1
|
Huang R, Yu J, Zhang B, Li X, Liu H, Wang Y. Emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and treatment. Biomaterials 2025; 315:122954. [PMID: 39549439 DOI: 10.1016/j.biomaterials.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Increasing evidence has showed that tumorigenesis is closely linked to inflammation, regulated by multiple signaling pathways. Among these, the cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) axis plays a crucial role in the progression of both inflammation and cancer. Inhibiting the activity of COX-2 can reduce PGE2 secretion, thereby suppressing tumor growth. Therefore, COX-2 inhibitors are considered potential therapeutic agents for cancers. However, their clinical applications are greatly hindered by poor physicochemical properties and serious adverse effects. Fortunately, the advent of nanotechnology offers solutions to these limitations, enhancing drug delivery efficiency and mitigating adverse effects. Given the considerable progress in this area, it is timely to review emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and therapy. In this review, we first outline the various antineoplastic mechanisms of COX-2 inhibitors, then comprehensively summarize COX-2 inhibitors-based nanotherapeutics for cancer monotherapy, combination therapy, and diagnosis. Finally, we highlight and discuss future perspectives and challenges in the development of COX-2 inhibitors-based nanomedicine.
Collapse
Affiliation(s)
- Ruiping Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Baoyue Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xin Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Unravelling CD24-Siglec-10 pathway: Cancer immunotherapy from basic science to clinical studies. Immunology 2024; 173:442-469. [PMID: 39129256 DOI: 10.1111/imm.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
3
|
Qian H, Maghsoudloo M, Kaboli PJ, Babaeizad A, Cui Y, Fu J, Wang Q, Imani S. Decoding the Promise and Challenges of miRNA-Based Cancer Therapies: An Essential Update on miR-21, miR-34, and miR-155. Int J Med Sci 2024; 21:2781-2798. [PMID: 39512697 PMCID: PMC11539376 DOI: 10.7150/ijms.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
MicroRNAs (miRNAs)-based therapies hold great promise for cancer treatment, challenges such as expression variability, off-target effects, and limited clinical effectiveness have led to the withdrawal of many clinical trials. This review investigates the setbacks in miRNA-based therapies by examining miR-21, miR-34, and miR-155, highlighting their functional complexity, off-target effects, and the challenges in delivering these therapies effectively. Moreover, It highlights recent advances in delivery methods, combination therapies, and personalized treatment approaches to overcome these challenges. This review highlights the intricate molecular networks involving miRNAs, particularly their interactions with other non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), emphasizing the pivotal role of miRNAs in cancer biology and therapeutic strategies. By addressing these hurdles, this review aims to steer future research toward harnessing the potential of miRNA therapies to target cancer pathways effectively, enhance anti-tumor responses, and ultimately improve patient outcomes in precision cancer therapy.
Collapse
Affiliation(s)
- Hongbo Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Yulan Cui
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Tian M, Li Y, Li Y, Yang T, Chen H, Guo J, Liu Y, Liu P. Sonodynamic Therapy-Driven Immunotherapy: Constructing AIE Organic Sonosensitizers Using an Advanced Receptor-Regulated Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400654. [PMID: 38752582 DOI: 10.1002/smll.202400654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Indexed: 10/01/2024]
Abstract
Benefit from the deeper penetration of mechanical wave, ultrasound (US)-based sonodynamic therapy (SDT) executes gratifying efficacy in treating deep-seated tumors. Nevertheless, the complicated mechanism of SDT undeniably hinders the exploration of ingenious sonosensitizers. Herein, a receptor engineering strategy of aggregation-induced emission (AIE) sonosensitizers (TPA-Tpy) with acceptor (A)-donor (D)-A' structure is proposed, which inspects the effect of increased cationizations on US sensitivity. Under US stimulation, enhanced cationization in TPA-Tpy improves intramolecular charge transfer (ICT) and accelerates charge separation, which possesses a non-negligible promotion in type I reactive oxygen species (ROS) production. Moreover, abundant ROS-mediated mitochondrial oxidative stress triggers satisfactory immunogenic cell death (ICD), which further promotes the combination of SDT and ICD. Subsequently, subacid pH-activated nanoparticles (TPA-Tpy NPs) are constructed with charge-converting layer (2,3-dimethylmaleic anhydride-poly (allylamine hydrochloride)-polyethylene glycol (DMMA-PAH-PEG)) and TPA-Tpy, achieving the controllable release of sonosensitizers. In vivo, TPA-Tpy-mediated SDT effectively initiates the surface-exposed of calreticulin (ecto-CRT), dendritic cells (DCs) maturation, and CD8+ T cell infiltration rate through enhanced ROS production, achieving suppression and ablation of primary and metastatic tumors. This study provides new opinions in regulating acceptors with eminent US sensitization, and brings a novel ICD sono-inducer based on SDT to realize superior antitumor effect.
