1
|
Seok J, Kwak Y, Kim S, Kim EM, Kim A. Advances in Liquid Biopsy for Diagnosis of Bladder Cancer. Int Neurourol J 2024; 28:83-95. [PMID: 38956768 PMCID: PMC11222820 DOI: 10.5213/inj.2448198.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 07/04/2024] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system. It has a high recurrence rate and requires longterm follow-up. Significant advances in BCa research have been made in recent years; however, the initial diagnosis and follow-up of BCa relies on cystoscopy, which is an invasive and expensive procedure. Over the past decade, liquid biopsies (e.g., blood and urine) have proven to be highly efficient methods for the discovery of BCa biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into body fluids and enables serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers have been studied extensively and have shown promising results in the clinical applications of BCa, including early detection, microscopic residual disease detection, recurrence prediction, and treatment response. Therefore, this review aims to provide an update on various new liquid biopsy markers and the advantages and current limitations of liquid biopsy in the diagnosis of BCa.
Collapse
Affiliation(s)
- Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Sewhan Kim
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan, Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Irvine, CA, USA
| |
Collapse
|
2
|
Wang P, Wei X, Qu X, Zhu Y. Potential clinical application of microRNAs in bladder cancer. J Biomed Res 2024; 38:289-306. [PMID: 38808545 PMCID: PMC11300522 DOI: 10.7555/jbr.37.20230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 05/30/2024] Open
Abstract
Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20-25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
3
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
4
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Zhang Z, Liu N. PIWI interacting RNA-13643 contributes to papillary thyroid cancer development through acting as a novel oncogene by facilitating PRMT1 mediated GLI1 methylation. Biochim Biophys Acta Gen Subj 2023; 1867:130453. [PMID: 37657666 DOI: 10.1016/j.bbagen.2023.130453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Recently, aberrant expression of PIWI-interacting RNAs (piRNAs) has been discovered in a variety of cancer cells. However, the roles of PIWI proteins and piRNAs in papillary thyroid carcinoma (PTC) are still elusive. METHODS RT-qPCR and Northern blotting were used to evaluate piR-13643 levels in PTC and para-carcinoma tissues, as well as in PTC cell lines. piR-13643 mimic and piR-13643 inhibitor were transfected into K-1 and B-CPAP cells. CCK-8, Transwell, annexin V-FITC/PI, flow cytometry and Western blot assays were performed to measure cell proliferation, invasion, apoptosis, cell cycle and E-cadherin and Vimentin proteins, respectively. Total RNA from B-CPAP cells was pulled down with PIWIL1, PIWIL2, or PIWIL3 specific antibodies or IgG as a control, respectively, followed by detection of piR-13643 expression with RT-qPCR. Immunoblotting of PRMT1 was detected in piR-13643 / PIWIL1 complex immune-precipitates by Co-IP assay. Subsequently, PRMT1 protein expression was detected by stably transfection of Flag tagged GLI1 (Flag-GLI1) into B-CPAP cells. Methylation assay with PRMT1 and wild-type or R597 lysine (R597K)-mutant GLI1. Then rescue experiments were applied to explore effects of piR-13643 and GLI1 on the malignant behavior of PTC cells. B-CPAP cells transfected with piR-13643 inhibitor were subcutaneously injected into nude mice to evaluate the effect of piR-13643 knockdown on the xenograft tumor growth of PTC. RESULTS piR-13643 was elevated in PTC patient specimens and cell lines. piR-13643 overexpression facilitated cell proliferation, invasion and Vimentin level, and restrained apoptosis and E-cadherin expression, whereas piR-13643 knockdown showed the opposite results. Mechanically, piR-13643 could bind to PIWIL1 to form the PIWIL1/piR-13643 complex, and PRMT1 enhanced GLI1 transcription by methylating GLI1 at R597. Further, PIWIL1/piR-13643 promoted PRMT1-mediated GLI1 methylation. GLI1 knockdown countered the effects of piR-13643 mimic on cell malignant behaviors. piR-13643 knockdown preeminently prevented the xenograft tumor growth of PTC in vivo. CONCLUSIONS This study confirmed that piR-13643 facilitates PTC malignant behaviors in vitro and in vivo by promoting PRMT1-mediated GLI1 methylation via forming a complex with PIWIL1, which may provide a novel insight for PTC treatment.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ning Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
6
|
Winters AN, Berry AK, Dewenter TA, Chowdhury NU, Wright KL, Cameron JE. MicroRNA expression associated with low-grade cervical intraepithelial neoplasia outcomes. J Cancer Res Clin Oncol 2023; 149:11969-11978. [PMID: 37421453 PMCID: PMC10465678 DOI: 10.1007/s00432-023-05023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE Only a fraction of low-grade cervical intraepithelial neoplasia (CIN) progresses to high-grade CIN; however, the biological processes that differentiate progressive CIN from CIN that resolves naturally are poorly understood. MicroRNAs (miRNAs) are important epigenetic regulators of gene expression and thus, miRNA expression profiling can reveal the dysregulated biology underlying disease processes. The purpose of this case-control study was to reveal miRNA expression patterns and predict the underlying biological pathways that are associated with clinical outcomes of low-grade CIN. METHODS Women with low-grade CIN diagnosis and definitive clinical outcomes (n = 51) were identified retrospectively using electronic clinical records. Comprehensive miRNA expression profiling was performed on the low-grade CIN diagnostic cervical biopsies retrieved from pathology archives. Differential miRNA expression was analyzed by comparing women with CIN that progressed to women with CIN that resolved naturally. RESULTS Differential expression of 29 miRNAs was observed in low-grade CIN that progressed to high-grade compared to low-grade CIN that resolved. Of these, 24 were significantly downregulated in progressive CIN, including miR-638, miR-3196, miR-4488, and miR-4508, while 5 miRNAs, including miR-1206a, were significantly upregulated. Computational gene ontology analysis based on the discovered miRNAs and their putative mRNA targets revealed biological processes associated with oncogenic phenotypes. CONCLUSION Distinct miRNA expression profiles are associated with clinical outcomes of low-grade CIN. The functional effects of the differentially expressed miRNAs may be biological determinants of CIN progression or resolution.
