1
|
Skalka GL, Whyte D, Lubawska D, Murphy DJ. NUAK: never underestimate a kinase. Essays Biochem 2024; 68:295-307. [PMID: 38939918 DOI: 10.1042/ebc20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
NUAK1 and NUAK2 belong to a family of kinases related to the catalytic α-subunits of the AMP-activated protein kinase (AMPK) complexes. Despite canonical activation by the tumour suppressor kinase LKB1, both NUAKs exhibit a spectrum of activities that favour tumour development and progression. Here, we review similarities in structure and function of the NUAKs, their regulation at gene, transcript and protein level, and discuss their phosphorylation of specific downstream targets in the context of the signal transduction pathways and biological activities regulated by each or both NUAKs.
Collapse
Affiliation(s)
- George L Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | - Declan Whyte
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| | | | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, U.K
- CRUK Scotland Institute, Garscube Estate, Glasgow G61 1BD, U.K
| |
Collapse
|
2
|
Kang J, Gallucci S, Pan J, Oakhill JS, Sanij E. The role of STK11/LKB1 in cancer biology: implications for ovarian tumorigenesis and progression. Front Cell Dev Biol 2024; 12:1449543. [PMID: 39544365 PMCID: PMC11560430 DOI: 10.3389/fcell.2024.1449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
STK11 (serine-threonine kinase 11), also known as LKB1 (liver kinase B1) is a highly conserved master kinase that regulates cellular metabolism and polarity through a complex signaling network involving AMPK and 12 other AMPK-related kinases. Germline mutations in LKB1 have been causatively linked to Peutz-Jeghers Syndrome (PJS), an autosomal dominant hereditary disease with high cancer susceptibility. The identification of inactivating somatic mutations in LKB1 in different types of cancer further supports its tumor suppressive role. Deleterious mutations in LKB1 are frequently observed in patients with epithelial ovarian cancer. However, its inconsistent effects on tumorigenesis and cancer progression suggest that its functional impact is genetic context-dependent, requiring cooperation with other oncogenic lesions. In this review, we summarize the pleiotropic functions of LKB1 and how its altered activity in cancer cells is linked to oncogenic proliferation and growth, metastasis, metabolic reprogramming, genomic instability, and immune modulation. We also review the current mechanistic understandings of this master kinase as well as therapeutic implications with particular focus on the effects of LKB1 deficiency in ovarian cancer pathogenesis. Lastly, we discuss whether LKB1 deficiency can be exploited as an Achilles heel in ovarian cancer.
Collapse
Affiliation(s)
- Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Gallucci
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Junqi Pan
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Elaine Sanij
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Trelford CB, Shepherd TG. LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors. Cell Commun Signal 2024; 22:310. [PMID: 38844908 PMCID: PMC11155146 DOI: 10.1186/s12964-024-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.
Collapse
Affiliation(s)
- Charles B Trelford
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Trevor G Shepherd
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Shea AA, Heffron CL, Grieco JP, Roberts PC, Schmelz EM. Obesity modulates the cellular and molecular microenvironment in the peritoneal cavity: implication for ovarian cancer risk. Front Immunol 2024; 14:1323399. [PMID: 38264656 PMCID: PMC10803595 DOI: 10.3389/fimmu.2023.1323399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity. Methods Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance. Then the mice were injected with the murine ovarian cancer cells (MOSE-LTICv) while remaining on their diets. After 21 days, the mice were sacrificed, tumor burden was evaluated and tissues were harvested. The immune cell composition of abdominal tissues and changes in gene expression in the PSF and OFB were evaluated by flow cytometry and qPCR RT2-profiler PCR arrays and confirmed by qRT-PCR, respectively. Other peritoneal adipose tissues including parametrial and retroperitoneal white adipose tissues as well as blood were also investigated. Results While limited effects were observed in the other peritoneal adipose tissues, feeding mice the HFD led to distinct changes in the immune cell composition in the PSF and the OFB: a depletion of B cells but an increase in myeloid-derived suppressor cells (MDSC) and mono/granulocytes, generating pro-inflammatory environments with increased expression of cyto- and chemokines, and genes supporting adhesion, survival, and growth, as well as suppression of apoptosis. This was associated with a higher peritoneal tumor burden compared to mice fed a LFD. Changes in cellular and genetic profiles were often exacerbated by the HFD. There was a large overlap in genes that were modulated by both the HFD and the cancer cells, suggesting that this 'genetic fingerprint' is important for ovarian metastases to the OFB. Discussion In accordance with the 'seed and soil' theory, our studies show that obesity contributes to the generation of a pro-inflammatory peritoneal environment that supports the survival of disseminating ovarian cancer cells in the PSF and the OFB and enhances the early metastatic adhesion events in the OFB through an increase in extracellular matrix proteins and modulators such as fibronectin 1 and collagen I expression as well as in genes supporting growth and invasion such as Tenacin C. The identified genes could potentially be used as targets for prevention strategies to lower the ovarian cancer risk in women with obesity.