Collapse
Affiliation(s)
- Mengyan Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yucong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yaning Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Tianyue Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hongli Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Life Sciences, Tiangong University, Tianjin, 300387, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
7
|
Wang M, Rousseau B, Qiu K, Huang G, Zhang Y, Su H, Le Bihan-Benjamin C, Khati I, Artz O, Foote MB, Cheng YY, Lee KH, Miao MZ, Sun Y, Bousquet PJ, Hilmi M, Dumas E, Hamy AS, Reyal F, Lin L, Armistead PM, Song W, Vargason A, Arthur JC, Liu Y, Guo J, Zhou X, Nguyen J, He Y, Ting JPY, Anselmo AC, Huang L. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol 2024; 42:1263-1274. [PMID: 37749267 DOI: 10.1038/s41587-023-01957-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.
Collapse
Affiliation(s)
- Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Hang Su
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Christine Le Bihan-Benjamin
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Ines Khati
- Health Data and Assessment Department, Data Science and Assessment Division, French National Cancer Institute, Boulogne-Billancourt, France
| | - Oliver Artz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Michael Z Miao
- Curriculum in Oral and Craniofacial Biomedicine, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Philippe-Jean Bousquet
- Health Survey, Data Science and Assessment Division, French National Cancer Institute, Boulogne Billancourt, France
| | - Marc Hilmi
- GERCOR Group, Paris, France
- Medical Oncology Department, Curie Institute, Saint Cloud, France
| | - Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- INSERM, U900, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Medical Oncology, Centre René Hughenin, Saint Cloud, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Paris, France
- Department of Surgery, Institut Jean Godinot, Reims, France
- Department of Surgical Oncology, Institut Curie, University of Paris, Paris, France
| | - Lin Lin
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Paul M Armistead
- BMTCT Program, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Ava Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Division of Craniofacial and Surgical Care, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Saleh RO, Jasim SA, Kadhum WR, Hjazi A, Faraz A, Abid MK, Yumashev A, Alawadi A, Aiad IAZ, Alsalamy A. Exploring the detailed role of interleukins in cancer: A comprehensive review of literature. Pathol Res Pract 2024; 257:155284. [PMID: 38663179 DOI: 10.1016/j.prp.2024.155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024]
Abstract
The cancer cells that are not normal can grow into tumors, invade surrounding tissues, and travel to other parts of the body via the lymphatic or circulatory systems. Interleukins, a vital class of signaling proteins, facilitate cell-to-cell contact within the immune system. A type of non-coding RNA known as lncRNAs mediates its actions by regulating miRNA-mRNA roles (Interleukins). Because of their dual function in controlling the growth of tumors and altering the immune system's response to cancer cells, interleukins have been extensively studied concerning cancer. Understanding the complex relationships between interleukins, the immune system, the tumor microenvironment, and the components of interleukin signaling pathways that impact the miRNA-mRNA axis, including lncRNAs, has advanced significantly in cancer research. Due to the significant and all-encompassing influence of interleukins on the immune system and the development and advancement of cancers, lncRNAs play a crucial role in cancer research by modulating interleukins. Their diverse effects on immune system regulation, tumor growth encouragement, and tumor inhibition make them appealing candidates for potential cancer treatments and diagnostics. A deeper understanding of the relationship between the biology of interleukin and lncRNAs will likely result in more effective immunotherapy strategies and individualized cancer treatments.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Pharmacy Department, Al-Huda University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced Research Center, Kut University College, Kut, Wasit 52001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Ahmed Zaki Aiad
- Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
9
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
11
|
R D, S W, D P D, R S. Cracking a cancer code DNA methylation in epigenetic modification: an in-silico approach on efficacy assessment of Sri Lanka-oriented nutraceuticals. J Biomol Struct Dyn 2024:1-21. [PMID: 38425013 DOI: 10.1080/07391102.2024.2321235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