Collapse
Affiliation(s)
- Ashley N Winters
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA
| | - Alex K Berry
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave. 8638, New Orleans, LA, 70112, USA
| | - Tracy A Dewenter
- Department of Pathology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA
| | - Nowrin U Chowdhury
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, 1161 21St Ave S Medical Center North T-2219, Nashville, TN, 37232, USA
| | - Kelly L Wright
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA
- Medical Science Liaison, Gynecologic Oncology, AstraZeneca. 1 Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Jennifer E Cameron
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA.
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Pardini B, Ferrero G, Tarallo S, Gallo G, Francavilla A, Licheri N, Trompetto M, Clerico G, Senore C, Peyre S, Vymetalkova V, Vodickova L, Liska V, Vycital O, Levy M, Macinga P, Hucl T, Budinska E, Vodicka P, Cordero F, Naccarati A. A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study. Gastroenterology 2023; 165:582-599.e8. [PMID: 37263306 DOI: 10.1053/j.gastro.2023.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Department of Computer Science, University of Turin, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Gaetano Gallo
- Department of Surgery, Sapienza University of Rome, Rome, Italy; Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Nicola Licheri
- Department of Computer Science, University of Turin, Turin, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Carlo Senore
- Epidemiology and Screening Unit-CPO, University Hospital Città della Salute e della Scienza, Turin, Italy
| | - Sergio Peyre
- LILT (Lega Italiana Lotta contro i Tumori), associazione provinciale di Biella, Biella, Italy
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondrej Vycital
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Peter Macinga
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Alessio Naccarati
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
8
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
9
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Taverna S, Masucci A, Cammarata G. PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers (Basel) 2023; 15:3912. [PMID: 37568728 PMCID: PMC10417041 DOI: 10.3390/cancers15153912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Collapse
Affiliation(s)
- Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, Laboratory Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
11
|
Limanówka P, Ochman B, Świętochowska E. PiRNA Obtained through Liquid Biopsy as a Possible Cancer Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13111895. [PMID: 37296747 DOI: 10.3390/diagnostics13111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years PIWI-interacting RNAs (piRNAs) have gained the interest of scientists, mainly because of their possible implications in cancer. Many kinds of research showed how their expression can be linked to malignant diseases. However, most of them evaluated the expression of piRNAs in tumor tissues. It was shown how these non-coding RNAs can interfere with many signaling pathways involved in the regulation of proliferation or apoptosis. A comparison of piRNA expression in tumor tissue and adjacent healthy tissues has demonstrated they can be used as biomarkers. However, this way of obtaining samples has a significant drawback, which is the invasiveness of such a procedure. Liquid biopsy is an alternative for acquiring biological material with little to no harm to a patient. Several different piRNAs in various types of cancer were shown to be expressed in bodily fluids such as blood or urine. Furthermore, their expression significantly differed between cancer patients and healthy individuals. Hence, this review aimed to assess the possible use of liquid biopsy for cancer diagnosis with piRNAs as biomarkers.
Collapse
Affiliation(s)
- Piotr Limanówka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
12
|
Teixeira-Marques A, Lourenço C, Oliveira MC, Henrique R, Jerónimo C. Extracellular Vesicles as Potential Bladder Cancer Biomarkers: Take It or Leave It? Int J Mol Sci 2023; 24:ijms24076757. [PMID: 37047731 PMCID: PMC10094914 DOI: 10.3390/ijms24076757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Bladder cancer (BC) is the 10th most frequently diagnosed cancer worldwide. Although urine cytology and cystoscopy are current standards for BC diagnosis, both have limited sensitivity to detect low-grade and small tumors. Moreover, effective prognostic biomarkers are lacking. Extracellular vesicles (EVs) are lipidic particles that contain nucleic acids, proteins, and metabolites, which are released by cells into the extracellular space, being crucial effectors in intercellular communication. These particles have emerged as potential tools carrying biomarkers for either diagnosis or prognosis in liquid biopsies namely urine, plasma, and serum. Herein, we review the potential of liquid biopsies EVs’ cargo as BC diagnosis and prognosis biomarkers. Additionally, we address the emerging advantages and downsides of using EVs within this framework.
Collapse
Affiliation(s)
- Ana Teixeira-Marques
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Catarina Lourenço
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Doctoral Programme in Biomedical Sciences, School Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Miguel Carlos Oliveira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOPorto), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Li S, Xin K, Pan S, Wang Y, Zheng J, Li Z, Liu X, Liu B, Xu Z, Chen X. Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cell Mol Biol Lett 2023; 28:28. [PMID: 37016296 PMCID: PMC10074703 DOI: 10.1186/s11658-023-00442-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and limited applicability of longitudinal surveillance, the identification of tumor markers has attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) have proven to be highly efficient methods for the discovery of BC biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into the peripheral circulation and allows serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers are being extensively studied and have shown promising results in clinical applications of BC, including early detection, detection of microscopic residual disease, prediction of recurrence, and response to therapy. Therefore, in this review, we aim to provide an update on various novel blood-based liquid biopsy markers and review the advantages and current limitations of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulating tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, prognosis, and treatment monitoring, and their applicability to the personalized management of BC, are highlighted.
