1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Al-Ghamdi AR, Ahmed WU, Al-Wabli RI, Al-Mutairi MS, Rahman AFMM. Synthesis and Anticancer Evaluation of O-Alkylated ( E)-Chalcone Derivatives: A Focus on Estrogen Receptor Inhibition. Int J Mol Sci 2025; 26:833. [PMID: 39859546 PMCID: PMC11766267 DOI: 10.3390/ijms26020833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of O-alkyl (E)-chalcone derivatives (4a-4v) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry. In vitro cytotoxicity assays revealed varying effectiveness, with compounds 4a, 4b, 4q, and 4v exhibiting potent activity against MDA-MB-231 and MCF-7, showing IC50 values between 2.08 and 13.58 µM, besides HCT-116 and HeLa cancer cell lines (IC50 values between 6.59 and 22.64 µM). Notably, compound 4b displayed remarkable selectivity, with an IC50 of 54.59 µM against the non-cancerous WI-38 cell line. Additionally, protein kinase inhibition assays indicated that compounds 4b and 4q effectively inhibited EGFR and VEGFR-2, with 4b outperforming the standard inhibitor erlotinib. Molecular docking studies of compound 4q showed strong binding affinities in the ATP-binding pockets of EGFR, HER2, VEGFR2, and CDK2. In silico analyses further highlighted the favorable pharmacokinetic properties of compound 4q, underscoring its potential as a selective tyrosine kinase inhibitor. These findings suggest the therapeutic promise of O-alkyl (E)-chalcone derivatives in cancer treatment.
Collapse
Affiliation(s)
- Alwah R. Al-Ghamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.)
| | - Wahid U. Ahmed
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.)
| | - Maha S. Al-Mutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.)
| | - A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.-G.); (R.I.A.-W.)
| |
Collapse
|
3
|
Jaiswal SK, Fedkenheuer K, Khamar R, Tan H, Gotea V, Raj S, Fedkenheuer M, Elkahloun A, Zhao M, Jenkins LM, Annunziata CM, Elnitski L. The Megacomplex protects ER-alpha from degradation by Fulvestrant in epithelial ovarian cancer. Cancer Lett 2025; 608:217129. [PMID: 39048045 DOI: 10.1016/j.canlet.2024.217129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Ovarian cancer, a significant contributor to cancer-related mortality, exhibits limited responsiveness to hormonal therapies targeting the estrogen receptor (ERα). This study aimed to elucidate the mechanisms behind ERα resistance to the therapeutic drug Fulvestrant (ICI182780 or ICI). Notably, compared to the cytoplasmic version, nuclear ERα was minimally degraded by ICI, suggesting a mechanism for drug resistance via the protective confines of the nuclear substructures. Of these substructures, we identified a 1.3 MDa Megacomplex comprising transcription factors ERα, FOXA1, and PITX1 using size exclusion chromatography (SEC) in the ovarian cancer cell line, PEO4. ChIP-seq revealed these factors colocalized at 6775 genomic positions representing sites of Megacomplex formation. Megacomplex ERα exhibited increased resistance to degradation by ICI compared to cytoplasmic and nuclear ERα. A small molecule inhibitor of active chromatin and super-enhancers, JQ1, in combination with ICI significantly enhanced ERα degradation from Megacomplex as revealed by SEC and ChIP-seq. Interestingly, this combination degraded both the cytoplasmic as well as nuclear ERα. Pathway enrichment analysis showed parallel results for RNA-seq gene sets following Estradiol, ICI, or ICI plus JQ1 treatments as those defined by Megacomplex binding identified through ChIP-seq. Furthermore, similar pathway enrichments were confirmed in mass-spec analysis of the Megacomplex macromolecule fractions after modulation by Estradiol or ICI. These findings implicate Megacomplex in ERα-driven ovarian cancer chromatin regulation. This combined treatment strategy exhibited superior inhibition of cell proliferation and viability. Therefore, by uncovering ERα's resistance within the Megacomplex, the combined ICI plus JQ1 treatment elucidates a novel drug treatment vulnerability.
Collapse
Affiliation(s)
- Sushil Kumar Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Ronak Khamar
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Sonam Raj
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Fedkenheuer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abdel Elkahloun
- Microarrays and Single-Cell Genomics Core, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Ming Zhao
- Proteins and Chemistry Core, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, USA
| | - Lisa M Jenkins
- Mass Spectrometry Resource, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Spirina Menand E, De Vries-Brilland M, Tessier L, Dauvé J, Campone M, Verrièle V, Jrad N, Marion JM, Chauvet P, Passot C, Morel A. Learning to Train and to Explain a Deep Survival Model with Large-Scale Ovarian Cancer Transcriptomic Data. Biomedicines 2024; 12:2881. [PMID: 39767787 PMCID: PMC11673231 DOI: 10.3390/biomedicines12122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a complex disease with poor outcomes that affects women worldwide. The lack of successful therapeutic options for this malignancy has led to the need to identify novel biomarkers for patient stratification. Here, we aim to develop the outcome predictors based on the gene expression data as they may serve to identify categories of patients who are more likely to respond to certain therapies. Methods: We used The Cancer Genome Atlas (TCGA) ovarian cancer transcriptomic data from 372 patients and approximately 16,600 genes to train and evaluate the deep learning survival models. In addition, we collected an in-house validation dataset of 12 patients to assess the performance of the trained survival models for their direct use in clinical practice. Despite deceptive generalization capabilities, we demonstrated how our model can be interpreted to uncover biological processes associated with survival. We calculated the contributions of the input genes to the output of the best trained model and derived the corresponding molecular pathways. Results: These pathways allowed us to stratify the TCGA patients into high-risk and low-risk groups (p-value 0.025). We validated the stratification ability of the identified pathways on the in-house dataset consisting of 12 patients (p-value 0.229) and on the external clinical and molecular dataset consisting of 274 patients (p-value 0.006). Conclusions: The deep learning-based models for survival prediction with RNA-seq data could be used to detect and interpret the gene-sets associated with survival in ovarian cancer patients and open a new avenue for future research.
Collapse
Affiliation(s)
- Elena Spirina Menand
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (EA7315), Université d’Angers, 49035 Angers, France
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Manon De Vries-Brilland
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Leslie Tessier
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Jonathan Dauvé
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Mario Campone
- Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, 49035 Angers, France
| | - Véronique Verrièle
- Département d’Anatomie et de Cytologie Pathologiques, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Nisrine Jrad
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (EA7315), Université d’Angers, 49035 Angers, France
| | - Jean-Marie Marion
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (EA7315), Université d’Angers, 49035 Angers, France
| | - Pierre Chauvet
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (EA7315), Université d’Angers, 49035 Angers, France
| | - Christophe Passot
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
| | - Alain Morel
- Unité de Génomique Fonctionnelle, Institut de Cancérologie de l’Ouest Nantes-Angers, 49055 Angers, France
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, 49035 Angers, France
| |
Collapse
|
5
|
Bao X, Yan D, Yang J, Zhang Z, Yuan B. Role of ERβ in the ovary and ovary related diseases. Gene 2024; 927:148678. [PMID: 38906392 DOI: 10.1016/j.gene.2024.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Estrogen and estrogen receptors (ERα and ERβ) regulate a multitude of complicated physiological and pathological processes. Jan-Ake Gustafsson's group discovered ERβ in 1996, this crucial finding gives us new insights into the understanding of estrogen signaling. ERβ is highly expressed in the ovary and particularly exists in granulosa cells (GCs). ERβ is a key transcription factor in the maintenance of ovarian granulosa cell growth, differentiation, and homeostasis, and the ovulation function of ovarian follicles and oocytes. Additionally, ERβ can modulate the steroidogenic transcriptional program through phosphorylation and regulate both gonadotropin response and FOXL2 expression within the ovary. In this review, we focus on the role of ERβ in regulating ovarian granulosa cell development and homeostasis, particularly its significance in ovarian cancer (OC), premature ovarian failure (POF), and polycystic ovary syndrome (PCOS). It also highlights the prospects of small molecule compounds targeting ERβ, providing a new strategy for the treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Di Yan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China; Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China.
| |
Collapse
|
6
|
Cagnacci A, Villa P, Grassi GP, Biglia N, Gambacciani M, Di Carlo C, Nocera F, Caruso S, Becorpi A, Lello S, Paoletti AM. Systemic hormone therapy after breast and gynecological cancers: an Italian expert group consensus opinion. Climacteric 2024:1-11. [PMID: 39503540 DOI: 10.1080/13697137.2024.2418503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The specific Italian Group of Study of the Menopause formulated a consensus opinion on the use of estrogen therapy (ET) or combined estro-progestin hormone therapy (HT) after breast and gynecological cancers. This consensus is based on the risk of recurrence of the specific cancer during ET/HT, the presence of steroid receptors in cancer cells, the use of adjuvant hormone therapies and data on the use of ET/HT after cancer. The following positions were reached. ET/HT can be used after vulvar cancers and melanoma, but with great caution after the rare adenocarcinomas. ET/HT can be used after cervical cancer, but ET should be used with caution after adenocarcinomas. ET/HT can be used after International Federation of Obstetrics and Gynecology (FIGO) stage I-II estrogen-dependent endometrial cancers, except in Black women, and can probably be used after estrogen-independent endometrial cancers. ET/HT cannot be administered or should be used with great caution after most uterine sarcomas. ET/HT can probably be used after ovarian neoplasms except for granulosa cell tumors, and with great caution after low-grade serous ovarian carcinoma and serous borderline ovarian tumors. ET/HT can be used with great caution in women after estrogen receptor (ER)/progesterone receptor (PR)-positive breast cancer and is probably allowed after ER/PR-negative breast cancer.