Collapse
Affiliation(s)
- Amanda A. Shea
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Gendrau‐Sanclemente N, Figueras A, Gracova K, Lahiguera Á, Alsina‐Sanchís E, Marín‐Jiménez JA, Vidal A, Matias‐Guiu X, Fernandez‐Gonzalez S, Barahona M, Martí L, Ponce J, Viñals F. Ovarian cancer relies on the PDGFRβ-fibronectin axis for tumorsphere formation and metastatic spread. Mol Oncol 2024; 18:136-155. [PMID: 38010623 PMCID: PMC10766197 DOI: 10.1002/1878-0261.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. The most common form of metastatic spread of HGSOC is transcoelomic dissemination. In this process, detached cells from the primary tumor aggregate as tumorspheres and promote the accumulation of peritoneal ascites. This represents an early event in HGSOC development and is indicative of poor prognosis. In this study, based on tumorspheres isolated from ascitic liquid samples from HGSOC patients, ovarian cancer spheroid 3D cultures, and in vivo models, we describe a key signal for tumorsphere formation in HGSOC. We report that platelet-derived growth factor receptor beta (PDGFRβ) is essential for fibronectin-mediated cell clustering of ovarian cancer cells into tumorspheres. This effect is mediated by the kinase NUAK family SNF1-like kinase 1 (NUAK1) and blocked by PDGFRβ pharmacological or genetic inhibition. In the absence of PDGFRβ, ovarian cancer cells can be provided with fibronectin by cancer-associated fibroblasts to generate chimeric spheroids. This work provides new insights that uncover potential targets to prevent peritoneal dissemination, the main cause of advanced disease in HGSOC patients.
Collapse
Affiliation(s)
- Núria Gendrau‐Sanclemente
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Kristina Gracova
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Elisenda Alsina‐Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Juan A. Marín‐Jiménez
- Cancer Immunotherapy (CIT) Group‐ProCUREBellvitge Biomedical Research Institute (IDIBELL) – OncoBellBarcelonaSpain
- Department of Medical OncologyCatalan Institute of Oncology (ICO)BarcelonaSpain
| | - August Vidal
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | - Xavier Matias‐Guiu
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | | | - Marc Barahona
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Lola Martí
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Jordi Ponce
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Departament de Ciències FisiològiquesUniversitat de BarcelonaSpain
| |
Collapse
|
7
|
Yang H, Wei Z, Song Y, Du K, Yin N, Lu H, Li B, Hou L, Xing P, Chen L, Wang C, Xie S. NUAK1 promotes tumor metastasis through upregulating slug transcription in esophageal squamous cell carcinoma. Cancer Cell Int 2023; 23:258. [PMID: 37919754 PMCID: PMC10621130 DOI: 10.1186/s12935-023-03101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Metastasis is still a major cause of poor pathological outcome and prognosis in esophageal squamous cell carcinoma (ESCC) patients. NUAK1 has been reported highly expressed in many human cancers and is associated with the poor prognosis of cancer patients. However, the role of NUAK1 and its underlying signaling mechanism in ESCC metastasis remain unclear. METHODS Expression of NUAK1 in ESCC was detected by real-time quantitative RT-PCR (qRT-PCR), Western blotting and immunohistochemical staining. MTT, colony formation, wound-healing and transwell assays were used to determine the role NUAK1 in vitro. Metastasis was evaluated by use of an experimental pulmonary metastasis model in BALB/c-nu/nu mice. The mechanisms were assessed by using coimmunoprecipitation, immunofluorescence and dual-luciferase reporter gene experiments. RESULTS NUAK1 was highly expressed in ESCC tissues compared with the adjacent normal esophageal epithelial tissues. Moreover, the elevated expression of NUAK1 positively correlated with tumor invasion depth, lymph node metastasis, pathological TNM stage, and poor survival in ESCC patients. Further experiments showed that NUAK1 overexpression did not change the cell viability and colony formation of ESCC cells, while remarkably promoted the migration