, aiming at finding a new therapeutic target. METHODS Knockdown and overexpression of oncogenic KRAS as well as ANO1 in PDAC cell lines were performed by lentivirus infection. Cell proliferation and migration assay, RNA seq analysis were performed in PDAC cells bearing different status of ANO1 and KRAS. In vivo mice model was used to investigate the xenograft tumor growth with different status of KRAS and ANO1. RESULTS Our results showed that ANO1 expression level is elevated in poorly differentiated cancer cells. Overexpression of ANO1 in PDAC cancer cells was found to promote cancer cell proliferation in vitro and in vivo, which synergized with the introduction of oncogenic KRAS. Consistently, knockdown of ANO1 expression was found to suppress cancer growth in vitro and in vivo. RNA seq analysis revealed that the observed synergistic cancer-promoting effect from ANO1 and oncogenic KRAS is likely due to concurrent activating key genes involved in lipid metabolism including HMGCS1. CONCLUSION The outcome from our study suggests that ANO1 plays an important role in promoting pancreatic cancer development, especially at the presence of oncogenic KRAS. Considering the prevalence of KRAS mutation in pancreatic cancer patients, suppression ANO1 may represent a potential effective therapeutic measure in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Biotechnology, College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Hao Wang
- Department of Biotechnology, College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Jian Guo
- Department of Biotechnology, College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Huijing Xu
- Department of Biotechnology, College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China
| | - Yihua Qian
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Meiyan Sun
- Department of Biotechnology, College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
10
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Chen CC, Xie XM, Zhao XK, Zuo S, Li HY. Krüppel-like Factor 13 Promotes HCC Progression by Transcriptional Regulation of HMGCS1-mediated Cholesterol Synthesis. J Clin Transl Hepatol 2022; 10:1125-1137. [PMID: 36381108 PMCID: PMC9634771 DOI: 10.14218/jcth.2021.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Krüppel-like factor (KLF) has a role in the occurrence, development and metabolism of cancer. We aimed to explore the role and potential molecular mechanism of KLF13 in the growth and migration of liver cancer cells. METHODS The expression of KLF13 in hepatocellular carcinoma (HCC) tissues was higher than that in normal tissues according to analysis of The Cancer Genome Atlas (TCGA) database. Lentiviral plasmids were used for overexpression and plasmid knockdown of KLF13. Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to detect mRNA and protein expression in HCC tissues and cells. Cell counting kit-8 (CCK-8), colony formation, cell migration and invasion, and flow cytometry assays were used to assess the in vitro function of KLF13 in HCC cells. The effect of KLF13 on xenograft tumor growth in vivo was evaluated. The cholesterol content of HCC cells was determined by an indicator kit. A dual-luciferase reporter assay and chromatin immunoprecipitation sequencing (ChIP-seq) revealed the binding relationship between KLF13 and HMGCS1. RESULTS The expression of KLF13 was upregulated in HCC tissues and TCGA database. KLF13 knockdown inhibited the proliferation, migration and invasion of HepG2 and Huh7 cells and increased the apoptosis of Huh7 cells. The opposite effects were observed with the overexpression of KLF13 in SK-Hep1 and MHCC-97H cells. The overexpression of KLF13 promoted the growth of HCC in nude mice and KLF13 transcription promoted the expression of HMGCS1 and the biosynthesis of cholesterol. KLF13 knockdown inhibited cholesterol biosynthesis mediated by HMGCS1 and inhibited the growth and metastasis of HCC cells. CONCLUSIONS KLF13 acted as a tumor promoter in HCC by positively regulating HMGCS1-mediated cholesterol biosynthesis.