Collapse
Affiliation(s)
- Angelo Cagnacci
- Teaching Unit of Obstetrics and Gynecology, DINOGMI San Martino Hospital of Genova, Genova, Italy
| | - Paola Villa
- Department of Women's and Child Health and Public Health Science, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppina Paola Grassi
- University Division '1U' of Gynecology and Obstetrics, Sant'Anna Hospital of Torino, Turin, Italy
| | - Nicoletta Biglia
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Marco Gambacciani
- Menopause and Osteoporosis Unit, San Rossore Clinical Center, Pisa, Italy
| | - Costantino Di Carlo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Salvatore Caruso
- Research Center for Study of Prevention, Diagnosis and Treatment of Neoplasms (CRS-PreDiCT), University of Catania, Catania, Italy
| | - Angelamaria Becorpi
- Department of Obstetrics and Gynecology of Careggi Hospital, University of Florence, Florence, Italy
| | - Stefano Lello
- Department of Women's and Child Health and Public Health Science, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Anna Maria Paoletti
- Coordinator of the Italian Group of Special Interest on Menopause of the Italian Society of Obstetrics and Gynecology, Women's Wellness Foundation, Cagliari, Italy
| |
Collapse
|
7
|
Sezavar AH, Rastegar-Pouyani N, Rahimi Kakavandi N, Fakhari F, Jafarzadeh E, Aliebrahimi S, Ostad SN. Examining the relationship between per-and polyfluoroalkyl substances and breast, colorectal, prostate, and ovarian cancers: a meta-analysis. Crit Rev Toxicol 2024; 54:981-995. [PMID: 39636584 DOI: 10.1080/10408444.2024.2425669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used widely in industrial and commercial applications. Concerns exist about their potential link to cancer risk as possible endocrine-disrupting chemicals. We conducted a meta-analysis to evaluate the dose-response relationship between PFAS, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexanesulfonic acid (PFHxS) exposure and risk of breast, prostate, colorectal, and ovarian cancers. We systematically searched major databases through May 2022 and identified 13 observational studies for inclusion. Using random-effects models, we calculated summary odds ratios (ORs) and 95% confidence intervals (CIs) comparing the highest versus lowest PFAS exposure categories. Additionally, we analyzed the dose-response correlation between PFAS and cancer risk in a subset of studies. The study revealed no substantial correlation between exposure to PFASs and the incidence of breast cancer (BC) (ORPFOS = 1.15, 95% CI = 0.91-1.46, ORPFOA = 1.01, 95% CI = 0.68-1.50, ORPFNA = 0.88, 95% CI = 0.64-1.21, ORPFHxS = 1.22, 95% CI = 0.40-3.77, and ORPFDA = 1.29, 95% CI = 0.41-4.10), ovarian cancer (ORPFOA = 1.43, 95% CI = 0.84-2.42), prostate cancer (ORPFOA = 1.05, 95% CI = 0.88-1.26), and colorectal cancer (ORPFOA = 0.77, 95% CI = 0.53-1.12) in the highest versus lowest exposure analysis. However, dose-response analysis showed that for every 1 ng/ml increase in PFNA and 2 ng/ml increase in PFOA, the relative risk for BC decreased significantly (RR 0.67, 95% CI 0.45-0.99 and RR 0.94, 95% CI 0.89-0.98, respectively). Non-linear dose-response analysis found no significant changes in BC risk with increasing PFAS levels. In conclusion, while the highest versus lowest analysis does not support associations between PFAS exposure and the risk of these cancers, linear dose-response analysis suggests potential inverse relationships between PFNA/PFOA levels and BC risk. Further research is warranted on these potential protective effects.
Collapse
Affiliation(s)
- Ahmad Habibian Sezavar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Rahimi Kakavandi
- Department of Occupational Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kozłowska-Tomczyk K, Borski N, Głód P, Gogola-Mruk J, Ptak A. PGRMC1 and PAQR4 are promising molecular targets for a rare subtype of ovarian cancer. Open Life Sci 2024; 19:20220982. [PMID: 39464509 PMCID: PMC11512499 DOI: 10.1515/biol-2022-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The heterogeneity of ovarian cancer (OC) has made developing effective treatments difficult. Nowadays, hormone therapy plays a growing role in the treatment of OC; however, hormone modulators have had only limited success so far. To provide a more rigorous foundation for hormonal therapy for different OC subtypes, the current study used a series of bioinformatics approaches to analyse the expression profiles of genes encoding membrane progesterone (PGRMC1, progestins and the adipoQ receptor [PAQR] family), and androgen (zinc transporter member 9 [ZIP9], OXER1) receptors. Our work investigated also their prognostic value in the context of OC. We found differences in expression of ZIP9 and OXER1 between different OC subtypes, as well as between patient tumour and normal tissues. Expression of mRNA encoding PAQR7 and PAQR8 in a panel of OC cell lines was below the qPCR detection limit and was downregulated in tumour tissue samples, whereas high expression of PGRMC1 and PAQR4 mRNA was observed in rare subtypes of OC cell lines. In addition, chemical inhibition of PGRMC1 reduced the viability of rare OCs represented by COV434 cells. In conclusion, PGRMC1 and PAQR4 are promising targets for anticancer therapy, particularly for rare subtypes of OC. These findings may reflect differences in the observed responses of various OC subtypes to hormone therapy.
Collapse
Affiliation(s)
- Kamila Kozłowska-Tomczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
9
|
Gogola-Mruk J, Pietrus M, Piechowicz M, Milian-Ciesielska K, Głód P, Wolnicka-Glubisz A, Szpor J, Ptak A. Low androgen/progesterone or high oestrogen/androgen receptors ratio in serous ovarian cancer predicts longer survival. Reprod Biol 2024; 24:100917. [PMID: 38970978 DOI: 10.1016/j.repbio.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-501, Poland
| | - Maryla Piechowicz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Katarzyna Milian-Ciesielska
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kracow 30-348, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland.
| |
Collapse
|
10
|
Bujnakova Mlynarcikova A, Scsukova S. Evaluation of effects of bisphenol analogs AF, S, and F on viability, proliferation, production of selected cancer-related factors, and expression of selected transcripts in Caov-3 human ovarian epithelial cell line. Food Chem Toxicol 2024; 191:114889. [PMID: 39059691 DOI: 10.1016/j.fct.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol A (BPA) has been a substantial additive in plastics until the reports on its adverse effects have led to its restrictions and replacement. Monitoring studies document the increasing occurrence of bisphenol analogs, however, data on their effects and risks is still insufficient. Based on the indications that BPA might contribute to ovarian cancer pathogenesis, we examined effects of the analogs AF (BPAF), S (BPS) and F (BPF) (10-9-10-4 M) on the Caov-3 epithelial cancer cells, including the impact on cell viability, proliferation, oxidative stress, and production and expression of several factors and genes related to ovarian cancer. At environmentally relevant doses, bisphenols did not exert significant effects. At the highest concentration, BPAF caused varied alterations, including decreased cell viability and proliferation, caspase activation, down-regulation of PCNA and BIRC5, elevation of IL8, VEGFA, MYC, PTGS2 and ABCB1 expressions. Only BPA (10-4 M) increased IL-6, IL-8 and VEGFA output by the Caov-3 cells. Each bisphenol induced generation of reactive oxygen species and decreased superoxide dismutase activity at the highest concentration. Although the effects were observed only in the supraphysiological doses, the results indicate that certain bisphenol analogs might affect several ovarian cancer cell characteristics and merit further investigation.
Collapse
Affiliation(s)
- Alzbeta Bujnakova Mlynarcikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia.
| | - Sona Scsukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia
| |
Collapse
|
11
|
Yin J, Liu G, Zhang Y, Zhou Y, Pan Y, Zhang Q, Yu R, Gao S. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels. Cancer Lett 2024; 598:217114. [PMID: 38992488 DOI: 10.1016/j.canlet.2024.217114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.