and invasion in vitro and experimental pulmonary metastasis in vivo. Mechanistically, NUAK1 enhanced the transcription level of Slug, which enhanced the migratory and invasive capability of ESCC cells. Consistently, silencing Slug almost completely diminished the migration and invasion of NUAK1-overexpressing ESCC cells. Further studies demonstrated that NUAK1 upregulated the transcription activity of Slug through activating the JNK/c-Jun pathway. CONCLUSION These results demonstrated that NUAK1 promoted the metastasis of ESCC cells through activating JNK/c-Jun/Slug signaling, indicating NUAK1 is a promising therapeutic target for metastatic ESCC.
Collapse
Affiliation(s)
- Huiru Yang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Zhen Wei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Yifan Song
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Kexin Du
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Nannan Yin
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China
| | - Bingbing Li
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China
| | - Lili Hou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Panfei Xing
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Liang Chen
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
- The Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| |
Collapse
|
8
|
Frederick MI, Hovey OFJ, Kakadia JH, Shepherd TG, Li SSC, Heinemann IU. Proteomic and Phosphoproteomic Reprogramming in Epithelial Ovarian Cancer Metastasis. Mol Cell Proteomics 2023; 22:100660. [PMID: 37820923 PMCID: PMC10652129 DOI: 10.1016/j.mcpro.2023.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.
Collapse
Affiliation(s)
- Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Owen F J Hovey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jenica H Kakadia
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Trevor G Shepherd
- Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
9
|
Nelson L, Barnes BM, Tighe A, Littler S, Coulson-Gilmer C, Golder A, Desai S, Morgan RD, McGrail JC, Taylor SS. Exploiting a living biobank to delineate mechanisms underlying disease-specific chromosome instability. Chromosome Res 2023; 31:21. [PMID: 37592171 PMCID: PMC10435626 DOI: 10.1007/s10577-023-09731-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anya Golder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
10
|
Whyte D, Skalka G, Walsh P, Wilczynska A, Paul NR, Mitchell C, Nixon C, Clarke W, Bushell M, Morton JP, Murphy DJ, Muthalagu N. NUAK1 governs centrosome replication in pancreatic cancer via MYPT1/PP1β and GSK3β-dependent regulation of PLK4. Mol Oncol 2023; 17:1212-1227. [PMID: 36975767 PMCID: PMC10323901 DOI: 10.1002/1878-0261.13425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The AMP-activated protein kinase (AMPK)-related kinase NUAK1 (NUAK family SNF1-like kinase 1) has emerged as a potential vulnerability in MYC-dependent cancer but the biological roles of NUAK1 in different settings are poorly characterised, and the spectrum of cancer types that exhibit a requirement for NUAK1 is unknown. Unlike canonical oncogenes, NUAK1 is rarely mutated in cancer and appears to function as an obligate facilitator rather than a cancer driver per se. Although numerous groups have developed small-molecule NUAK inhibitors, the circumstances that would trigger their use and the unwanted toxicities that may arise as a consequence of on-target activity are thus undetermined. Reasoning that MYC is a key effector of RAS pathway signalling and the GTPase KRAS is almost uniformly mutated in pancreatic ductal adenocarcinoma (PDAC), we investigated whether this cancer type exhibits a functional requirement for NUAK1. Here, we show that high NUAK1 expression is associated with reduced overall survival in PDAC and that inhibition or depletion of NUAK1 suppresses growth of PDAC cells in culture. We identify a previously unknown role for NUAK1 in regulating accurate centrosome duplication and show that loss of NUAK1 triggers genomic instability. The latter activity is conserved in primary fibroblasts, raising the possibility of undesirable genotoxic effects of NUAK1 inhibition.