DNA methyltransferase (DNMTs) are essential epigenetic modifiers that play a critical role in gene regulation. These enzymes add a methyl group to cytosine's 5'-carbon, specifically within CpG dinucleotides, using S-adenosyl-L-methionine. Abnormal overexpression of DNMTs can alter the gene expression patterns and contribute to cancer development in the human body. Therefore, the inhibition of DNMT is a promising therapeutic approach to cancer treatment. This study was aimed to identify potential nutraceutical inhibitors from the Sri Lanka Flora database using computational methods, which provided an atomic-level description of the drug binding site and examined the interactions between nutraceuticals and amino acids of the DNMT enzyme. A series of nutraceuticals from Sri Lanka-oriented plants were selected and evaluated to assess their inhibitory effects on DNMT using absorption, distribution, metabolism, excretion and toxicity analysis, virtual screening, molecular docking, molecular dynamics simulation and trajectory analysis. Azacitidine, a DNMT inhibitor approved by the US Food and Drug Administration, was selected as a reference inhibitor. The complexes with more negative binding energies were selected and further assessed for their potency. Seven molecules were identified from 200 nutraceuticals, demonstrating significantly negative binding energies against the DNMT enzyme. Various trajectory analyses were conducted to investigate the stability of the DNMT enzyme. The results indicated that petchicine (NP#0003), ouregidione (NP#0011) and azacitidine increased the stability of the DNMT enzyme. Consequently, these two nutraceuticals showed inhibitory efficacies similar to azacitidine, making them potential candidates for therapeutic interventions targeting DNMT enzyme-related cancers. Additional bioassay testing is recommended to confirm the efficacies of these nutraceuticals and explore their applicability in clinical treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dushanan R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Weerasinghe S
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Dissanayake D P
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Senthilnithy R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| |
Collapse
|
12
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Velarde-Ruiz Velasco JA, Tapia Calderón DK, Cerpa-Cruz S, Velarde-Chávez JA, Uribe Martínez JF, García Jiménez ES, Aldana Ledesma JM, Díaz-González Á, Crespo J. Immune-mediated hepatitis: Basic concepts and treatment. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:106-120. [PMID: 38485561 DOI: 10.1016/j.rgmxen.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 04/20/2024]
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized advanced cancer management. Nevertheless, the generalized use of these medications has led to an increase in the incidence of adverse immune-mediated events and the liver is one of the most frequently affected organs. Liver involvement associated with the administration of immunotherapy is known as immune-mediated hepatitis (IMH), whose incidence and clinical characteristics have been described by different authors. It often presents as mild elevations of amino transferase levels, seen in routine blood tests, that spontaneously return to normal, but it can also manifest as severe transaminitis, possibly leading to the permanent discontinuation of treatment. The aim of the following review was to describe the most up-to-date concepts regarding the epidemiology, diagnosis, risk factors, and progression of IMH, as well as its incidence in different types of common cancers, including hepatocellular carcinoma. Treatment recommendations according to the most current guidelines are also provided.
Collapse
Affiliation(s)
- J A Velarde-Ruiz Velasco
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico; Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | | | - S Cerpa-Cruz
- Servicio de Reumatología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - J A Velarde-Chávez
- Servicio de Medicina Interna, Hospital Civil de Guadalajara Juan I. Menchaca, Guadalajara, Jalisco, Mexico
| | - J F Uribe Martínez
- Servicio de Reumatología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - E S García Jiménez
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - J M Aldana Ledesma
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Á Díaz-González
- Servicio de Gastroenterología y Hepatología, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J Crespo
- Servicio de Gastroenterología y Hepatología, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
14
|
Verma C, Pawar VA, Srivastava S, Tyagi A, Kaushik G, Shukla SK, Kumar V. Cancer Vaccines in the Immunotherapy Era: Promise and Potential. Vaccines (Basel) 2023; 11:1783. [PMID: 38140187 PMCID: PMC10747700 DOI: 10.3390/vaccines11121783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic vaccines are a promising alternative for active immunotherapy for different types of cancers. Therapeutic cancer vaccines aim to prevent immune system responses that are not targeted at the tumors only, but also boost the anti-tumor immunity and promote regression or eradication of the malignancy without, or with minimal, adverse events. Clinical trial data have pushed the development of cancer vaccines forward, and the US Food and Drug Administration authorized the first therapeutic cancer vaccine. In the present review, we discuss the various types of cancer vaccines and different approaches for the development of therapeutic cancer vaccines, along with the current state of knowledge and future prospects. We also discuss how tumor-induced immune suppression limits the effectiveness of therapeutic vaccinations, and strategies to overcome this barrier to design efficacious, long-lasting anti-tumor immune responses in the generation of vaccines.