Collapse
Affiliation(s)
- Jiale Yin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Gai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yu Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuchun Pan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiaoshan Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
12
|
Xu R, Yang X, Tang B, Mao Y, Jiang F. Combined treatment of All-trans retinoic acid with Tamoxifen suppresses ovarian cancer. Cancer Chemother Pharmacol 2024; 94:259-270. [PMID: 38714534 PMCID: PMC11390921 DOI: 10.1007/s00280-024-04671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/20/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Ovarian cancer is a malignant tumor of the female reproductive system, and its mortality rate is as high as 70%. Estrogen receptor α (ERα)-positive ovarian cancer accounted for most of all ovarian cancer patients. ERα can promote the growth and proliferation of tumors. METHODS The combined effect of All-trans retinoic acid (ATRA) and tamoxifen was obtained by the combination screening of tamoxifen and compound library by MTS. In addition, colony formation assay, flow cytometry analysis, immunofluorescence staining, quantitative real-time polymerase chain reaction (PCR), western blot, and tumor xenotransplantation models were used to further evaluate the efficacy of tamoxifen and ATRA in vitro and in vivo for ER-α-positive ovarian cancer. RESULTS In our study, we found that All-trans retinoic acid (ATRA) can cooperate with tamoxifen to cause cell cycle arrest and apoptosis and inhibit ERα-positive ovarian cancer in vivo and in vitro. Further exploration of the mechanism found that ATRA can Inhibit genes related to the ERα signaling pathway, enhance the sensitivity of ERα-positive ovarian cancer cells to tamoxifen, and ascertain the effectiveness of tamoxifen and ATRA as treatments for ovarian cancer with an ERα-positive status. CONCLUSION Combination of ATRA and tamoxifen is a new way for the treatment of ERα-positive ovarian cancer.
Collapse
Affiliation(s)
- Rui Xu
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital, The Second People's Hospital of Wuhu City, No.259, Middle Jiuhua Road, Jinghu District, Wuhu, 241000, China
| | - Xiaowen Yang
- Department of Electrocardiogram, East China Normal University Wuhu Affiliated Hospital, The Second People's Hospital of Wuhu City, No.259, Middle Jiuhua Road, Jinghu District, Wuhu, 241000, China
| | - Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital, The Second People's Hospital of Wuhu City, No.259, Middle Jiuhua Road, Jinghu District, Wuhu, 241000, China
| | - Yifan Mao
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital, The Second People's Hospital of Wuhu City, No.259, Middle Jiuhua Road, Jinghu District, Wuhu, 241000, China
| | - Feiyun Jiang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital, The Second People's Hospital of Wuhu City, No.259, Middle Jiuhua Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
13
|
Dong H, Zeng X, Xu J, He C, Sun Z, Liu L, Huang Y, Sun Z, Cao Y, Peng Z, Qiu YA, Yu T. Advances in immune regulation of the G protein-coupled estrogen receptor. Int Immunopharmacol 2024; 136:112369. [PMID: 38824903 DOI: 10.1016/j.intimp.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERβ have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhe Sun
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| |
Collapse
|
14
|
Aubert M, Mathiot L, Vegas H, Ouldamer L, Linassier C, Augereau P, Bocquet F, Frenel JS, Cancel M. Endocrine therapy in advanced high-grade ovarian cancer: real-life data from a multicenter study and a review of the literature. Oncologist 2024; 29:e910-e917. [PMID: 38768082 PMCID: PMC11224998 DOI: 10.1093/oncolo/oyae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND In women, ovarian cancer is the eighth most frequent cancer in incidence and mortality. It is often diagnosed at advanced stages; relapses are frequent, with a poor prognosis. When platinum resistant, subsequent lines of chemotherapy are of limited effect and often poorly tolerated, leading to quality of life deterioration. Various studies suggest a hormonal role in ovarian carcinogenesis, with a rationale for endocrine therapy in these cancers. PATIENTS AND METHODS This multicenter, retrospective study assessed the use of endocrine treatment for high-grade ovarian epithelial carcinomas treated between 2010 and 2020. RESULTS Eighty-one patients with ovarian cancers were included. The median duration of platinum sensitivity was 29 months. We observed a 35% disease control rate with endocrine therapy, and 10% reported symptom improvement. For 19 patients (23.5%), the disease was stabilized for more than 6 months. Median overall survival from diagnosis was 62.6 months. Regarding endocrine therapy predictive factors of response, in a multivariate analysis, 3 factors were statistically significant in favoring progression-free survival: platinum sensitivity (P = .021), an R0 surgical resection (P = .020), and the indication for hormone therapy being maintenance therapy (P = .002). CONCLUSION This study shows real-life data on endocrine therapy in ovarian cancer. As it is a low-cost treatment with many advantages such as its oral administration and its safety, it may be an option to consider. A perspective lies in the search for cofactors to aim as future therapeutic targets to improve the effectiveness of hormone treatment by means of combination therapy.
Collapse
Affiliation(s)
- Marine Aubert
- Department of Medical Oncology, CHU Bretonneau Tours, Tours, France
| | - Laurent Mathiot
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, Site René Gauducheau, Saint Herblain, France
| | - Hélène Vegas
- Department of Medical Oncology, CHU Bretonneau Tours, Tours, France
| | - Lobna Ouldamer
- Department of Gynecology, CHU Bretonneau Tours, Tours, France
| | - Claude Linassier
- Department of Medical Oncology, CHU Bretonneau Tours, Tours, France
| | - Paule Augereau
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, Site Paul Papin, Angers, France
| | - François Bocquet
- Data Factory and Analytics, Institut de Cancérologie de l’Ouest, Site René Gauducheau, Saint Herblain, France
| | - Jean-Sébastien Frenel
- Department of Medical Oncology, Institut de Cancérologie de l’Ouest, Site René Gauducheau, Saint Herblain, France
| | - Mathilde Cancel
- Department of Medical Oncology, CHU Bretonneau Tours, Tours, France
| |
Collapse
|
15
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
16
|
Ottenbourgs T, Van Nieuwenhuysen E. Novel Endocrine Therapeutic Opportunities for Estrogen Receptor-Positive Ovarian Cancer-What Can We Learn from Breast Cancer? Cancers (Basel) 2024; 16:1862. [PMID: 38791941 PMCID: PMC11119209 DOI: 10.3390/cancers16101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due to the development of endocrine resistance. The mechanisms of resistance, whether primary or acquired, are still largely unknown and present a significant hurdle in achieving favorable treatment outcomes with endocrine therapy in these patients. In estrogen receptor-positive breast cancer, mechanisms of endocrine resistance have been largely explored and novel treatment strategies to overcome resistance have emerged. Considering the shared estrogen receptor positivity in LGSOC and breast cancer, we wanted to explore whether there are any parallel mechanisms of resistance and whether we can extend endocrine breast cancer treatments to LGSOC. This review aims to highlight the underlying molecular mechanisms possibly driving endocrine resistance in ovarian cancer, while also exploring the available therapeutic opportunities to overcome this resistance. By unraveling the potential pathways involved and examining emerging strategies, this review explores valuable insights for advancing treatment options and improving patient outcomes in LGSOC, which has limited therapeutic options available.
Collapse
Affiliation(s)
- Tine Ottenbourgs
- Gynaecological Oncology Laboratory, KU Leuven, Leuven Cancer Institute, 3000 Leuven, Belgium;
| | - Els Van Nieuwenhuysen
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, BGOG and Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Ng CW, Tsang YTM, Gershenson DM, Wong KK. The prognostic value of MEK pathway-associated estrogen receptor signaling activity for female cancers. Br J Cancer 2024; 130:1875-1884. [PMID: 38582811 PMCID: PMC11130254 DOI: 10.1038/s41416-024-02668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Other than for breast cancer, endocrine therapy has not been highly effective for gynecologic cancers. Endocrine therapy resistance in estrogen receptor positive gynecologic cancers is still poorly understood. In this retrospective study, we examined the estrogen receptor (ER) signaling pathway activities of breast, ovarian, endometrial, and cervical cancers to identify those that may predict endocrine therapy responsiveness. METHODS Clinical and genomic data of women with breast and gynecological cancers were downloaded from cBioPortal for Cancer Genomics. Estrogen receptor alpha (ESR1) expression level and sample-level pathway enrichment scores (EERES) were calculated to classify patients into four groups (low/high ESR1 and low/high EERES). Correlation between ESR1/EERES score and survival was further validated with RNAseq data from low-grade serous ovarian cancer. Pathway analyses were performed among different ESR1/EERES groups to identify genes that correlate with endocrine resistance, which are validated using Cancer Cell Line Encyclopedia gene expression and Genomics of Drug Sensitivity in Cancer data. RESULTS We identified a novel combined prognostic value of ESR1 expression and the corresponding estrogen response signaling (EERES score) for breast cancer. The combined prognostic value (ESR1/EERES) may be applicable to other gynecologic cancers. More importantly, we discovered that ER signaling can cross-regulate MEK pathway activation. We identified downstream genes in the MEK pathway (EPHA2, INAVA, MALL, MPZL2, PCDH1, and TNFRSF21) that are potential endocrine therapy response biomarkers. CONCLUSION This study demonstrated that targeting both the ER and the ER signaling activity related MEK pathway may aid the development of endocrine therapy strategies for personalized medicine.
Collapse
Affiliation(s)
- Chun Wai Ng
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yvonne T M Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Steinbuch SC, Lüß AM, Eltrop S, Götte M, Kiesel L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int J Mol Sci 2024; 25:4306. [PMID: 38673891 PMCID: PMC11050613 DOI: 10.3390/ijms25084306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endometriosis is a chronic condition affecting reproductive-aged women, characterized by the growth of ectopic endometrial tissue. Despite being benign, endometriosis is associated with an increased risk of certain cancers, including endometriosis-associated ovarian cancer (EAOC). Ovarian cancer is rare, but more common in women with endometriosis, particularly endometrioid and clear-cell carcinomas. Factors such as hormonal imbalance, reproductive history, environmental exposures, and genetic predisposition contribute to the malignant transformation of endometriosis. Thus, understanding potential risk factors causing malignancy is crucial. Over the past few decades, various genetic mutations, microRNAs, as well as tumor microenvironmental factors have been identified, impacting pathways like PI3K/AKT/mTOR, DNA repair mechanisms, oxidative stress, and inflammation. Thus, this review aims to summarize molecular studies involved in EAOC pathogenesis as potential therapeutic targets. However, further research is needed to better understand the molecular and environmental factors driving EAOC development, to target the susceptibility of endometriotic lesions to malignant progression, and to identify effective therapeutic strategies.