Collapse
Affiliation(s)
- Declan Whyte
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - George Skalka
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Peter Walsh
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | | | | | | | | | | | - Martin Bushell
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Jennifer P. Morton
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Daniel J. Murphy
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Nathiya Muthalagu
- School of Cancer SciencesUniversity of GlasgowUK
- CRUK Beatson InstituteGlasgowUK
- Present address:
Indian Institute of TechnologyMadrasIndia
| |
Collapse
|
11
|
Tomas E, Shepherd TG. Insights into high-grade serous carcinoma pathobiology using three-dimensional culture model systems. J Ovarian Res 2023; 16:70. [PMID: 37038202 PMCID: PMC10088149 DOI: 10.1186/s13048-023-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) research has become more complex as researchers try to fully understand the metastatic process. Especially as we delve into the concept of tumour dormancy, where cells transition between proliferative and dormant states to survive during disease progression. Thus, the in vitro models used to conduct this research need to reflect this vast biological complexity. The innovation behind the many three-dimensional (3D) spheroid models has been refined to easily generate reproducible spheroids so that we may understand the various molecular signaling changes of cells during metastasis and determine therapeutic efficacy of treatments. This ingenuity was then used to develop the 3D ex vivo patient-derived organoid model, as well as multiple co-culture model systems for EOC research. Although, researchers need to continue to push the boundaries of these current models for in vitro and even in vivo work in the future. In this review, we describe the 3D models already in use, where these models can be developed further and how we can use these models to gain the most knowledge on EOC pathogenesis and discover new targeted therapies.
Collapse
Affiliation(s)
- Emily Tomas
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Trevor G Shepherd
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada.
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada.
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada.
- Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
12
|
Yao CY, Gao ZX, Hou LL, Fang D. DKK1 promotes NUAK1 transcriptional expression through the activation Akt in hepatocellular carcinoma. Cell Biol Int 2023; 47:383-393. [PMID: 36480792 DOI: 10.1002/cbin.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.
Collapse
Affiliation(s)
- Chao-Yan Yao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Zi-Xuan Gao
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Li-Li Hou
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China.,Quality and Technique Supervision, Inspection and Testing Center of Xuchang City, Xuchang, China
| | - Dong Fang
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Baumgartner C, Yadav AK, Chefetz I. AMPK-like proteins and their function in female reproduction and gynecologic cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:245-270. [PMID: 36858738 DOI: 10.1016/bs.apcsb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serine-threonine kinase (STK11), also known as liver kinase B1 (LKB1), is a regulator of cellular homeostasis through regulating the cellular ATP-to-ADP ratio. LKB1 is classified as a tumor suppressor and functions as the key activator of AMP-activated protein kinase (AMPK) and a family of serine-threonine kinases called AMPK-like proteins. These proteins include novel (nua) kinase family 1 (NUAK1 and 2), salt inducible kinase (SIK1), QIK (known as SIK2), QSK (known as SIK3 kinase), and maternal embryonic leuzine zipper kinase (MELK) on tightly controlled and specific residual sites. LKB1 also regulates brain selective kinases 1 and 2 (BRSK1 and 2), additional members of AMPK-like protein family, which functions are probably less studied. AMPK-like proteins play a role in variety of reproductive physiology functions such as follicular maturation, menopause, embryogenesis, oocyte maturation, and preimplantation development. In addition, dysfunctional activity of AMPK-like proteins contributes to apoptosis blockade in cancer cells and induction of the epithelial-mesenchymal transition required for metastasis. Dysregulation of these proteins occurs in ovarian, endometrial, and cervical cancers. AMPK-like proteins are still undergoing further classification and may represent novel targets for targeted gynecologic cancer therapies. In this chapter, we describe the AMPK-like family of proteins and their roles in reproductive physiology and gynecologic cancers.