Collapse
Affiliation(s)
- Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
14
|
Gagliardi A, Francescato G, Ferrero G, Birolo G, Tarallo S, Francavilla A, Piaggeschi G, Di Battista C, Gallo G, Realis Luc A, Sacerdote C, Matullo G, Vineis P, Naccarati A, Pardini B. The 8q24 region hosts miRNAs altered in biospecimens of colorectal and bladder cancer patients. Cancer Med 2023; 12:5859-5873. [PMID: 36366788 PMCID: PMC10028171 DOI: 10.1002/cam4.5375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The 8q24 locus is enriched in cancer-associated polymorphisms and, despite containing relatively few protein-coding genes, it hosts the MYC oncogene and other genetic elements connected to tumorigenesis, including microRNAs (miRNAs). Research on miRNAs may provide insights into the transcriptomic regulation of this multiple cancer-associated region. MATERIAL AND METHODS We profiled all miRNAs located in the 8q24 region in 120 colorectal cancer (CRC) patients and 80 controls. miRNA profiling was performed on cancer/non-malignant adjacent mucosa, stool, and plasma extracellular vesicles (EVs), and the results validated with The Cancer Genome Atlas (TCGA) data. To verify if the 8q24-annotated miRNAs altered in CRC were dysregulated in other cancers and biofluids, we evaluated their levels in bladder cancer (BC) cases from the TCGA dataset and in urine and plasma EVs from a set of BC cases and healthy controls. RESULTS Among the detected mature miRNAs in the region, 12 were altered between CRC and adjacent mucosa (adj. p < 0.05). Five and four miRNAs were confirmed as dysregulated in the CRC and BC TCGA dataset, respectively. A co-expression analysis of tumor/adjacent tissue data from the CRC group revealed a correlation between the dysregulated miRNAs and CRC-related genes (PVT1 and MYC) annotated in 8q24 region. miR-30d-5p and miR-151a-3p, altered in CRC tissue, were also dysregulated in stool of CRC patients and urine of BC cases, respectively. Functional enrichment of dysregulated miRNA target genes highlighted terms related to TP53-mediated cell cycle control. CONCLUSIONS Altered expression of 8q24-annotated miRNAs may be relevant for the initiation and/or progression of cancer.
Collapse
Affiliation(s)
- Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Department of Computer Science, University of Turin, Turin, Italy
| | - Giulia Francescato
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Gaetano Gallo
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Guadalupe, Murcia, Spain
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
- Department of Surgical Science, Sapienza University of Rome, Rome, Italy
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Center for Cancer Prevention (CPO-Piemonte), Turin, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- MRC Center for Environment and Health, Imperial College, London, UK
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| |
Collapse
|
15
|
Horak J, Kubecek O, Siskova A, Honkova K, Chvojkova I, Krupova M, Manethova M, Vodenkova S, García-Mulero S, John S, Cecka F, Vodickova L, Petera J, Filip S, Vymetalkova V. Differences in genome, transcriptome, miRNAome, and methylome in synchronous and metachronous liver metastasis of colorectal cancer. Front Oncol 2023; 13:1133598. [PMID: 37182133 PMCID: PMC10172672 DOI: 10.3389/fonc.2023.1133598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Despite distant metastases being the critical factor affecting patients' survival, they remain poorly understood. Our study thus aimed to molecularly characterize colorectal cancer liver metastases (CRCLMs) and explore whether molecular profiles differ between Synchronous (SmCRC) and Metachronous (MmCRC) colorectal cancer. This characterization was performed by whole exome sequencing, whole transcriptome, whole methylome, and miRNAome. The most frequent somatic mutations were in APC, SYNE1, TP53, and TTN genes. Among the differently methylated and expressed genes were those involved in cell adhesion, extracellular matrix organization and degradation, neuroactive ligand-receptor interaction. The top up-regulated microRNAs were hsa-miR-135b-3p and -5p, and the hsa-miR-200-family while the hsa-miR-548-family belonged to the top down-regulated. MmCRC patients evinced higher tumor mutational burden, a wider median of duplications and deletions, and a heterogeneous mutational signature than SmCRC. Regarding chronicity, a significant down-regulation of SMOC2 and PPP1R9A genes in SmCRC compared to MmCRC was observed. Two miRNAs were deregulated between SmCRC and MmCRC, hsa-miR-625-3p and has-miR-1269-3p. The combined data identified the IPO5 gene. Regardless of miRNA expression levels, the combined analysis resulted in 107 deregulated genes related to relaxin, estrogen, PI3K-Akt, WNT signaling pathways, and intracellular second messenger signaling. The intersection between our and validation sets confirmed the validity of our results. We have identified genes and pathways that may be considered as actionable targets in CRCLMs. Our data also provide a valuable resource for understanding molecular distinctions between SmCRC and MmCRC. They have the potential to enhance the diagnosis, prognostication, and management of CRCLMs by a molecularly targeted approach.
Collapse
Affiliation(s)
- Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ondrej Kubecek
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Krupova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Hradec Kralove, Czechia
| | - Monika Manethova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Hradec Kralove, Czechia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO)-Oncobell Programme, Bellvitge Biomedical Research Institute Oncobell Programme, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Oncobell Programme, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Stanislav John
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Filip Cecka
- Department of Surgery, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Veronika Vymetalkova, ; Stanislav Filip,
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Veronika Vymetalkova, ; Stanislav Filip,
| |
Collapse
|
16
|
Zhang M, Lu Y, Wang L, Mao Y, Hu X, Chen Z. Current Status of Research on Small Extracellular Vesicles for the Diagnosis and Treatment of Urological Tumors. Cancers (Basel) 2022; 15:cancers15010100. [PMID: 36612097 PMCID: PMC9817817 DOI: 10.3390/cancers15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.
Collapse
Affiliation(s)
- Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-150-8373-7280
| |
Collapse
|
17
|
Martin-Way D, Puche-Sanz I, Cozar JM, Zafra-Gomez A, Gomez-Regalado MDC, Morales-Alvarez CM, Hernandez AF, Martinez-Gonzalez LJ, Alvarez-Cubero MJ. Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156965. [PMID: 35764155 DOI: 10.1016/j.scitotenv.2022.156965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bladder cancer (BC) is one of the top 10 most common tumours worldwide; however, no molecular markers are currently available for tumour management and follow-up. BC could benefit from molecular biomarkers in environmental disease, which provide mechanistic understanding of individual susceptibility to exposure-related cancers and allow characterizing genetic alterations in the molecular pathway for malignancy. This case-control study performed a molecular analysis in 99 BC and 125 controls. Buccal swabs were collected to assess SNPs in eleven genes coding for xenobiotic detoxification enzymes, cellular antioxidant defences, and hormone synthesis and signalling (NAT2 (rs1801280), GPX1 (rs1050450 and rs17650792), TXNRD1 (rs7310505), PRDX3 (rs3740562), PON1 (rs662), SOD1 (rs10432782), SOD2 (rs4880), CAT (rs1001179), CYP17A1 (rs743572) and ESR1 (rs746432)). A structured questionnaire was administered to study participants to assess environmental and dietary chemical exposures. Several miRNAs associated with BC and detoxification/antioxidant pathways were analysed in a subsample of the study population, including miR-93-5p, miR-221-3p, miR-126, miR-27a-3p, miR-193b, and miR-193a-5p. Levels of selected environmental pollutants (polycyclic aromatic hydrocarbons and endocrine disrupting chemicals) were determined in urine from a subsample of BC cases and controls. We found that CYP17A1, CAT, SOD1, ESR1, PON1, and GPX1 (rs17650792) were associated with BC risk. Furthermore, exposure to smoke and/or dust, and alcohol intake were identified as risk factors for BC. Increased urinary levels of benzo[a]pyrene and bisphenol A were observed in BC patients relative to controls, along with an increased expression of miR-193b, miR-27a and miR-93-5p in BC. Nevertheless, further studies with a larger sample size are warranted to confirm these exploratory results. This study also shows that the combination of genetic markers (PON1 and CYP17A1) and miRNA (miR-221-3p and miR-93-5p) open a new scenario in the use of non-invasive biomarkers in the stratification of BC to guide personalized medicine, which is extremely urged in the current clinical setting.