Collapse
Affiliation(s)
- Sophie Charlotte Steinbuch
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anne-Marie Lüß
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stephanie Eltrop
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
19
|
Alblihy A. From desert flora to cancer therapy: systematic exploration of multi-pathway mechanisms using network pharmacology and molecular modeling approaches. Front Pharmacol 2024; 15:1345415. [PMID: 38666020 PMCID: PMC11043532 DOI: 10.3389/fphar.2024.1345415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer, often labeled a "silent killer," remains one of the most compelling and challenging areas of cancer research. In 2019 alone, a staggering 222,240 new cases of ovarian cancer were reported, with nearly 14,170 lives tragically lost to this relentless disease. The absence of effective diagnostic methods, increased resistance to chemotherapy, and the heterogeneous nature of ovarian cancer collectively contribute to the unfavorable prognosis observed in the majority of cases. Thus, there is a pressing need to explore therapeutic interventions that offer superior efficacy and safety, thereby enhancing the survival prospects for ovarian cancer patients. Recognizing this potential, our research synergizes bioinformatics with a network pharmacology approach to investigate the underlying molecular interactions of Saudi Arabian flora (Onopordum heteracanthum, Acacia ehrenbergiana, Osteospermum vaillantii, Cyperus rotundus, Carissa carandas, Carissa spinarum, and Camellia sinensis) in ovarian cancer treatment. At first, phytoconstituents of indigenous flora and their associated gene targets, particularly those pertinent to ovarian cancer, were obtained from open-access databases. Later, the shared targets of plants and diseases were compared to identify common targets. A protein-protein interaction (PPI) network of predicted targets was then constructed for the identification of key genes having the highest degree of connectivity among networks. Following that, a compound-target protein-pathway network was constructed, which uncovered that, namely, hispidulin, stigmasterol, ascorbic acid, octopamine, cyperene, kaempferol, pungenin, citric acid, d-tartaric acid, beta-sitosterol, (-)-epicatechin gallate, and (+)-catechin demonstrably influence cell proliferation and growth by impacting the AKT1 and VEGFA proteins. Molecular docking, complemented by a 20-ns molecular dynamic (MD) simulation, was used, and the binding affinity of the compound was further validated. Molecular docking, complemented by a 20-ns MD simulation, confirmed the binding affinity of these compounds. Specifically, for AKT1, ascorbic acid showed a docking score of -11.1227 kcal/mol, interacting with residues Ser A:240, Leu A:239, Arg A:243, Arg C:2, and Glu A:341. For VEGFA, hispidulin exhibited a docking score of -17.3714 kcal/mol, interacting with Asn A:158, Val A:190, Gln B:160, Ser A:179, and Ser B:176. To sum up, both a theoretical and empirical framework were established by this study, directing more comprehensive research and laying out a roadmap for the potential utilization of active compounds in the formulation of anti-cancer treatments.
Collapse
Affiliation(s)
- Adel Alblihy
- Medical Center, King Fahad Security College (KFSC), Riyadh, Saudi Arabia
- Department of Criminal Justice and Forensic Sciences, King Fahad Security Collage, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Gibo M, Kojima S, Fujisawa A, Kikuchi T, Fukushima M. Increased Age-Adjusted Cancer Mortality After the Third mRNA-Lipid Nanoparticle Vaccine Dose During the COVID-19 Pandemic in Japan. Cureus 2024; 16:e57860. [PMID: 38721172 PMCID: PMC11077472 DOI: 10.7759/cureus.57860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 06/14/2024] Open
Abstract
During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.
Collapse
Affiliation(s)
- Miki Gibo
- Primary Health Care, Matsubara Clinic, Kochi, JPN
| | - Seiji Kojima
- Pediatrics, Nagoya Pediatric Cancer Fund, Nagoya, JPN
| | - Akinori Fujisawa
- Cardiovascular Medicine, Honbetsu Cardiovascular Medicine Clinic, Honbetsu, JPN
| | - Takayuki Kikuchi
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| | - Masanori Fukushima
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| |
Collapse
|
21
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
22
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
23
|
Pedernera E, Morales-Vásquez F, Gómora MJ, Almaraz MA, Mena E, Pérez-Montiel D, Rendon E, López-Basave H, Maldonado-Cubas J, Méndez C. 17β-hydroxysteroid dehydrogenase type 1 improves survival in serous epithelial ovarian tumors. Endocr Connect 2023; 12:e230315. [PMID: 37924640 PMCID: PMC10762561 DOI: 10.1530/ec-23-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
The incidence of ovarian cancer has been epidemiologically related to female reproductive events and hormone replacement therapy after menopause. This highlights the importance of evaluating the role of sexual steroid hormones in ovarian cancer by the expression of enzymes related to steroid hormone biosynthesis in the tumor cells. This study was aimed to evaluate the presence of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), aromatase and estrogen receptor alpha (ERα) in the tumor cells and their association with the overall survival in 111 patients diagnosed with primary ovarian tumors. Positive immunoreactivity for 17β-HSD1 was observed in 74% of the tumors. In the same samples, aromatase and ERα revealed 66% and 47% positivity, respectively. No association was observed of 17β-HSD1 expression with the histological subtypes and clinical stages of the tumor. The overall survival of patients was improved in 17β-HSD1-positive group in Kaplan-Meier analysis (P = 0.028), and 17β-HSD1 expression had a protective effect from multivariate proportional regression evaluation (HR = 0.44; 95% CI 0.24-0.9; P = 0.040). The improved survival was observed in serous epithelial tumors but not in nonserous ovarian tumors. The expression of 17β-HSD1 in the cells of the serous epithelial ovarian tumors was associated with an improved overall survival, whereas aromatase and ERα were not related to a better survival. The evaluation of hazard risk factors demonstrated that age and clinical stage showed worse prognosis, and 17β-HSD1 expression displayed a protective effect with a better survival outcome in patients of epithelial ovarian tumors.
Collapse
Affiliation(s)
- Enrique Pedernera
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Embriología y Genética, Ciudad de México, México
| | | | - María J Gómora
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Embriología y Genética, Ciudad de México, México
| | - Miguel A Almaraz
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Embriología y Genética, Ciudad de México, México
| | - Esteban Mena
- Universidad Nacional Autónoma de México, Facultad de Medicina, Secretaría General, Ciudad de México, México
- Universidad La Salle, Posgrado de la Facultad de Ciencias Químicas, Ciudad de México, México
| | | | - Elizabeth Rendon
- Hospital Militar de Especialidades de la Mujer y Neonatología. Ciudad de México, México
| | | | - Juan Maldonado-Cubas
- Universidad La Salle, Posgrado de la Facultad de Ciencias Químicas, Ciudad de México, México
| | - Carmen Méndez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Embriología y Genética, Ciudad de México, México
| |
Collapse
|
24
|
Boscaro C, Ramaschi GE, Trevisi L, Cignarella A, Bolego C. MiR-206 inhibits estrogen signaling and ovarian cancer cell migration without affecting GPER. Life Sci 2023; 333:122135. [PMID: 37778413 DOI: 10.1016/j.lfs.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIMS Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17β-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.
Collapse
Affiliation(s)
| | | | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.
| |
Collapse
|
25
|
Kozieł MJ, Piastowska-Ciesielska AW. Estrogens, Estrogen Receptors and Tumor Microenvironment in Ovarian Cancer. Int J Mol Sci 2023; 24:14673. [PMID: 37834120 PMCID: PMC10572993 DOI: 10.3390/ijms241914673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancer is one of the most common cancers in women and the most concerning issues in gynecological oncology in recent years. It is postulated that many factors may contribute to the development of ovarian cancer, including hormonal imbalance. Estrogens are a group of hormones that have an important role both in physiological and pathological processes. In ovarian cancer, they may regulate proliferation, invasiveness and epithelial to mesenchymal transition. Estrogen signaling also takes part in the regulation of the biology of the tumor microenvironment. This review summarizes the information connected with estrogen receptors, estrogens and their association with a tumor microenvironment. Moreover, this review also includes information about the changes in estrogen receptor expression upon exposition to various environmental chemicals.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
26
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
27
|
Diaz de Greñu B, Fernández-Aroca DM, Organero JA, Durá G, Jalón FA, Sánchez-Prieto R, Ruiz-Hidalgo MJ, Rodríguez AM, Santos L, Albasanz JL, Manzano BR. Ferrozoles: Ferrocenyl derivatives of letrozole with dual effects as potent aromatase inhibitors and cytostatic agents. J Biol Inorg Chem 2023; 28:531-547. [PMID: 37458856 DOI: 10.1007/s00775-023-02006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.