Collapse
Affiliation(s)
- Chao-Chun Chen
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Ming Xie
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Yang Li
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Corresponding author: Haiyang Li, Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China. ORCID: https://orcid.org/0000-0003-0015-5750. Tel/Fax: +86-851-6855119, E-mail:
| |
Collapse
|
13
|
Yokogami K, Kikuchi T, Watanabe T, Nakatake Y, Yamashita S, Mizuguchi A, Takeshima H. Methionine regulates self-renewal, pluripotency, and cell death of GIC through cholesterol-rRNA axis. BMC Cancer 2022; 22:1351. [PMID: 36564758 PMCID: PMC9789638 DOI: 10.1186/s12885-022-10280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioma-initiating cells (GICs) are the source of glioma cells that can self-renew, have pluripotency, and are treatment-resistant, so are the starting point for relapse and eventual death despite multimodality therapy. L-[methyl-11C] methionine PET has observed high accumulation at the time of recurrence, it is important to understand the mechanism of tumor cell activation caused by the reorganization of methionine metabolism. METHODS: We cultured cells in methionine-deprived culture medium for comprehensive analysis. Based on the obtained results, the possible target molecules were chemically inhibited and the respective markers were analyzed. RESULTS Methionine depletion markedly decreased proliferation and increased cell death of GICs. Decreased S-adenosyl-methionine, which is synthesized intracellularly by catalyzed by methionine adenosyltransferase using methionine, triggered the following: (i) global DNA demethylation, (ii) hyper-methylation of signaling pathways regulating pluripotency of stem cells, (iii) decreased expression of the core-genes and pluripotent markers of stem cells including FOXM1, SOX2, SOX4, PROM1, and OLIG2, (iv) decreased cholesterol synthesis and increased excretion mainly through decreased SREBF2, and (v) down-regulation of the large subunit of ribosomal protein configured 28S and ACA43, small nucleolar RNA guiding the pseudouridylation of 28S rRNA, which is essential for translation. In addition, inhibition of cholesterol synthesis with statin resulted in a phenotype similar to that of methionine depletion and decreases in stem cell markers and small nucleolar RNA ACA43. Moreover, suppression of FOXM1 decreased stem cell markers such as SOX4 and PROM1. The gene expression profile for cholesterol production was obtained from the Ivy Glioblastoma Atlas Project database and compared between tumor cells with relatively low methionine levels in areas of pseudopalisading arrangement around necrosis and tumor cells in the infiltrating region, showing that cells in the infiltrating region have higher capacity to produce cholesterol. CONCLUSIONS Methionine metabolism is closely related with self-renewal, pluripotency, and cell death in GICs through modification of cholesterol biosynthesis, especially in the SREBF2-FOXM1 and ACA43 axis with modification of rRNA.
Collapse
Affiliation(s)
- Kiyotaka Yokogami
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- grid.410849.00000 0001 0657 3887Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Watanabe
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasutaka Nakatake
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamashita
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asako Mizuguchi
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- grid.410849.00000 0001 0657 3887Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
14
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
15
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
16
|
Identification of Key Genes and Pathways in Genotoxic Stress Induced Endothelial Dysfunction: Results of Whole Transcriptome Sequencing. Biomedicines 2022; 10:biomedicines10092067. [PMID: 36140167 PMCID: PMC9495888 DOI: 10.3390/biomedicines10092067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide. Endothelial disfunction underlying the atherogenesis can be triggered by genotoxic stress in endothelial cells. In the presented research whole transcriptome sequencing (RNA-seq) of human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells in vitro exposed to 500 ng/mL mitomycin C (treatment group) or 0.9% NaCl (control group) was performed. Resulting to bioinformatic analysis, 56 upregulated differentially expressed genes (DEGs) and 6 downregulated DEGs with absolute fold change ≥ 2 and FDR p-value < 0.05 were selected in HCAEC exposed to mitomycin C compared to the control group; in HITAEC only one upregulated DEG was found. According to Gene Ontology enrichment analysis, DEGs in HCAEC were classified into 25 functional groups of biological processes, while in HITAEC we found no statistically significant (FDR p-value < 0.05) groups. The four largest groups containing more than 50% DEGs (“signal transduction”, “response to stimulus”, “biological regulation”, and “regulation of biological process”) were identified. Finally, candidate DEGs and pathways underlying the genotoxic stress induced endothelial disfunction have been discovered that could improve our understanding of fundamental basis of atherogenesis and help to justification of genotoxic stress as a novel risk factor for atherosclerosis.