Collapse
Affiliation(s)
- D Martin-Way
- Urology Department, University Hospital Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - I Puche-Sanz
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - J M Cozar
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - A Zafra-Gomez
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - M D C Gomez-Regalado
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - C M Morales-Alvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - A F Hernandez
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - L J Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - M J Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| |
Collapse
|
18
|
Goh TX, Tan SL, Roebuck MM, Teo SH, Kamarul T. A systematic review of EV-piRNA in human body fluid and its role in disease progression. Tissue Eng Part C Methods 2022; 28:511-528. [PMID: 35959742 DOI: 10.1089/ten.tec.2022.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The state of host cells is reflected in the cargo carried by their extracellular vesicles (EVs). This makes EV a potential source of biomarkers for human diseases. Piwi-interacting RNA (piRNA) regulates gene expression through epigenetic regulation and post-transcriptional gene silencing. Thus, piRNA profiles in EVs derived from human clinical samples could identify markers that characterize disease stages, and unveil their roles in disease pathology. This review aimed to report the expression profiles of EV-derived piRNA (EV-piRNA) in various human samples, as well as their role in each pathology. A systematic review was conducted to collate the findings of human EV-piRNA from original research articles published in indexed scientific journals up to 16th Feb 2022. Article searches were performed in PubMed, Web of Science, and Scopus databases, using a combination of keywords including 'EV' and 'piRNA'. A total of 775 non-redundant original articles were identified. After subjecting articles to inclusion and exclusion criteria, 34 articles were accepted for this review. The piRNA expression levels among the small RNA profiles of human-derived EVs range from 0.09% to 43.84%, with the lowest expression level reported in urine-derived EVs and the highest percentage in plasma-derived EVs. Differentially expressed EV-piRNAs have been identified in patients with specific disease conditions compared to their counterparts (healthy control), suggesting an association between piRNA and progression in various diseases. Seven articles identified piRNA putative target genes and/or the pathway enrichment of piRNA target genes, and one study demonstrated a direct tole of piRNA candidates in disease pathology. In conclusion, EV-piRNA has been isolated successfully from various human body fluids. EV-piRNA is a new research niche in human disease pathology. The expression profiles of EV-piRNA in various tissue types and disease conditions remain largely unexplored. Furthermore, there is currently a lack of guidelines on piRNA bioinformatics analysis, which could lead to inconsistent results and thus hinder the progression of piRNA discoveries. Lastly, the lack of published scientific evidence on the role of EV-piRNA supports the need for future research to focus on the functional analysis of EV-piRNA as part of the route in piRNA discoveries.
Collapse
Affiliation(s)
- Tuan Xin Goh
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Malaysia;
| | - Sik Loo Tan
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Malaysia;
| | - Margaret M Roebuck
- University of Liverpool Faculty of Health and Life Sciences, Department of Musculoskeletal & Ageing Science Institute of Life Course & Medical Sciences (ILCaMS) Faculty of Health & Life Sciences William Henry Duncan Building University of Liverpool, Liverpool, 6 West Derby Street Liverpool L7 8TX, United Kingdom of Great Britain and Northern Ireland;
| | - Seow-Hui Teo
- Division of Sports Injuries and Arthroscopic Surgery, National Orthopaedic Center of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, MALAYSIA., Division of Sports Injuries and Arthroscopic Surgery, National Orthopaedic Center of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Federal Territory, Kuala Lumpur, Malaysia;
| | - Tunku Kamarul
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Wilayah Persekutuan, Malaysia;
| |
Collapse
|
19
|
He N, Thippabhotla S, Zhong C, Greenberg Z, Xu L, Pessetto Z, Godwin AK, Zeng Y, He M. Nano pom-poms prepared exosomes enable highly specific cancer biomarker detection. Commun Biol 2022; 5:660. [PMID: 35787656 PMCID: PMC9253007 DOI: 10.1038/s42003-022-03598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs), particularly nano-sized small EV exosomes, are emerging biomarker sources. However, due to heterogeneous populations secreted from diverse cell types, mapping exosome multi-omic molecular information specifically to their pathogenesis origin for cancer biomarker identification is still extraordinarily challenging. Herein, we introduced a novel 3D-structured nanographene immunomagnetic particles (NanoPoms) with unique flower pom-poms morphology and photo-click chemistry for specific marker-defined capture and release of intact exosome. This specific exosome isolation approach leads to the expanded identification of targetable cancer biomarkers with enhanced specificity and sensitivity, as demonstrated by multi-omic exosome analysis of bladder cancer patient tissue fluids using the next generation sequencing of somatic DNA mutations, miRNAs, and the global proteome (Data are available via ProteomeXchange with identifier PXD034454). The NanoPoms prepared exosomes also exhibit distinctive in vivo biodistribution patterns, highlighting the highly viable and integral quality. The developed method is simple and straightforward, which is applicable to nearly all types of biological fluids and amenable for enrichment, scale up, and high-throughput exosome isolation.