Collapse
Affiliation(s)
- Borja Diaz de Greñu
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - Juan A Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Felix Angel Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - M José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana María Rodríguez
- Departamento de Q. Inorgánica, Orgánica y Bioquímica, IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071, Ciudad Real, Spain
| | - Lucia Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, S/N, 13071, Ciudad Real, Spain
| | - José L Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain.
| |
Collapse
|
28
|
Reichenbach J, Fraungruber P, Mayr D, Buschmann C, Kraus FBT, Topalov NE, Chelariu-Raicu A, Kolben T, Burges A, Mahner S, Kessler M, Jeschke U, Czogalla B, Trillsch F. Nuclear receptor co-repressor NCOR2 and its relation to GPER with prognostic impact in ovarian cancer. J Cancer Res Clin Oncol 2023; 149:8719-8728. [PMID: 37131060 PMCID: PMC10374731 DOI: 10.1007/s00432-023-04708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE The significance of the non-classical G-protein-coupled estrogen receptor (GPER) as positive or negative prognostic factor for ovarian cancer patients remains still controversial. Recent results indicate that an imbalance of both co-factors and co-repressors of nuclear receptors regulates ovarian carcinogenesis by altering the transcriptional activity through chromatin remodeling. The present study aims to investigate whether the expression of the nuclear co-repressor NCOR2 plays a role in GPER signaling which thereby could positively impact overall survival rates of ovarian cancer patients. METHODS NCOR2 expression was evaluated by immunohistochemistry in a cohort of 156 epithelial ovarian cancer (EOC) tumor samples and correlated with GPER expression. The correlation and differences in clinical and histopathological variables as well as their effect on prognosis were analyzed by Spearman's correlation, Kruskal-Wallis test and Kaplan-Meier estimates. RESULTS Histologic subtypes were associated with different NCOR2 expression patterns. More specifically, serous and mucinous EOC demonstrated a higher NCOR2 expression (P = 0.008). In addition, high nuclear NCOR2 expression correlated significantly with high GPER expression (cc = 0.245, P = 0.008). A combined evaluation of both high NCOR2 (IRS > 6) and high GPER (IRS > 8) expression revealed an association of a significantly improved overall survival (median OS 50.9 versus 105.1 months, P = 0.048). CONCLUSION Our results support the hypothesis that nuclear co-repressors such as NCOR2 may influence the transcription of target genes in EOC such as GPER. Understanding the role of nuclear co-repressors on signaling pathways will allow a better understanding of the factors involved in prognosis and clinical outcome of EOC patients.
Collapse
Affiliation(s)
- Juliane Reichenbach
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Patricia Fraungruber
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilian-University of Munich, Thalkirchner Strasse 36, 80337 Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Fabian B. T. Kraus
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Nicole Elisabeth Topalov
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilian-University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
29
|
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J, Wertel I. Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:10859. [PMID: 37446039 DOI: 10.3390/ijms241310859] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Rekowska
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Anbarasu S, Anbarasu A. Cancer-biomarkers associated with sex hormone receptors and recent therapeutic advancements: a comprehensive review. Med Oncol 2023; 40:171. [PMID: 37162589 DOI: 10.1007/s12032-023-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Hormones and its regulation plays vital role in causing breast, prostate, ovarian and endometrial cancers collectively known as hormone-sensitive cancers. This review discusses the various functions of the sex hormones and the biological pathways involved in causing hormone-associated cancer under differential regulation. We have also attempted to explore the biomarkers associated with the cancers and the current therapeutic availability to treat such cancers. Among various sex hormones such as estrogen, progesterone and androgen, estrogen the female sex hormone and its receptor had a major contribution in causing cancer and hence are considered a predominant target in treating the associated cancers. Other hormones and receptors such a androgen, progesterone, and their respective receptors were also reported to have a significant correlation in causing cancers. Apart from these receptors certain enzymes that act as precursors or as promoters are also targeted for treatment strategies. The drugs commonly used belong to the selective drug classes such as selective estrogen receptor modulators and selective progesterone receptor modulators. In the case of androgen regulation androgen deprivation therapies are practiced. It is also suggested that the use of natural substances to treat cancer could prevent resistance and reduce side effects. Identification of significant targets and the discovery of many efficient drugs shall be possible in the future with better understanding of hormone regulation and its influence on cancer causative mechanisms.
Collapse
Affiliation(s)
- Suvitha Anbarasu
- Medical and Biological Computing Laboratory, Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, Department of Biotechnology, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
31
|
Hendrikse CSE, van der Ploeg P, van de Kruis NMA, Wilting JHC, Oosterkamp F, Theelen PMM, Lok CAR, de Hullu JA, Smedts HPM, Vos MC, Pijlman BM, Kooreman LFS, Bulten J, Lentjes-Beer MHFM, Bosch SL, van de Stolpe A, Lambrechts S, Bekkers RLM, Piek JMJ. Functional estrogen receptor signal transduction pathway activity and antihormonal therapy response in low-grade ovarian carcinoma. Cancer 2023; 129:1361-1371. [PMID: 36867576 DOI: 10.1002/cncr.34661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Advanced low-grade ovarian carcinoma (LGOC) is difficult to treat. In several studies, high estrogen receptor (ER) protein expression was observed in patients with LGOC, which suggests that antihormonal therapy (AHT) is a treatment option. However, only a subgroup of patients respond to AHT, and this response cannot be adequately predicted by currently used immunohistochemistry (IHC). A possible explanation is that IHC only takes the ligand, but not the activity, of the whole signal transduction pathway (STP) into account. Therefore, in this study, the authors assessed whether functional STP activity can be an alternative tool to predict response to AHT in LGOC. METHODS Tumor tissue samples were obtained from patients with primary or recurrent LGOC who subsequently received AHT. Histoscores of ER and progesterone receptor (PR) were determined. In addition, STP activity of the ER STP and of six other STPs known to play a role in ovarian cancer was assessed and compared with the STP activity of healthy postmenopausal fallopian tube epithelium. RESULTS Patients who had normal ER STP activity had a progression-free survival (PFS) of 16.1 months. This was significantly shorter in patients who had low and very high ER STP activity, with a median PFS of 6.0 and 2.1 months, respectively (p < .001). Unlike ER histoscores, PR histoscores were strongly correlated to the ER STP activity and thus to PFS. CONCLUSIONS Aberrant low and very high functional ER STP activity and low PR histoscores in patients with LGOC indicate decreased response to AHT. ER IHC is not representative of functional ER STP activity and is not related to PFS.
Collapse
Affiliation(s)
- Cynthia S E Hendrikse
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands.,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Phyllis van der Ploeg
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands.,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Nienke M A van de Kruis
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Jody H C Wilting
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Floor Oosterkamp
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Pauline M M Theelen
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Christianne A R Lok
- Department of Gynecology and Obstetrics, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Joanne A de Hullu
- Department of Gynecology and Obstetrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Huberdina P M Smedts
- Department of Gynecology and Obstetrics, Amphia Hospital, Breda, the Netherlands
| | - M Caroline Vos
- Department of Gynecology and Obstetrics, Elisabeth-Tweesteden Ziekenhuis, Tilburg, the Netherlands
| | - Brenda M Pijlman
- Department of Gynecology and Obstetrics, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, the Netherlands
| | - Loes F S Kooreman
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Steven L Bosch
- Department of Pathology, Eurofins PAMM, Eindhoven, the Netherlands
| | - Anja van de Stolpe
- Philips Molecular Pathway Dx, Philips Research, Eindhoven, the Netherlands
| | - Sandrina Lambrechts
- Department of Gynecology and Obstetrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruud L M Bekkers
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands.,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Jurgen M J Piek
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
32
|
Ruiz TFR, Grigio V, Ferrato LJ, de Souza LG, Colleta SJ, Amaro GM, Góes RM, Vilamaior PSL, Leonel ECR, Taboga SR. Impairment of steroidogenesis and follicle development after bisphenol A exposure during pregnancy and lactation in the ovaries of Mongolian gerbils aged females. Mol Cell Endocrinol 2023; 566-567:111892. [PMID: 36813021 DOI: 10.1016/j.mce.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
The ovaries regulate fertility and hormonal control in females, and aging is a crucial factor in this process, when ovarian function is drastically impacted. Exogenous endocrine disruptors may accelerate this process, acting as the main agents in decreased female fertility and hormonal imbalance, since they impact different features related to reproduction. In the present study, we demonstrate the implications of exposure of adult mothers to the endocrine disruptor bisphenol A (BPA) during pregnancy and lactation on their ovarian function during the transition to later in life (aging). The follicle population of BPA exposed ovaries showed impairment in the development of follicles to the mature stages, with growing follicles being halted in the early stages. Atretic and early-atretic follicles were also enhanced. Expression of estrogen and androgen receptors in the follicle population demonstrated impairment in signaling function: ERβ was highly expressed in follicles from BPA exposed females, which also showed a higher incidence of early atresia of developed follicles. ERβ1 wild-type isoform was also enhanced in BPA-exposed ovaries, compared to its variant isoforms. In addition, steroidogenesis was targeted by BPA exposure: aromatase and 17-β-HSD were reduced, whereas 5-α reductase was enhanced. This modulation was reflected in serum levels of estradiol and testosterone, which decreased in BPA-exposed females. Imbalances in steroidogenesis impair the development of follicles and play an important role in follicular atresia. Our study demonstrated that BPA exposure in two windows of susceptibility - gestation and lactation - had implications during aging, enhancing perimenopausal and infertile features.