Collapse
|
17
|
Xu C, Zhuo Y, Liu Y, Chen H. Itraconazole Inhibits the Growth of Cutaneous Squamous Cell Carcinoma by Targeting HMGCS1/ACSL4 Axis. Front Pharmacol 2022; 13:828983. [PMID: 35242038 PMCID: PMC8886144 DOI: 10.3389/fphar.2022.828983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Cutaneous squamous cell carcinoma (cSCC) is a common cutaneous cancer with increasing incidence. Itraconazole has been identified as a potential anticancer drug candidate. However, the role of itraconazole in cSCC was still unclear. Our objective is exploring the therapeutic potential of itraconazole in cSCC and investigate its molecular mechanism. Methods: The anti-proliferation effect of itraconazole was tested with CCK-8 assay and clone formation assay. Cell cycle distribution and apoptosis rate were detected using flow cytometry and TUNEL assay, respectively. Transcriptomic and proteomic analyses were used to explore the underlying anti-cancer mechanism. Luciferase reporter assay was used for promoter activity. Reactive oxygen species (ROS), lipid peroxidation and iron accumulation were examined. The in vivo efficacy of itraconazole was assessed in a xenograft model. Results: Itraconazole inhibited the cell proliferation, induced apoptosis and blocked cell cycle of cSCC cells. An integrated analysis of transcriptomic and proteomic analyses identified that 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and acyl-CoA synthetase long-chain family member 4 (ACSL4) were significantly upregulated in A431 cells treated with itraconazole. HMGCS1 silencing reversed the antiproliferative activity of itraconazole in A431 cells. Dual-luciferase assay showed that itraconazole could promote HMGCS1 transcription. HMGCS1 silencing abated the expression of ACSL4 in A431 cells. The level of ROS, lipid peroxidation, as well as iron accumulation were increased by itraconazole. Moreover, treatment with itraconazole impeded tumor growth in A431-bearing mice. Conclusion: We proved itraconazole inhibits the growth of cSCC by regulating HMGCS1/ACSL4 axis.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yating Zhuo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
18
|
Gunda V, Genaro-Mattos TC, Kaushal JB, Chirravuri-Venkata R, Natarajan G, Mallya K, Grandgenett PM, Mirnics K, Batra SK, Korade Z, Rachagani S. Ubiquitous Aberration in Cholesterol Metabolism across Pancreatic Ductal Adenocarcinoma. Metabolites 2022; 12:metabo12010047. [PMID: 35050168 PMCID: PMC8779872 DOI: 10.3390/metabo12010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.
Collapse
Affiliation(s)
- Venugopal Gunda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA; (T.C.G.-M.); (K.M.)
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Ramakanth Chirravuri-Venkata
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA; (T.C.G.-M.); (K.M.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.G.); (J.B.K.); (R.C.-V.); (G.N.); (K.M.); (S.K.B.)
- Correspondence: ; Tel.: +1-(402)559-3312; Fax: +1-(402)559-6650
| |
Collapse
|
19
|
Yu M, Tang J, Huang Y, Guo C, Du P, Li N, Quan Q. HOXA10 Regulates the Synthesis of Cholesterol in Endometrial Stromal Cells. Front Endocrinol (Lausanne) 2022; 13:852671. [PMID: 35546998 PMCID: PMC9084188 DOI: 10.3389/fendo.2022.852671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The expression of homeobox A10 (HOXA10) in endometrial stromal cells is regulated by steroid hormones, especially by estrogen. As a precursor molecule of estrogen, abnormal cholesterol metabolism is significantly positively correlated with endometriosis. The purpose of this study was to explore the regulation of HOXA10 on cholesterol synthesis in endometrial stromal cells. METHOD mRNA expression data of eutopic endometrial stromal cell (ESC) and ovarian endometriotic cysts stromal cell (OESC) were download from the Gene Expression Omnibus (GEO) databases. Overexpression and silence of HOXA10 were conducted in cultured ESC and subjected to mRNA sequencing. The differentially expressed genes (DEGs) were selected by analyzing the sequencing data. Weighted gene co-expression network analysis (WGCNA) was applied to identify the key genes associated with HOXA10. The methylation rate of HOXA10 CpGs and the correlation between HOXA10 expression and the methylation in eutopic endometrial tissue (EU) and ovarian cyst (OC) were analyzed. RESULTS HOXA10 in ESC was significantly higher expressed than that in OESC. Six key genes (HMGCR, MSMO1, ACAT2, HMGCS1, EBP, and SQLE), which were regulated by HOXA10, were identified from the salmon4 module by WGCNA. All these key genes were enriched in cholesterol synthesis. Moreover, the expression of HOXA10 was negatively related to its CpGs methylation rate. CONCLUSION In this study, six key genes that were regulated by HOXA10 were selected, and all of them were enriched in cholesterol synthesis. This finding provided a new insight into the metabolic mechanism of cholesterol in ESC. It also provided a potential treatment strategy for cholesterol metabolism maladjustment in patients with ovarian endometriosis.