Collapse
Affiliation(s)
- Nan He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA
- Clara Biotech Inc., Lawrence, KS, 66047, USA
| | - Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, 32603, USA
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS, 66045, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Tarallo S, Ferrero G, De Filippis F, Francavilla A, Pasolli E, Panero V, Cordero F, Segata N, Grioni S, Pensa RG, Pardini B, Ercolini D, Naccarati A. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut 2022; 71:1302-1314. [PMID: 34315772 PMCID: PMC9185830 DOI: 10.1136/gutjnl-2021-325168] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES MicroRNA (miRNA) profiles have been evaluated in several biospecimens in relation to common diseases for which diet may have a considerable impact. We aimed at characterising how specific diets are associated with the miRNome in stool of vegans, vegetarians and omnivores and how this is reflected in the gut microbial composition, as this is still poorly explored. DESIGN We performed small RNA and shotgun metagenomic sequencing in faecal samples and dietary recording from 120 healthy volunteers, equally distributed for the different diets and matched for sex and age. RESULTS We found 49 miRNAs differentially expressed among vegans, vegetarians and omnivores (adj. p <0.05) and confirmed trends of expression levels of such miRNAs in vegans and vegetarians compared with an independent cohort of 45 omnivores. Two miRNAs related to lipid metabolism, miR-636 and miR-4739, were inversely correlated to the non-omnivorous diet duration, independently of subject age. Seventeen miRNAs correlated (|rho|>0.22, adj. p <0.05) with the estimated intake of nutrients, particularly animal proteins, phosphorus and, interestingly, lipids. In omnivores, higher Prevotella and Roseburia and lower Bacteroides abundances than in vegans and vegetarians were observed. Lipid metabolism-related miR-425-3p and miR-638 expression levels were associated with increased abundances of microbial species, such as Roseburia sp. CAG 182 and Akkermansia muciniphila, specific of different diets. An integrated analysis identified 25 miRNAs, 25 taxa and 7 dietary nutrients that clearly discriminated (area under the receiver operating characteristic curve=0.89) the three diets. CONCLUSION Stool miRNA profiles are associated with specific diets and support the role of lipids as a driver of epigenetic changes and host-microbial molecular interactions in the gut.
Collapse
Affiliation(s)
- Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Torino, Torino, Italy,Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francesca De Filippis
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Edoardo Pasolli
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Valentina Panero
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy
| | | | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Danilo Ercolini
- Department Agricultural Sciences, University of Naples Federico II, Portici, Napoli, Italy .,Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy .,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
21
|
Moisoiu T, Dragomir MP, Iancu SD, Schallenberg S, Birolo G, Ferrero G, Burghelea D, Stefancu A, Cozan RG, Licarete E, Allione A, Matullo G, Iacob G, Bálint Z, Badea RI, Naccarati A, Horst D, Pardini B, Leopold N, Elec F. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol Med 2022; 28:39. [PMID: 35365098 PMCID: PMC8973824 DOI: 10.1186/s10020-022-00462-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine. METHODS Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and between luminal and basal types. RESULTS Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) yielded an Area Under the Curve (AUC) of 0.92 ± 0.06 in discriminating between BC and CTRL, an accuracy which was superior either to miRNAs (AUC = 0.84 ± 0.03) or SERS data (AUC = 0.84 ± 0.05) individually. When evaluating the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC of 0.95 ± 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) individually, although SERS alone performed better in terms of classification accuracy. CONCLUSION miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged.
Collapse
Affiliation(s)
- Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplantation, 400006, Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.,Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania
| | - Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Simon Schallenberg
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, 10, 10043, Orbassano, Italy
| | - Dan Burghelea
- Clinical Institute of Urology and Renal Transplantation, 400006, Cluj-Napoca, Romania.,Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ramona G Cozan
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Emilia Licarete
- Faculty of Biology, Babeș-Bolyai University, 400015, Cluj-Napoca, Romania
| | - Alessandra Allione
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Gheorghita Iacob
- Clinical Institute of Urology and Renal Transplantation, 400006, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Radu I Badea
- Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.,Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162, Cluj-Napoca, Romania
| | - Alessio Naccarati
- Candiolo Cancer Institute-FPO IRCCS, 10060, Candiolo, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), IRCCS Candiolo, 10060, Candiolo, Turin, Italy
| | - David Horst
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Pardini
- Candiolo Cancer Institute-FPO IRCCS, 10060, Candiolo, Turin, Italy. .,Italian Institute for Genomic Medicine (IIGM), IRCCS Candiolo, 10060, Candiolo, Turin, Italy.
| | - Nicolae Leopold
- Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania. .,Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania.
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplantation, 400006, Cluj-Napoca, Romania. .,Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| |
Collapse
|
22
|
Pin F, Beltrà M, Garcia-Castillo L, Pardini B, Birolo G, Matullo G, Penna F, Guttridge D, Costelli P. Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. J Cachexia Sarcopenia Muscle 2022; 13:481-494. [PMID: 34931471 PMCID: PMC8818645 DOI: 10.1002/jcsm.12844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cachexia, a syndrome frequently occurring in cancer patients, is characterized by muscle wasting, altered energy and protein metabolism and impaired myogenesis. Tumour-derived microvesicles (TMVs) containing proteins, messenger RNAs (mRNAs), and non-coding RNAs could contribute to cancer-induced muscle wasting. METHODS Differential ultracentrifugation was used to isolate TMVs from the conditioned medium of Lewis lung carcinoma and C26 colon carcinoma cell cultures. TMVs were added to the culture medium of C2C12 myoblasts and myotubes for 24-48-72 h, and the effects on protein and energy metabolism were assessed. TMVs were also isolated from the blood of C26-bearing mice. MicroRNA (miR) profile of TMVs was obtained by RNA-seq and validated by digital drop PCR. Selected miRs were overexpressed in C2C12 myoblasts to assess the effects on myogenic differentiation. RESULTS Differentiation was delayed