Collapse
Affiliation(s)
- Thalles F R Ruiz
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luara J Ferrato
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Lorena G de Souza
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone J Colleta
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Gustavo M Amaro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patrícia S L Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
33
|
Hojnik M, Sinreih M, Anko M, Hevir-Kene N, Knific T, Pirš B, Grazio SF, Rižner TL. The Co-Expression of Estrogen Receptors ERα, ERβ, and GPER in Endometrial Cancer. Int J Mol Sci 2023; 24:3009. [PMID: 36769338 PMCID: PMC9918160 DOI: 10.3390/ijms24033009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Estrogens have important roles in endometrial cancer (EC) and exert biological effects through the classical estrogen receptors (ERs) ERα and ERβ, and the G-protein-coupled ER, GPER. So far, the co-expression of these three types of ERs has not been studied in EC. We investigated ERα, ERβ, GPER mRNA and protein levels, and their intracellular protein distributions in EC tissue and in adjacent control endometrial tissue. Compared to control endometrial tissue, immunoreactivity for ERα in EC tissue was weaker for nuclei with minor, but unchanged, cytoplasmic staining; mRNA and protein levels showed decreased patterns for ERα in EC tissue. For ERβ, across both tissue types, the immunoreactivity was unchanged for nuclei and cytoplasm, although EC tissues again showed lower mRNA and protein levels compared to adjacent control endometrial tissue. The immunoreactivity of GPER as well as mRNA levels of GPER were unchanged across cancer and control endometrial tissues, while protein levels were lower in EC tissue. Statistically significant correlations of estrogen receptor α (ESR1) versus estrogen receptor β (ESR2) and GPER variant 3,4 versus ESR1 and ESR2 was seen at the mRNA level. At the protein level studied with Western blotting, there was significant correlation of ERα versus GPER, and ERβ versus GPER. While in clinical practice the expression of ERα is routinely tested in EC tissue, ERβ and GPER need to be further studied to examine their potential as prognostic markers, provided that specific and validated antibodies are available.
Collapse
Affiliation(s)
- Marko Hojnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Pathology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Maša Sinreih
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Anko
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neli Hevir-Kene
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tamara Knific
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Boštjan Pirš
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Gynecology, University Medical Centre, 1000 Ljubljana, Slovenia
| | | | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Mlynarcikova AB, Macejova D, Scsukova S. Expression of selected nuclear receptors in human epithelial ovarian cell line Caov3 exposed to bisphenol derivatives. Endocr Regul 2023; 57:191-199. [PMID: 37715983 DOI: 10.2478/enr-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Objectives. Bisphenol A (BPA) is an indispensable industrial chemical. However, as a proven endocrine disruptor, it may be associated with several health disturbances, including the reproductive functions impairment and cancer. Due to the restriction of BPA usage, many bisphenol derivatives gradually substitute BPA. However, studies have reported adverse biological effects of BPA analogs, but the specific sites of their action remain largely unknown. Nuclear receptors (NRs) appear to play significant roles in various types of cancer. In addition, they are considered relevant targets of bisphenols. In the present study, we investigated the effects of BPA and its analogs bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) on mRNA expression of selected NRs in the human ovarian epithelial cell line Caov3. The NRs examined included retinoic acid receptor α (RARA), retinoid X receptor α (RXRA), peroxisome proliferator activating receptor β/δ (PPARD), chicken ovalbumin upstream promoter-transcription factor 2 (COUPTFII), and nuclear receptor-related protein 1 (NURR1). Methods. Caov3 cells were treated with the bisphenols at the concentrations of 1 nM, 100 nM, 10 µM and 100 µM. After 24 h and 72 h of incubation, cell viability was determined by the MTS assay, and the selected genes expression was analyzed using RT-qPCR. Results. Bisphenol treatment did not affect Caov3 cell viability, except the significant impairment after exposure to the highest BPAF dose (100 µM). At lower doses, neither bisphenol analog altered the expression of the NRs. However, at the highest concentration (100 µM), BPAF and BPA altered the mRNA levels of PPARD, COUPTFII, and NURR1 in a time- and receptor-specific manner. Conclusions. The effects of bisphenols on the specific NRs in the epithelial ovarian cancer cells were addressed for the first time by the present study. Although generally we did not find that bisphenols may provoke significant alterations in the expression of the selected NRs in Caov3 cells, they may alter mRNA expression of certain NRs at high concentrations.
Collapse
Affiliation(s)
| | - Dana Macejova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sona Scsukova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
35
|
Wang C, Gao P, Xu J, Liu S, Tian W, Liu J, Zhou L. Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment. Front Pharmacol 2022; 13:1078303. [PMID: 36569329 PMCID: PMC9767960 DOI: 10.3389/fphar.2022.1078303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is among the most common malignant tumors in gynecology and is characterized by insidious onset, poor differentiation, high malignancy, and a high recurrence rate. Numerous studies have shown that poly ADP-ribose polymerase (PARP) inhibitors can improve progression-free survival (PFS) in patients with BRCA-mutated ovarian cancer. With the widespread use of BRCA mutation and PARP inhibitor (PARPi) combination therapy, the side effects associated with BRCA mutation and PARPi have garnered attention worldwide. Mutations in the BRCA gene increase KEAP1-NRF2 ubiquitination and reduce Nrf2 content and cellular antioxidant capacity, which subsequently produces side effects such as cardiovascular endothelial damage and atherosclerosis. PARPi has hematologic toxicity, producing thrombocytopenia, fatigue, nausea, and vomiting. These side effects not only reduce patients' quality of life, but also affect their survival. Studies have shown that natural phytochemicals, a class of compounds with antitumor potential, can effectively prevent and treat the side effects of chemotherapy. Herein, we reviewed the role of natural phytochemicals in disease prevention and treatment in recent years, including sulforaphane, lycopene, catechin, and curcumin, and found that these phytochemicals have significant alleviating effects on atherosclerosis, nausea, and vomiting. Moreover, these mechanisms of action significantly correlated with the side-effect-producing mechanisms of BRCA mutations and PARPi. In conclusion, natural phytochemicals may be effective in alleviating the side effects of BRCA mutant ovarian cancer cells and PARP inhibitors.
Collapse
Affiliation(s)
- Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Pengning Gao
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Jiali Xu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Shanling Liu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Wenda Tian
- Yunnan Cancer Center, Kunming, Yunnan, China,Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiayu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lan Zhou
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China,*Correspondence: Lan Zhou,
| |
Collapse
|
36
|
Guan R, Luan F, Li N, Qiu Z, Liu W, Cui Z, Zhao C, Li X. Identification of molecular initiating events and key events leading to endocrine disrupting effects of PFOA: Integrated molecular dynamic, transcriptomic, and proteomic analyses. CHEMOSPHERE 2022; 307:135881. [PMID: 35926748 DOI: 10.1016/j.chemosphere.2022.135881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) can rapidly activate signaling pathways independent of nuclear hormone receptors through membrane receptor regulation, which leads to endocrine disrupting effects. In the present work, the molecular initiating event (MIE) and the key events (KEs) which cause the endocrine disrupting effects of PFOA have been explored and determined based on molecular dynamics simulation (MD), fluorescence analysis, transcriptomics, and proteomics. MD modeling and fluorescence analysis proved that, on binding to the G protein-coupled estrogen receptor-1 (GPER), PFOA could induce a conformational change in the receptor, turning it into an active state. The results also indicated that the binding to GPER was the MIE that led to the adverse outcome (AO) of PFOA. In addition, the downstream signal transduction pathways of GPER, as regulated by PFOA, were further investigated through genomics and proteomics to identify the KEs leading to thr endocrine disrupting effects. Two pathways (Endocrine resistance, ERP and Estrogen signaling pathway, ESP) containing GPER were regulated by different concentration of PFOA and identified as the KEs. The knowledge of MIE, KEs, and AO of PFOA is necessary to understand the links between PFOA and the possible pathways that lead to its negative effects.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zeyang Cui
- School of Information Science & Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xin Li
- Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
37
|
Habara M, Shimada M. Estrogen receptor α revised: Expression, structure, function, and stability. Bioessays 2022; 44:e2200148. [PMID: 36192154 DOI: 10.1002/bies.202200148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-dependent transcription factor that regulates the expression of estrogen-responsive genes. Approximately 70% of patients with breast cancer are ERα positive. Estrogen stimulates cancer cell proliferation and contributes to tumor progression. Endocrine therapies, which suppress the ERα signaling pathway, significantly improve the prognosis of patients with breast cancer. However, the development of de novo or acquired endocrine therapy resistance remains a barrier to breast cancer treatment. Therefore, understanding the regulatory mechanisms of ERα is essential to overcome the resistance to treatment. This review focuses on the regulation of ERα expression, including copy number variation, epigenetic regulation, transcriptional regulation, and stability, as well as functions from the point of view post-translational modifications.