Collapse
Affiliation(s)
- Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yanqing Huang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chenbing Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Du
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qingli Quan
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan,
| |
Collapse
|
20
|
Yuan Y, Gong Y, Zhong L, Ding X, Yang Z, Su X, Chen M, Zhang F, Yang L. Circular RNA expression profile and competing endogenous RNA regulatory network in preeclampsia. Placenta 2022; 119:32-38. [DOI: 10.1016/j.placenta.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/20/2022]
|
21
|
Zhou C, Wang Z, Cao Y, Zhao L. Pan-cancer analysis reveals the oncogenic role of 3-hydroxy-3-methylglutaryl-CoA synthase 1. Cancer Rep (Hoboken) 2021; 5:e1562. [PMID: 34549901 PMCID: PMC9458500 DOI: 10.1002/cnr2.1562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Emerging studies reveals that 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) plays vital oncogenic roles in a broad spectrum of human cancers, but there is no pan-cancer evidence on the relationship between HMGCS1 and various tumor types. AIM To explore the potential role of HMGCS1 across various tumor types based on big clinical data. METHODS We conducted a pan-cancer analysis across more than 30 tumor types, based on the most comprehensive database available, including TCGA, GSCA, clinical proteomic tumor analysis consortium, Kaplan-Meier Plotter dataset, GEPIA2, TIMER2, STRING, and GDSC dataset. RESULTS HMGCS1 was highly expressed and negatively correlated with the prognosis in most cancer types. The infiltration levels of cancer associated fibroblast and CD8+ T-cell were closely associated with HMGCS1 expression. Amplification was the most common genetic alteration of HMGCS1 in different cancers, while the frequency of mutation was low. Besides, ACAT2 and MVD were closely correlated and bind to HMGCS1. Pathway enrichment analysis indicated that HMGCS1 was actively involved in steroid biosynthesis. Moreover, high HMGCS1 expression could reduce the sensitivity to most drugs in the GDSC dataset. CONCLUSIONS Our study revealed the potential oncogenic role of HMGCS1 in cancers.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yueqing Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Huang M, Zhang T, Yao ZY, Xing C, Wu Q, Liu YW, Xing XL. MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma. BMC Med Genomics 2021; 14:72. [PMID: 33750388 PMCID: PMC7941961 DOI: 10.1186/s12920-021-00932-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cell carcinoma which has the worst overall survival rate. Almost 30% of patients with localized cancers eventually develop to metastases despite of early surgical treatment carried out. MicroRNAs (miRNAs) play a critical role in human cancer initiation, progression, and prognosis. The aim of our study was to identify potential prognosis biomarkers to predict overall survival of KIRC. METHODS All data were downloaded from an open access database The Cancer Genome Atlas. DESeq2 package in R was used to screening the differential expression miRNAs (DEMs) and genes (DEGs). RegParallel and Survival packages in R was used to analysis their relationships with the KIRC patients. David version 6.8 and STRING version 11 were used to take the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. RESULTS We found 2 DEGs (TIMP3 and HMGCS1) and 3 DEMs (hsa-miR-21-5p, hsa-miR-223-3p, and hsa-miR-365a-3p) could be prognosis biomarkers for the prediction of KIRC patients. The constructed prognostic model based on those 2 DEGs could effectively predict the survival status of KIRC. And the constructed prognostic model based on those 3 DEMs could effectively predict the survival status of KIRC in 3-year and 5-year. CONCLUSION The current study provided novel insights into the miRNA related mRNA network in KIRC and those 2 DEGs biomarkers and 3 DEMs biomarkers may be independent prognostic signatures in predicting the survival of KIRC patients.