in C2C12 myoblasts exposed to TMVs, according to reduced expression of myosin heavy chain (MyHC; about 62% of controls at Day 4) and myogenin (about 68% of controls at Day 4). As for myotubes, TMVs did not affect the expression of MyHC, while revealed able to modulate mitochondria and oxidative metabolism. Indeed, reduced mRNA levels of PGC-1α (C = 1 ± 0.2, TMV = 0.57 ± 0.06, normalized fold change, P < 0.05) and Cytochrome C (C = 1 ± 0.2, TMV = 0.65 ± 0.04, normalized fold change, P < 0.05), associated with increased BNIP3 expression (C = 1 ± 0.1, TMV = 1.29 ± 0.2, normalized fold change, P < 0.05), were observed, suggesting reduced mitochondrial biogenesis/amount and enhanced mitophagy. These changes were paralleled by decreased oxygen consumption (C = 686.9 ± 44 pmol/min, TMV = 552.25 ± 24 pmol/min, P < 0.01) and increased lactate levels (C = 0.0063 ± 0.00045 nmol/μL, TMV = 0.0094 ± 0.00087 nmol/μL, P < 0.01). A total of 118 miRs were found in MVs derived from the plasma of the C26 hosts; however, only three of them were down-regulated (RNA-seq): miR-181a-5p (-1.46 fold change), miR-375-3p (-2.52 fold change), and miR-455-5p (-3.87 fold change). No correlation could be observed among miRs in the MVs obtained from the blood of the C26 host and those released by C26 cells in the culture medium. Overexpression of miR-148a-3p and miR-181a-5p in C2C12 myoblasts revealed the ability to impinge on the mRNA levels of Myf5, Myog, and MyHC (Myh4 and Myh7). CONCLUSIONS These results show that in C2C12 cultures, TMVs are able to affect both differentiation and the mitochondrial system. Such effects could be related to TMV-contained miRs.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Denis Guttridge
- Department of Cancer Biology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Department of Pediatrics and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Merae Alshahrani M. A glance at the emerging diagnostic biomarkers in the most prevalent genitourinary cancers. Saudi J Biol Sci 2022; 29:2072-2084. [PMID: 35531253 PMCID: PMC9073037 DOI: 10.1016/j.sjbs.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Genitourinary cancers comprise of a heterogenous group of cancers of which renal cell carcinoma, urothelial bladder carcinoma, and prostate adenocarcinoma are the most commonly encountered subtypes. A lot of research is ongoing using various strategies for exploration of novel biomarkers for genitourinary cancers. These biomarkers would not reduce the need for invasive diagnostic techniques but also could be used for early and accurate diagnosis to improve the clinical management required for the disease. Moreover, selecting the appropriate treatment regimen for the responsive patients based on these biomarkers would reduce the treatment toxicity as well as cost. Biomarkers identified using various advanced techniques like next generation sequencing and proteomics, which have been classified as immunological biomarkers, tissue-specific biomarkers and liquid biomarkers. Immunological biomarkers include markers of immunological pathways such as CTLA4, PD-1/PDl-1, tissue biomarkers include tissue specific molecules such as PSA antigen and liquid biomarkers include biomarkers detectable in urine, circulating cells etc. The purpose of this review is to provide a brief introduction to the most prevalent genitourinary malignancies, including bladder, kidney, and prostate cancers along with a major focus on the novel diagnostic biomarkers and the importance of targeting them prior to genitourinary cancers treatment. Understanding these biomarkers and their potential in diagnosis of genitourinary cancer would not help in early and accurate diagnosis as mentioned above but may also lead towards a personalized approach for better diagnosis, prognosis and specified treatment approach for an individual.
Collapse
|
24
|
Zhang J, Zhang W, Liu Y, Pi M, Jiang Y, Ainiwaer A, Mao S, Chen H, Ran Y, Sun S, Li W, Yao X, Chang Z, Yan Y. Emerging roles and potential application of PIWI-interacting RNA in urological tumors. Front Endocrinol (Lausanne) 2022; 13:1054216. [PMID: 36733811 PMCID: PMC9887041 DOI: 10.3389/fendo.2022.1054216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The piRNA (PIWI-interacting RNA) is P-Element induced wimpy testis (PIWI)-interacting RNA which is a small molecule, non-coding RNA with a length of 24-32nt. It was originally found in germ cells and is considered a regulator of germ cell function. It can interact with PIWI protein, a member of the Argonaute family, and play a role in the regulation of gene transcription and epigenetic silencing of transposable factors in the nucleus. More and more studies have shown that piRNAs are abnormally expressed in a variety of cancer tissues and patient fluids, and may become diagnostic tools, therapeutic targets, staging markers, and prognostic evaluation tools for cancer. This article reviews the recent research on piRNA and summarizes the structural characteristics, production mechanism, applications, and its role in urological tumors, to provide a reference value for piRNA to regulate urological tumors.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuefei Ran
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shuwen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| |
Collapse
|
25
|
Tong Y, Liu X, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Xu H, Ye Z, Chen Z, Tang K. Biological Roles and Clinical Significance of Exosome-Derived Noncoding RNAs in Bladder Cancer. Front Oncol 2021; 11:704703. [PMID: 34692482 PMCID: PMC8530185 DOI: 10.3389/fonc.2021.704703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BCa) is a common heterogeneous urinary system tumor with high malignancy and limited advancement in treatment. Limited understanding of BCa has not contributed to any significant progress in diagnosis or treatment, exploring the mechanisms underlying BCa has become an urgent research focus. Exosomes, a type of extracellular vesicle (EV), have drawn substantial interest for their important roles in mediating intracellular communication. Exosomes shuttle numerous bioactive molecules, and noncoding RNAs (ncRNAs) are among the most numerous. ncRNAs including microRNA, long noncoding RNA, and circular RNA are sorted and packaged into exosomes selectively and transferred into recipient cells to regulate their function. Exosomal ncRNAs are associated with hallmarks of BCa, such as proliferation, apoptosis, epithelial-mesenchymal transition (EMT), cell cycle arrest, lymphangiogenesis, and chemotherapy resistance. Exosomal ncRNAs can also be detected in urine and serum, making them encouraging biomarkers for BCa diagnosis and prognosis. More importantly, exosomes exhibit excellent biocompatibility and potential for diversified applications. The delivery of bioactive substances and drugs into specific cells has become a promising approach for precision therapy for BCa patients. In addition, cancer vaccines have also received increasing attention. In this review, we summarize the current research on the regulatory roles of exosomal ncRNAs in BCa tumorigenesis and progression, as well as their potential clinical value in accelerating the diagnosis and therapy of BCa.