Collapse
Affiliation(s)
- Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| |
Collapse
|
38
|
Perrone E, Tudisco R, Pafundi PC, Guido D, Ciucci A, Martinelli E, Zannoni GF, Piermattei A, Spadola S, Ferrante G, Marchetti C, Scambia G, Fagotti A, Gallo D. What’s beyond BRCA Mutational Status in High Grade Serous Ovarian Cancer? The Impact of Hormone Receptor Expression in a Large BRCA-Profiled Ovarian Cancer Patient Series: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14194588. [PMID: 36230510 PMCID: PMC9559459 DOI: 10.3390/cancers14194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Ovarian hormones are involved in ovarian cancer pathogenesis. However, few reports have investigated the hormone receptor pattern according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the relationship between hormone receptor status and BRCA1/2 mutation in a cohort of 207 high-grade serous ovarian carcinoma (HGSOC) patients. Interesting differences emerged between BRCA-mutated and BRCA wild-type women, in terms of pattern of receptor expression and its association to the outcome. On the whole, our findings, though needing further validation, extend our understanding of the complex interplay between BRCA1/2 protein and hormone signaling, suggesting new pathways to be exploited in order to develop future personalized therapy. Abstract Several studies have explored the prognostic role of hormone receptor status in high-grade serous ovarian cancer (HGSOC) patients. However, few reports have investigated their expression according to BRCA mutational status. The aim of this single-center, observational, retrospective study was to explore the hormone receptor pattern and its potential prognostic role in a cohort of 207 HGSOC women stratified for BRCA mutational status. To this end, ERα, ERβ1, ERβ2, ERβ5, PR, and AR expression were assessed by immunohistochemistry in 135 BRCA-wild type (BRCA-wt) and 72 BRCA1/2 mutation carriers (BRCA-mut). No significant difference emerged in hormone receptor expression between the two sub-samples, except for a significantly lower ERα expression observed in pre-menopausal BRCA1/2-mut as compared to BRCA-wt patients (p = 0.02). None of the examined hormone receptors has revealed a significant prognostic role in the whole sample, apart from the ratio ERα/ERβ5 nuclear, for which higher values disclosed a positive role on the outcome in BRCA-wt subgroup (HR 0.77; CI 0.61–0.96; p = 0.019). Conversely, it negatively affected overall survival in the presence of BRCA1/2-mut (HR 1.41; CI 1.06–1.87; p = 0.020). Finally, higher PR levels were associated with platinum sensitivity in the whole sample (p = 0.019). Our data, though needing further validation, suggest a potential role of oestrogen-mediated pathways in BRCA1/2-associated HGSOC tumorigenesis, thus revealing a possible therapeutic potential for targeting this interaction.
Collapse
Affiliation(s)
- Emanuele Perrone
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Riccardo Tudisco
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Pia Clara Pafundi
- Epidemiology and Biostatistics Facility Core Research, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Guido
- Bioinformatics Facility Core Research, Gemelli Science and Technology Park (GSTeP) Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Ciucci
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Enrica Martinelli
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessia Piermattei
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Saveria Spadola
- Gynecopathology and Breast Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Ferrante
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Claudia Marchetti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anna Fagotti
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Gallo
- Universita’ Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
39
|
Musheyev D, Alayev A. Endocrine therapy resistance: what we know and future directions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:480-496. [PMID: 36071983 PMCID: PMC9446423 DOI: 10.37349/etat.2022.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Endocrine resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. When abnormally regulated, molecular signals responsible for cellular proliferation, as well as ER itself, allow for cellular evasion of ER-dependent treatments. Therefore, pharmacological treatments that target these evasion mechanisms are beneficial for the treatment of endocrine-resistant breast cancers. This review summarizes currently understood molecular signals that contribute to endocrine resistance and their crosstalk that stem from mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase/protein kinase B (PI3K/AKT), mechanistic target of rapamycin (mTOR), cyclin-dependent kinases 4 and 6 (CDK4/6) and aberrant ER function. Recent clinical trials that target these molecular signals as a treatment strategy for endocrine-resistant breast cancer are also highlighted.
Collapse
Affiliation(s)
- David Musheyev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| | - Anya Alayev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| |
Collapse
|
40
|
Varga A, Márton É, Markovics A, Penyige A, Balogh I, Nagy B, Szilágyi M. Suppressing the PI3K/AKT Pathway by miR-30d-5p Mimic Sensitizes Ovarian Cancer Cells to Cell Death Induced by High-Dose Estrogen. Biomedicines 2022; 10:biomedicines10092060. [PMID: 36140161 PMCID: PMC9495868 DOI: 10.3390/biomedicines10092060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are short non-coding RNA molecules that are involved in tumor development and are considered to be promising candidates in cancer therapy. Here, we studied the role of miR-30s in the pathophysiology of ovarian cancer. According to our results miR-30a-5p, miR-30d-5p, and miR-30e-5p were overexpressed in the estrogen receptor α (ERα)-expressing PEO1 cell line compared to A2780 that lacks this receptor. Furthermore, the expression of miR-30a-5p, miR-30d-5p, and miR-30e-5p were induced in response to high-dose estrogen treatment in PEO1 where intensive cell death was observed according to the induction of apoptosis and autophagy. Lacking or blocking ERα function reduced tolerance to high-dose estrogen that suggests the importance of ERα-mediated estrogen response in the maintenance of proliferation. MiR-30d-5p mimic reduced cell proliferation in both A2780 and PEO1. Furthermore, it decreased the tolerance of PEO1 cells to high-dose estrogen by blocking the ERα-mediated estrogen response. This was accompanied by decreased SOX4 expression that is thought to be involved in the regulation of the PI3K/AKT pathway. Blocking this pathway by AZD8835 led to the same results. MiR-30d-5p or AZD8835 sensitized PEO1 cells to tamoxifen. We suggest that miR-30d-5p might be a promising candidate in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416-531
| |
Collapse
|
41
|
A nonlinear model and an algorithm for identifying cancer driver pathways. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Sarwar S, Alamro A, Huq F, Alghamdi A. Insights Into the Role of Epigenetic Factors Determining the Estrogen Response in Estrogen-Positive Ovarian Cancer and Prospects of Combining Epi-Drugs With Endocrine Therapy. Front Genet 2022; 13:812077. [PMID: 35873467 PMCID: PMC9306913 DOI: 10.3389/fgene.2022.812077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignancies. The population at the risk is continually on the rise due to the acquired drug resistance, high relapse rate, incomplete knowledge of the etiology, cross-talk with other gynecological malignancies, and diagnosis at an advanced stage. Most ovarian tumors are thought to arise in surface epithelium somehow in response to changes in the hormonal environment. Prolonged treatment with hormone replacement therapy (HRT) is also considered a contributing factor. Estrogens influence the etiology and progression of the endocrine/hormone-responsive cancers in a patient-specific manner. The concept of hormonal manipulations got attention during the last half of the 20th century when tamoxifen was approved by the FDA as the first selective estrogen receptor modulator (SERM). Endocrine therapy that has been found to be effective against breast cancer can be an option for ovarian cancer. It is now established that global changes in the epigenetic landscape are not only the hallmark of tumor development but also contribute to the development of resistance to hormone therapy. A set of functionally related genes involved in epigenetic reprogramming are controlled by specific transcription factors (TFs). Thus, the activities of TFs mediate important mechanisms through which epigenetic enzymes and co-factors modify chromatin for the worst outcome in a site-specific manner. Furthermore, the role of epigenetic aberrations involving histone modifications is established in ovarian cancer pathogenesis. This review aims to provide insights on the role of key epigenetic determinants of response as well as resistance to the hormone therapy, the current status of research along with its limitations, and future prospects of epigenetic agents as biomarkers in early diagnosis, prognosis, and personalized treatment strategies. Finally, the possibility of small phytoestrogenic molecules in combination with immunotherapy and epi-drugs targeting ovarian cancer has been discussed.
Collapse
Affiliation(s)
- Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Sadia Sarwar,
| | - Abir Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fazlul Huq
- Eman Research Journal, Eman Research, Sydney, NSW, Australia
| | - Amani Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Ng CW, Wong KK. Impact of estrogen receptor expression on prognosis of ovarian cancer according to antibody clone used for immunohistochemistry: a meta-analysis. J Ovarian Res 2022; 15:63. [PMID: 35610648 PMCID: PMC9128086 DOI: 10.1186/s13048-022-01001-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The prognostic value of the expression of estrogen receptor (ER) subtypes ER⍺ and ERβ in ovarian cancer has previously been evaluated by meta-analyses. However, the results are contradictory and controversial. METHODS We conducted an updated meta-analysis with stringent inclusion criteria to ensure homogeneous studies to determine the effect of ER subtypes on ovarian cancer prognosis. Articles were retrieved by systematic search of PubMed and Web of Science for articles dated up to June 2021. Only studies with known hazard ratio (HR) and antibody clone for immunochemistry (IHC) were included. Pooled HRs with the corresponding 95% confidence intervals (CIs) were calculated for the effect of ER⍺ and ERβ expression on ovarian cancer patient progression-free survival (PFS) and overall survival (OS). RESULTS A total of 17 studies were included, of which 11 and 13 studies examined the relationships between ER⍺ expression and PFS and OS, respectively, and 5 and 7 studies examined the relationships between ERβ expression and PFS and OS, respectively. Neither ER⍺ expression (random-effects model; HR = 0.99, 95% CI = 0.83-1.18) nor ERβ expression (fixed-effects model; HR = 0.94, 95% CI = 0.69-1.27) was associated with PFS. Random-effects models showed that ER⍺ expression (HR = 0.81, 95% CI = 0.64-1.02) and ERβ expression (HR = 0.75, 95% CI = 0.50-1.13) were only marginally and not significantly associated with better OS. Subgroup analysis revealed that ER⍺ expression determined using antibody clone 1D5 (HR = 0.75, 95% CI = 0.64-0.88) and ERβ expression determined using ERβ1-specific-antibody clone PPG5/10 or EMR02 (HR = 0.65, 95% CI = 0.50-0.86) were associated with significantly better OS, but ER expression determined using other antibodies was not. CONCLUSIONS In conclusion, a higher ER⍺ expression and ERβ expression are significantly associated with a better survival of ovarian cancer patients, but the results from previous prognostic studies are significantly dependent on the choice of specific ER antibody clones used in immunohistochemistry analysis.