Collapse
Affiliation(s)
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
14
|
Seo MS, Jung KH, Kim K, Lee JE, Han BS, Ko S, Kim JH, Hong S, Lee SH, Hong SS. Discovery of a novel NUAK1 inhibitor against pancreatic cancer. Biomed Pharmacother 2022; 152:113241. [PMID: 35691157 DOI: 10.1016/j.biopha.2022.113241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
The novel (nua) kinase family 1 (NUAK1) is an AMPK-related kinase and its expression is associated with tumor malignancy and poor prognosis in several types of cancer, suggesting its potential as a target for cancer therapy. Therefore, the development of NUAK1-targeting inhibitors could improve therapeutic outcomes in cancer. We synthesized KI-301670, a novel NUAK1 inhibitor, and assessed its anticancer effects and mechanism of action in pancreatic cancer. It effectively inhibited pancreatic cancer growth and proliferation, and induced cell cycle arrest, markedly G0/G1 arrest, by increasing the expression of p27 and decreasing expression of p-Rb and E2F1. Additionally, the apoptotic effect of KI-301670 was observed by an increase in cleaved PARP, TUNEL-positive cells, and annexin V cell population, as well as the release of cytochrome c via the loss of mitochondrial membrane potential. KI-301670 inhibited the migration and invasion of pancreatic cancer cells. Mechanistically, KI-301670 effectively inhibited the PI3K/AKT pathway in pancreatic cancer cells. Furthermore, it significantly attenuated tumor growth in a mouse xenograft tumor model. Our results demonstrate that a novel NUAK1 inhibitor, KI-301670, exerts anti-tumor effects by directly suppressing cancer cell growth by affecting the PI3K/AKT pathway, suggesting that it could be a novel therapeutic candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Myeong-Seong Seo
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea
| | - Kewon Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji Eun Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea
| | - Jae Ho Kim
- Chemical Kinomics Research Center, Institute of Science and Technology, Seoul 02792, South Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| | - So Ha Lee
- Chemical Kinomics Research Center, Institute of Science and Technology, Seoul 02792, South Korea.
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 22332, South Korea.
| |
Collapse
|
15
|
Loss of LKB1-NUAK1 signalling enhances NF-κB activity in a spheroid model of high-grade serous ovarian cancer. Sci Rep 2022; 12:3011. [PMID: 35194062 PMCID: PMC8863794 DOI: 10.1038/s41598-022-06796-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy often diagnosed at an advanced stage. Although most HGSOC patients respond initially to debulking surgery combined with cytotoxic chemotherapy, many ultimately relapse with platinum-resistant disease. Thus, improving outcomes requires new ways of limiting metastasis and eradicating residual disease. We identified previously that Liver kinase B1 (LKB1) and its substrate NUAK1 are implicated in EOC spheroid cell viability and are required for efficient metastasis in orthotopic mouse models. Here, we sought to identify additional signalling pathways altered in EOC cells due to LKB1 or NUAK1 loss-of-function. Transcriptome analysis revealed that inflammatory signalling mediated by NF-κB transcription factors is hyperactive due to LKB1-NUAK1 loss in HGSOC cells and spheroids. Upregulated NF-κB signalling due to NUAK1 loss suppresses reactive oxygen species (ROS) production and sustains cell survival in spheroids. NF-κB signalling is also activated in HGSOC precursor fallopian tube secretory epithelial cell spheroids, and is further enhanced by NUAK1 loss. Finally, immunohistochemical analysis of OVCAR8 xenograft tumors lacking NUAK1 displayed increased RelB expression and nuclear staining. Our results support the idea that NUAK1 and NF-κB signalling pathways together regulate ROS and inflammatory signalling, supporting cell survival during each step of HGSOC pathogenesis. We propose that their combined inhibition may be efficacious as a novel therapeutic strategy for advanced HGSOC.