Collapse
Affiliation(s)
- Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Cervena K, Novosadova V, Pardini B, Naccarati A, Opattova A, Horak J, Vodenkova S, Buchler T, Skrobanek P, Levy M, Vodicka P, Vymetalkova V. Analysis of MicroRNA Expression Changes During the Course of Therapy In Rectal Cancer Patients. Front Oncol 2021; 11:702258. [PMID: 34540669 PMCID: PMC8444897 DOI: 10.3389/fonc.2021.702258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression in a tissue-specific manner. However, little is known about the miRNA expression changes induced by the therapy in rectal cancer (RC) patients. We evaluated miRNA expression levels before and after therapy and identified specific miRNA signatures reflecting disease course and treatment responses of RC patients. First, miRNA expression levels were assessed by next-generation sequencing in two plasma samplings (at the time of diagnosis and a year after) from 20 RC patients. MiR-122-5p and miR-142-5p were classified for subsequent validation in plasma and plasma extracellular vesicles (EVs) on an independent group of RC patients (n=107). Due to the intrinsic high differences in miRNA expression levels between samplings, cancer-free individuals (n=51) were included in the validation phase to determine the baseline expression levels of the selected miRNAs. Expression levels of these miRNAs were significantly different between RC patients and controls (for all p <0.001). A year after diagnosis, miRNA expression profiles were significantly modified in patients responding to treatment and were no longer different from those measured in cancer-free individuals. On the other hand, patients not responding to therapy maintained low expression levels in their second sampling (miR-122-5p: plasma: p=0.05, EVs: p=0.007; miR-142-5p: plasma: p=0.008). Besides, overexpression of miR-122-5p and miR-142-5p in RC cell lines inhibited cell growth and survival. This study provides novel evidence that circulating miR-122-5p and miR-142-5p have a high potential for RC screening and early detection as well as for the assessment of patients' outcomes and the effectiveness of treatment schedule.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, Czechia
| | - Barbara Pardini
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alessio Naccarati
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
27
|
Moisoiu V, Iancu SD, Stefancu A, Moisoiu T, Pardini B, Dragomir MP, Crisan N, Avram L, Crisan D, Andras I, Fodor D, Leopold LF, Socaciu C, Bálint Z, Tomuleasa C, Elec F, Leopold N. SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids Surf B Biointerfaces 2021; 208:112064. [PMID: 34517219 DOI: 10.1016/j.colsurfb.2021.112064] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Tudor Moisoiu
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy; Italian Institute of Genomic Medicine (IIGM), 10060, Candiolo, Italy
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Nicolae Crisan
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Lucretia Avram
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; Department of Geriatrics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Dana Crisan
- Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania; 5th Internal Medicine Department, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania; Clinical Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; BIODIATECH Research Centre for Applied Biotechnology, SC Proplanta, 400478, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349, Cluj-Napoca, Romania
| | - Florin Elec
- Clinical Institute of Urology and Renal Transplant, 400006, Cluj-Napoca, Romania; Department of Urology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 400084, Cluj-Napoca, Romania; Biomed Data Analytics SRL, 400696, Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Zheng Q, Hou W. Regulation of angiogenesis by microRNAs in cancer. Mol Med Rep 2021; 24:583. [PMID: 34132365 PMCID: PMC8223106 DOI: 10.3892/mmr.2021.12222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous, small, non‑coding RNA molecules with ~22 nucleotides, and are involved in regulating the expression of multiple genes and controlling cellular functions. miRs serve key roles in angiogenesis by regulating the proliferation, differentiation, apoptosis and migration of endothelial cells. Regulation of angiogenesis is essential for several physiological and pathological processes, particularly for tumor development and progression. Therefore, it is important to investigate the roles served by miRs in angiogenesis as this may aid in discovering novel strategies for treating tumors via modulating angiogenesis. In this review, miRNA biogenesis, regulation and functions are described with new information and corresponding references. In particular, the latest advances in the role of various miRs and their target genes involved in tumor angiogenesis were updated. Next, different signaling pathways by which miRNAs could be regulated in different types of tumor progression were addressed. Furthermore, the potential clinical value of miRs as biomarkers for diagnosing and monitoring the response to therapy, as well as their ability to regulate tumor angiogenesis and the mechanism underlying this regulation, were investigated.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
29
|
Strømme O, Heck KA, Brede G, Lindholm HT, Otterlei M, Arum CJ. Differentially Expressed Extracellular Vesicle-Contained microRNAs before and after Transurethral Resection of Bladder Tumors. Curr Issues Mol Biol 2021; 43:286-300. [PMID: 34199766 PMCID: PMC8929081 DOI: 10.3390/cimb43010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is currently diagnosed and monitored by cystoscopy, a costly and invasive procedure. Potential biomarkers in urine, blood, and, more recently, extracellular vesicles (EVs), have been explored as non-invasive alternatives for diagnosis and surveillance of BC. EVs are nanovesicles secreted by most cell types containing diverse molecular cargo, including different types of small RNAs, such as microRNA (miRNA). In this study, we performed next-generation sequencing of EV-contained miRNA isolated from urine and serum of 41 patients with non-muscle invasive BC (27 stage Ta, 14 stage T1) and 15 non-cancer patients (NCP) with benign cystoscopy findings. MiRNA sequencing was also performed on serum supernatant samples for T1 patients. To identify potential BC-specific biomarkers, expression levels of miRNA in presurgery samples were compared to those at postsurgery check-ups, and to NCPs. Results showed that two miRNAs, urinary EV-contained miR-451a and miR-486-5p, were significantly upregulated in presurgery samples from T1 patients compared to postsurgery check-up samples. This was confirmed in a replica EV/RNA isolation and sequencing run of 10 T1 patients from the primary run; however, analyses revealed no differential expression of miRNAs in serum EVs, serum supernatant, or when comparing BC patients to NCPs. This is the first study to investigate EV-containing miRNA sequencing in pre- and postsurgery BC patient samples and our findings suggest that urinary EV-contained miR-451a and miR-486-5p may be potential biomarkers for recurrence-free survival of BC patients with stage T1 disease.