Collapse
Affiliation(s)
- Chun Wai Ng
- Department of Gynecologic Oncology & Reproductive Medicine, Room T4-3900, Clinical Research Building, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology & Reproductive Medicine, Room T4-3900, Clinical Research Building, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
44
|
Hoffmann OI, Regenauer M, Czogalla B, Brambs C, Burges A, Mayer B. Interpatient Heterogeneity in Drug Response and Protein Biomarker Expression of Recurrent Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14092279. [PMID: 35565408 PMCID: PMC9103312 DOI: 10.3390/cancers14092279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recurrent ovarian-cancer patients face low 5-year survival rates despite chemotherapy. A variety of guideline-recommended second-line therapies are available, but they frequently result in trial-and-error treatment. Alterations and adjustments are common in the treatment of recurrent ovarian cancer. The drug response of 30 lesions obtained from 22 relapsed ovarian cancer patients to different chemotherapeutic and molecular agents was analyzed with the patient-derived ovarian-cancer spheroid model. The profile of druggable biomarkers was immunohistochemically assessed. The second-line combination therapy of carboplatin with gemcitabine was significantly superior to the combination of carboplatin with PEGylated liposomal doxorubicin (p < 0.0001) or paclitaxel (p = 0.0007). Except for treosulfan, all nonplatinum treatments tested showed a lesser effect on tumor spheroids compared to that of platinum-based therapies. Treosulfan showed the highest efficacy of all nonplatinum agents, with significant advantage over vinorelbine (p < 0.0001) and topotecan (p < 0.0001), the next best agents. The comparative testing of a variety of treatment options in the ovarian-cancer spheroid model resulted in the identification of more effective regimens for 30% of patients compared to guideline-recommended therapies. Recurrent cancers obtained from different patients revealed profound interpatient heterogeneity in the expression pattern of druggable protein biomarkers. In contrast, different lesions obtained from the same patient revealed a similar drug response and biomarker expression profile. Biological heterogeneity observed in recurrent ovarian cancers might explain the strong differences in the clinical drug response of these patients. Preclinical drug testing and biomarker profiling in the ovarian-cancer spheroid model might help in optimizing treatment management for individual patients.
Collapse
Affiliation(s)
| | - Manuel Regenauer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Christine Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany;
| | - Alexander Burges
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Barbara Mayer
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany;
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-76438
| |
Collapse
|
45
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
46
|
Estrogen Receptor-Beta2 (ERβ2)-Mutant p53-FOXM1 Axis: A Novel Driver of Proliferation, Chemoresistance, and Disease Progression in High Grade Serous Ovarian Cancer (HGSOC). Cancers (Basel) 2022; 14:cancers14051120. [PMID: 35267428 PMCID: PMC8909529 DOI: 10.3390/cancers14051120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary High grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian cancer without effective therapeutic options. The high prevalence of mutations (~96%) in tumor suppressor p53 is a hallmark of HGSOC. Estrogen receptor-beta (ERβ) has been reported to be another important player in HGSOC, although the pro-versus anti-tumorigenic role of its different isoforms remains unclear. The aim of this study was to analyze the crosstalk between ERβ and mutant p53 and its impact on the pro-tumorigenic processes in HGSOC. Using the HGSOC cell line models and patient tumor tissue specimens, we demonstrated functional interaction between the ERβ2 isoform and mutant p53 and their ability to co-dependently increase FOXM1 gene transcription, decrease cell death, increase cell proliferation, and mediate resistance to carboplatin treatment. Furthermore, high levels of ERβ2 as well as FOXM1 correlated with worse patient survival. Collectively, our data suggest that the ERβ2-mutant p53-FOXM1 axis could be a novel therapeutic target for HGSOC. Abstract High grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of epithelial ovarian cancer. Prevalence (~96%) of mutant p53 is a hallmark of HGSOC. Estrogen receptor-beta (ERβ) has been reported to be another important player in HGSOC, although the pro-versus anti-tumorigenic role of its different isoforms remains unsettled. However, whether there is functional interaction between ERβ and mutant p53 in HGSOC is unknown. ERβ1 and ERβ2 mRNA and protein analysis in HGSOC cell lines demonstrated that ERβ2 is the predominant isoform in HGSOC. Specificity of ERβ2 antibody was ascertained using cells depleted of ERβ2 and ERβ1 separately with isoform-specific siRNAs. ERβ2-mutant p53 interaction in cell lines was confirmed by co-immunoprecipitation and in situ proximity ligation assay (PLA). Expression levels of ERβ2, ERα, p53, and FOXM1 proteins and ERβ2-mutant p53 interaction in patient tumors were determined by immunohistochemistry (IHC) and PLA, respectively. ERβ2 levels correlate positively with FOXM1 levels and negatively with progression-free survival (PFS) and overall survival (OS). Quantitative chromatin immunoprecipitation (qChIP) and mRNA expression analysis revealed that ERβ2 and mutant p53 co-dependently regulated FOXM1 gene transcription. The combination of ERβ2-specific siRNA and PRIMA-1MET that converts mutant p53 to wild type conformation increased apoptosis. Our work provides the first evidence for a novel ERβ2-mutant p53-FOXM1 axis that can be exploited for new therapeutic strategies against HGSOC.
Collapse
|
47
|
Mitra S, Lami MS, Ghosh A, Das R, Tallei TE, Fatimawali, Islam F, Dhama K, Begum MY, Aldahish A, Chidambaram K, Emran TB. Hormonal Therapy for Gynecological Cancers: How Far Has Science Progressed toward Clinical Applications? Cancers (Basel) 2022; 14:759. [PMID: 35159024 PMCID: PMC8833573 DOI: 10.3390/cancers14030759] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, hormone therapy has been shown to be a remarkable treatment option for cancer. Hormone treatment for gynecological cancers involves the use of medications that reduce the level of hormones or inhibit their biological activity, thereby stopping or slowing cancer growth. Hormone treatment works by preventing hormones from causing cancer cells to multiply. Aromatase inhibitors, anti-estrogens, progestin, estrogen receptor (ER) antagonists, GnRH agonists, and progestogen are effectively used as therapeutics for vulvar cancer, cervical cancer, vaginal cancer, uterine cancer, and ovarian cancer. Hormone replacement therapy has a high success rate. In particular, progestogen and estrogen replacement are associated with a decreased incidence of gynecological cancers in women infected with human papillomavirus (HPV). The activation of estrogen via the transcriptional functionality of ERα may either be promoted or decreased by gene products of HPV. Hormonal treatment is frequently administered to patients with hormone-sensitive recurring or metastatic gynecologic malignancies, although response rates and therapeutic outcomes are inconsistent. Therefore, this review outlines the use of hormonal therapy for gynecological cancers and identifies the current knowledge gaps.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (M.S.L.); (A.G.); (R.D.)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Fatimawali
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community Services, Sam Ratulangi University, Manado 95115, Indonesia;
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health of Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.A.); (K.C.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
48
|
van der Ploeg P, Uittenboogaard A, Bosch SL, van Diest PJ, Wesseling-Rozendaal YJ, van de Stolpe A, Lambrechts S, Bekkers RL, Piek JM. Signal transduction pathway activity in high-grade serous carcinoma, its precursors and Fallopian tube epithelium. Gynecol Oncol 2022; 165:114-120. [DOI: 10.1016/j.ygyno.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
|
49
|
Archer A, Kutter C, Williams C. Expression Profiles of Estrogen-Regulated MicroRNAs in Cancer Cells. Methods Mol Biol 2022; 2418:313-343. [PMID: 35119673 DOI: 10.1007/978-1-0716-1920-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNAs play critical roles through their impact on posttranscriptional gene regulation. In cancer, they can act as oncogenes or tumor suppressors and can also function as biomarkers. Here, we describe a method for robust characterization of estrogen-regulated microRNA profiles. The activity of estrogen is mediated by two nuclear receptors, estrogen receptor alpha and estrogen receptor beta, and a transmembrane G-protein coupled estrogen receptor 1. This chapter details how to prepare cells for optimal estrogen response, directions for estrogen treatment, RNA extraction, different microRNA profiling approaches, and subsequent confirmations.
Collapse
Affiliation(s)
- Amena Archer
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Claudia Kutter
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
50
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|