Collapse
Affiliation(s)
- Minjiang Huang
- Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China
| | - Ti Zhang
- Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China
| | - Zhi-Yong Yao
- Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China
| | - Chaoqung Xing
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China
| | - Qingyi Wu
- Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China
| | - Yuan-Wu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xiao-Liang Xing
- Hunan University of Medicine, Huaihua, 418000, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Zhou C, Li J, Du J, Jiang X, Xu X, Liu Y, He Q, Liang H, Fang P, Zhan H, Zeng H. HMGCS1 drives drug-resistance in acute myeloid leukemia through endoplasmic reticulum-UPR-mitochondria axis. Biomed Pharmacother 2021; 137:111378. [PMID: 33601148 DOI: 10.1016/j.biopha.2021.111378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a key enzyme in the mevalonate pathway of cholesterol synthesis. Dysregulation of HMGCS1 expression is a common occurrence in many solid tumors. It was also found to be overexpressed in newly diagnosed (ND) and relapsed/refractory (RR) acute myeloid leukemia (AML) patients. Previous study proved that HMGCS1 could induce drug-resistance in AML cells. However, the underlying mechanism how HMGCS1 contributed to chemoresistance remains elusive. Here, we confirmed that HMGCS1 inhibitor Hymeglusin enhanced cytarabine/Adriamycin (Ara-c/ADR) chemo-sensitivity in AML cells lines. Moreover, Ara-c-resistant HL-60 cells (HL-60/Ara-c) and ADR-resistant HL-60 cells (HL-60/ADR) were more sensitive to HMGCS1 inhibition than HL-60 cells. In addition, we demonstrated that the transcription factor GATA1 was the upstream regulator of HMGCS1 and could directly bind to the HMGCS1 promoter. After treatment of Tunicamycin (Tm), the number of mitochondria was increased and the damage of endoplasmic reticulum (ER) was reduced in bone marrow cells from AML-RR patients, compared to cells from AML-CR group. HMGCS1 protected mitochondria and ER under ER stress and up-regulated unfold protein response (UPR) downstream molecules in AML cells. In summary, we proved that HMGCS1 could upregulate UPR downstream components, protect mitochondria and ER from damage in AML cells under stress, therefore conferring drug resistance. Therefore, HMGCS1 could serve as a novel target for treatment of patients with intolerant chemotherapy and AML-RR patients.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China; Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jue Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Xinya Jiang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China; Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuejun Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qun He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
24
|
Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis 2021; 12:18. [PMID: 33414447 PMCID: PMC7791105 DOI: 10.1038/s41419-020-03336-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
MIEF2 (mitochondrial elongation factor 2) is one of the key regulators of mitochondrial fission. Bioinformatics analysis indicated that high expression of MIEF2 predicted a poor prognosis in ovarian cancer patients. However, the relationship between MIEF2 and aberrant lipid metabolism in OC remains elusive. In this study, we demonstrated that MIEF2 significantly promoted lipid synthesis, while has no significant effect on fatty acid uptake and oxidation in OC cells. MIEF2 enhanced de novo fatty acid synthesis through up-regulating the expression of sterol regulatory element binding protein 1 (SREBP1) and its transcriptional target lipogenic genes ACC1, FASN and SCD1. Meanwhile, MIEF2-promoted cholesterol biosynthesis through up-regulating the expression of sterol regulatory element binding protein 2 (SREBP2) and its transcriptional target cholesterol biosynthesis genes HMGCS1 and HMGCR. Mechanistically, increased mitochondrial reactive oxygen species (ROS) production and subsequently activation of AKT/mTOR signaling pathway was found to be involved in the up-regulation of SREBP1 and SREBP2 in OC cells. Moreover, cell growth and metastasis assays indicated that MIEF2-regulated fatty acid synthesis and cholesterol biosynthesis played a critical role in the progression of OC. Taken together, our findings indicate that MIEF2 is a critical regulator of lipid synthesis in OC, which provides a strong line of evidence for this molecule to serve as a drug target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Cheng
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qinghui Yun
- Department of medical equipment, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
25
|
Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188394. [PMID: 32698040 DOI: 10.1016/j.bbcan.2020.188394] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 02/05/2023]
Abstract
Cholesterol and its metabolites (precursors and derivatives) play an important role in cancer. In recent years, numerous studies have reported the functions of cholesterol metabolism in the regulation of tumor biological processes, especially oncogenic signaling pathways, ferroptosis, and tumor microenvironment. Preclinical studies have over the years indicated the inhibitory effects of blocking cholesterol synthesis and uptake on tumor formation and growth. Besides, some new cholesterol metabolic molecules such as SOAT1, SQLE, and NPC1 have recently emerged as promising drug targets for cancer treatment. Here, we systematically review the roles of cholesterol and its metabolites, and the latest advances in cancer therapy targeting cholesterol metabolism.
Collapse
|