Collapse
Affiliation(s)
- Olaf Strømme
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
- Correspondence:
| | - Kathleen A. Heck
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Gaute Brede
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Håvard T. Lindholm
- CEMIR—Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Carl-Jørgen Arum
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
- Department of Urology, St. Olav’s University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
30
|
Galluzzo A, Gallo S, Pardini B, Birolo G, Fariselli P, Boretto P, Vitacolonna A, Peraldo-Neia C, Spilinga M, Volpe A, Celentani D, Pidello S, Bonzano A, Matullo G, Giustetto C, Bergerone S, Crepaldi T. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail 2021; 8:2907-2919. [PMID: 33934544 PMCID: PMC8318428 DOI: 10.1002/ehf2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aims Risk stratification in patients with advanced chronic heart failure (HF) is an unmet need. Circulating microRNA (miRNA) levels have been proposed as diagnostic and prognostic biomarkers in several diseases including HF. The aims of the present study were to characterize HF‐specific miRNA expression profiles and to identify miRNAs with prognostic value in HF patients. Methods and results We performed a global miRNome analysis using next‐generation sequencing in the plasma of 30 advanced chronic HF patients and of matched healthy controls. A small subset of miRNAs was validated by real‐time PCR (P < 0.0008). Pearson's correlation analysis was computed between miRNA expression levels and common HF markers. Multivariate prediction models were exploited to evaluate miRNA profiles' prognostic role. Thirty‐two miRNAs were found to be dysregulated between the two groups. Six miRNAs (miR‐210‐3p, miR‐22‐5p, miR‐22‐3p, miR‐21‐3p, miR‐339‐3p, and miR‐125a‐5p) significantly correlated with HF biomarkers, among which N‐terminal prohormone of brain natriuretic peptide. Inside the cohort of advanced HF population, we identified three miRNAs (miR‐125a‐5p, miR‐10b‐5p, and miR‐9‐5p) altered in HF patients experiencing the primary endpoint of cardiac death, heart transplantation, or mechanical circulatory support implantation when compared with those without clinical events. The three miRNAs added substantial prognostic power to Barcelona Bio‐HF score, a multiparametric and validated risk stratification tool for HF (from area under the curve = 0.72 to area under the curve = 0.82). Conclusions This discovery study has characterized, for the first time, the advanced chronic HF‐specific miRNA expression pattern. We identified a few miRNAs able to improve the prognostic stratification of HF patients based on common clinical and laboratory values. Further studies are needed to validate our results in larger populations.
Collapse
Affiliation(s)
- Alessandro Galluzzo
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Ospedale Sant'Andrea, Vercelli, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Boretto
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Caterina Peraldo-Neia
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Alessandra Volpe
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Dario Celentani
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Stefano Pidello
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Carla Giustetto
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Serena Bergerone
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
31
|
Guo CC, Shen SS, Ro JY. Pathogenesis and Diagnosis of Genitourinary Cancer. Cancers (Basel) 2021; 13:347. [PMID: 33477810 PMCID: PMC7832837 DOI: 10.3390/cancers13020347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Genitourinary (GU) cancers are among the most common malignant diseases in men [...].
Collapse
Affiliation(s)
- Charles C. Guo
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Unit 085, 1515 Holcombe Blvd, Houston, TX 77030, USA;
| | - Steven S. Shen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, 6565 Fannin St, Houston, TX 77030, USA;
| | - Jae Y. Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, 6565 Fannin St, Houston, TX 77030, USA;
| |
Collapse
|
32
|
Ferrero G, Carpi S, Polini B, Pardini B, Nieri P, Impeduglia A, Grioni S, Tarallo S, Naccarati A. Intake of Natural Compounds and Circulating microRNA Expression Levels: Their Relationship Investigated in Healthy Subjects With Different Dietary Habits. Front Pharmacol 2021; 11:619200. [PMID: 33519486 PMCID: PMC7840481 DOI: 10.3389/fphar.2020.619200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Diet has a strong influence on many physiological processes, which in turn have important implications on a variety of pathological conditions. In this respect, microRNAs (miRNAs), a class of small non-coding RNAs playing a relevant epigenetic role in controlling gene expression, may represent mediators between the dietary intake and the healthy status. Despite great advances in the field of nutri-epigenomics, it remains unclear how miRNA expression is modulated by the diet and, specifically, the intake of specific nutrients. We investigated the whole circulating miRNome by small RNA-sequencing performed on plasma samples of 120 healthy volunteers with different dietary habits (vegans, vegetarians, and omnivores). Dietary intakes of specific nutrients were estimated for each subject from the information reported in the food-frequency questionnaire previously validated in the EPIC study. We focused hereby on the intake of 23 natural compounds (NCs) of the classes of lipids, micro-elements, and vitamins. We identified 78 significant correlations (rho > 0.300, p-value < 0.05) among the estimated daily intake of 13 NCs and the expression levels of 58 plasma miRNAs. Overall, vitamin D, sodium, and vitamin E correlated with the largest number of miRNAs. All the identified correlations were consistent among the three dietary groups and 22 of them were confirmed as significant (p-value < 0.05) by age-, gender-, and body-mass index-adjusted Generalized Linear regression Model analysis. miR-23a-3p expression levels were related with different NCs including a significant positive correlation with sodium (rho = 0.377) and significant negative correlations with lipid-related NCs and vitamin E. Conversely, the estimated intake of vitamin D was negatively correlated with the expression of the highest number of circulating miRNAs, particularly miR-1277-5p (rho = −0.393) and miR-144-3p (rho = −0.393). Functional analysis of the targets of sodium intake-correlated miRNAs highlighted terms related to cardiac development. A similar approach on targets of those miRNAs correlated with vitamin D intake showed an enrichment in genes involved in hormone metabolisms, while the response to chronic inflammation was among the top enriched processes involving targets of miRNAs negatively related with vitamin E intake. Our findings show that nutrients through the habitual diet influence circulating miRNA profiles and highlight that this aspect must be considered in the nutri-epigenomic research.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy.,Department of Computer Science, University of Turin, Torino, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Torino, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Torino, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Torino, Italy
| |
Collapse
|
33
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
34
|
Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S. Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy? Int J Mol Sci 2020; 21:ijms21186486. [PMID: 32899898 PMCID: PMC7555972 DOI: 10.3390/ijms21186486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: or ; Tel.: +1-608-262-21-89
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, 83031 Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| |
Collapse
|