Collapse
|
16
|
Capellero S, Erriquez J, Battistini C, Porporato R, Scotto G, Borella F, Di Renzo MF, Valabrega G, Olivero M. Ovarian Cancer Cells in Ascites Form Aggregates That Display a Hybrid Epithelial-Mesenchymal Phenotype and Allows Survival and Proliferation of Metastasizing Cells. Int J Mol Sci 2022; 23:ijms23020833. [PMID: 35055018 PMCID: PMC8775835 DOI: 10.3390/ijms23020833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Peritoneal metastases are the leading cause of morbidity and mortality in ovarian cancer. Cancer cells float in peritoneal fluid, named ascites, together with a definitely higher number of non neo-neoplastic cells, as single cells or multicellular aggregates. The aim of this work is to uncover the features that make these aggregates the metastasizing units. Immunofluorescence revealed that aggregates are made almost exclusively of ovarian cancer cells expressing the specific nuclear PAX8 protein. The same cells expressed epithelial and mesenchymal markers, such as EPCAM and αSMA, respectively. Expression of fibronectin further supported a hybrid epithelia-mesenchymal phenotype, that is maintained when aggregates are cultivated and proliferate. Hematopoietic cells as well as macrophages are negligible in the aggregates, while abundant in the ascitic fluid confirming their prominent role in establishing an eco-system necessary for the survival of ovarian cancer cells. Using ovarian cancer cell lines, we show that cells forming 3D structures neo-expressed thoroughly fibronectin and αSMA. Functional assays showed that αSMA and fibronectin are necessary for the compaction and survival of 3D structures. Altogether these data show that metastasizing units display a hybrid phenotype that allows maintenance of the 3D structures and the plasticity necessary for implant and seeding into peritoneal lining.
Collapse
Affiliation(s)
- Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
| | - Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology, IRCCS, 20100 Milan, Italy;
| | - Roberta Porporato
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
| | - Giulia Scotto
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10100 Turin, Italy;
| | - Maria F. Di Renzo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
- Correspondence: ; Tel.: +39-011-993-3521
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (S.C.); (J.E.); (R.P.); (G.S.); (M.F.D.R.); (M.O.)
- Department of Oncology, University of Torino, 10129 Torino, Italy
| |
Collapse
|
17
|
Dhaliwal D, Shepherd TG. Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metastasis 2021; 39:291-301. [PMID: 34822024 PMCID: PMC8971148 DOI: 10.1007/s10585-021-10136-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell–cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell–cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.
Collapse
Affiliation(s)
- Dolly Dhaliwal
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd E, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
18
|
Molina E, Hong L, Chefetz I. NUAK Kinases: Brain-Ovary Axis. Cells 2021; 10:cells10102760. [PMID: 34685740 PMCID: PMC8535158 DOI: 10.3390/cells10102760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Liver kinase B (LKB1) and adenosine monophosphate (AMP)-activated protein kinase (AMPK) are two major kinases that regulate cellular metabolism by acting as adenosine triphosphate (ATP) sensors. During starvation conditions, LKB1 and AMPK activate different downstream pathways to increase ATP production, while decreasing ATP consumption, which abrogates cellular proliferation and cell death. Initially, LKB1 was considered to be a tumor suppressor due to its loss of expression in various tumor types. Additional studies revealed amplifications in LKB1 and AMPK kinases in several cancers, suggesting a role in tumor progression. The AMPK-related proteins were described almost 20 years ago as a group of key kinases involved in the regulation of cellular metabolism. As LKB1-downstream targets, AMPK-related proteins were also initially considered to function as tumor suppressors. However, further research demonstrated that AMPK-related kinases play a major role not only in cellular physiology but also in tumor development. Furthermore, aside from their role as regulators of metabolism, additional functions have been described for these proteins, including roles in the cell cycle, cell migration, and cell death. In this review, we aim to highlight the major role of AMPK-related proteins beyond their functions in cellular metabolism, focusing on cancer progression based on their role in cell migration, invasion, and cell survival. Additionally, we describe two main AMPK-related kinases, Novel (nua) kinase family 1 (NUAK1) and 2 (NUAK2), which have been understudied, but play a major role in cellular physiology and tumor development.
Collapse
Affiliation(s)
- Ester Molina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Linda Hong
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-507-437-9624
| |
Collapse
|
19
|
Wang Q, Gu T, Ma L, Bu S, Zhou W, Mao G, Wang LL, Guo Y, Lai D. Efficient iron utilization compensates for loss of extracellular matrix of ovarian cancer spheroids. Free Radic Biol Med 2021; 164:369-380. [PMID: 33450374 DOI: 10.1016/j.freeradbiomed.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023]
Abstract
Metastasis is the major cause of death in women with advanced ovarian cancer. Epithelial ovarian cancer cells can dissociate directly from extracellular matrix (ECM) and form spheroids to spread through the peritoneal cavity. Loss of ECM hinders the survival of ECM-detached epithelial cells. It is still largely unknown how ovarian cancer spheroids maintain their viability after loss of ECM. We find that spheroids derived either from ovarian cancer ascites or cell lines are iron-replete. In accordance with iron-replete condition, proteins involved in iron uptake, transport and storage including divalent metal ion transporter 1 (DMT1), transferrin receptor 1 (TFR1), ferritin, poly(rC)-binding proteins 1 and 2 (PCBP1 and 2) and nuclear factor E2-related factor 2 (NRF2) all increase in ovarian cancer spheroids. Genes linking iron homeostasis and lipid metabolism including stearoyl coenzyme A desaturase 1 (SCD1) are up-regulated in ovarian cancer spheroids. The product of SCD1 oleic acid can restore the viability of ovarian cancer spheroids inhibited by deprivation of iron. Extracellular signal-regulated kinase (ERK) activation contributes to autophagy activation in ovarian cancer spheroids. Impairment of autophagy by U0126 or Olaparib results in lysosomal iron accumulation and decrease of the cytosolic labile iron pool, leading to reduction of SCD1, lipid level and cell viability. Combination of U0126 and Olaparib has synergistic cytotoxicity toward ovarian cancer spheroids. Our findings reveal that ovarian cancer spheroids develop efficient iron utilization system to survive. Targeting iron utilization in ovarian cancer spheroids may have the potential to become new treatment strategies for ovarian cancer metastasis.
Collapse
Affiliation(s)
- Qian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, PR China; Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, PR China.
| | - Tingting Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Li Ma
- Zhongshan Hospital, Fudan University, Shanghai, 200030, PR China
| | - Shixia Bu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Wenjing Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Guoping Mao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Lu-Lu Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Ying Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, PR China; Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, PR China.
| |
Collapse
|
20
|
Li TT, Zhu HB. LKB1 and cancer: The dual role of metabolic regulation. Biomed Pharmacother 2020; 132:110872. [PMID: 33068936 DOI: 10.1016/j.biopha.2020.110872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is an essential serine/threonine kinase frequently associated with Peutz-Jeghers syndrome (PJS). In this review, we provide an overview of the role of LKB1 in conferring protection to cancer cells against metabolic stress and promoting cancer cell survival and invasion. This carcinogenic effect contradicts the previous conclusion that LKB1 is a tumor suppressor gene. Here we try to explain the contradictory effect of LKB1 on cancer from a metabolic perspective. Upon deletion of LKB1, cancer cells experience increased energy as well as oxidative stress, thereby causing genomic instability. Meanwhile, mutated LKB1 cooperates with other metabolic regulatory genes to promote metabolic reprogramming that subsequently facilitates adaptation to strong metabolic stress, resulting in development of a more aggressive malignant phenotype. We aim to specifically discuss the contradictory role of LKB1 in cancer by reviewing the mechanism of LKB1 with an emphasis on metabolic stress and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Bin Zhu
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|