Collapse
Affiliation(s)
- Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA;
| | | | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi 110054, India;
| | - Gaurav Kaushik
- School of Allied Health Sciences, Sharda University, Greater Noida 201310, India;
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
15
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
16
|
Tsarovsky N, Felder M, Heck M, Slowinski J, Rasmussen K, VandenHeuvel S, Zaborek J, Morris ZS, Erbe AK, Sondel PM, Rakhmilevich AL. Cyclophosphamide augments the efficacy of in situ vaccination in a mouse melanoma model. Front Oncol 2023; 13:1200436. [PMID: 37746303 PMCID: PMC10516537 DOI: 10.3389/fonc.2023.1200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice. Methods Treatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry. Results Similar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge. Conclusion Taken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations.
Collapse
Affiliation(s)
- Noah Tsarovsky
- Department of Human Oncology, Madison, WI, United States
| | - Mildred Felder
- Department of Human Oncology, Madison, WI, United States
| | - Mackenzie Heck
- Department of Human Oncology, Madison, WI, United States
| | | | | | | | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| |
Collapse
|
17
|
Guo RQ, Peng JZ, Sun J, Li YM. Clinical significance of circulating tumor DNA in localized non-small cell lung cancer: a systematic review and meta-analysis. Clin Exp Med 2023; 23:1621-1631. [PMID: 36315311 DOI: 10.1007/s10238-022-00924-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2022]
Abstract
Circulating tumor DNA (ctDNA) detection holds promise for genetic analyses and quantitative assessment of tumor burden. A systematic review and meta-analysis were conducted to investigate the clinical relevance of ctDNA among patients with localized non-small cell lung cancer (NSCLC). PubMed, EMBASE, and the Cochrane Library were searched for eligible studies published from January 2001 to April 2022. After quality assessments and data extraction, diagnostic accuracy variables and prognostic data were calculated and analyzed by Meta-Disc 1.4, Review Manager 5.4.1, and STATA 17.0. Eight prospective studies and one retrospective study including 784 patients with localized NSCLC were used in our meta-analysis. The pooled sensitivity and specificity of ctDNA for minimal residual disease (MRD) detection were 0.58 and 0.93, respectively. The pooled positive and negative likelihood ratios were 7.57 (95% confidence interval (CI) 2.84-20.20) and 0.45 (95% CI 0.37-0.55), respectively. The area under the summary receiver operating characteristic curve was 0.8967, and the diagnostic odds ratio was 32.26 (95% CI 14.63-71.12). In addition, both precurative-treatment and postcurative-treatment ctDNA positivity was associated with worse recurrence-free survival (hazard ratio (HR), 3.82 and 8.32, respectively) and worse overall survival (HR, 3.82 and 4.73, respectively). The findings suggested that ctDNA detection has beneficial utility regarding MRD detection specificity; moreover, positive ctDNA was associated with poor prognosis in patients with localized NSCLC.
Collapse
Affiliation(s)
- Run-Qi Guo
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Jin-Zhao Peng
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jie Sun
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuan-Ming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Mustafa A, Elkhamisy F, Arghiani N, Pranjol MZI. Potential crosstalk between pericytes and cathepsins in the tumour microenvironment. Biomed Pharmacother 2023; 164:114932. [PMID: 37236029 DOI: 10.1016/j.biopha.2023.114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains a formidable global health challenge, and as such, investigators are constantly exploring underlying mechanisms that drive its progression. One area of interest is the role of lysosomal enzymes, such as cathepsins, in regulating cancer growth and development in the tumour microenvironment (TME). Pericytes, a key component of vasculature, play a key role in regulating blood vessel formation in the TME, have been shown to be influenced by cathepsins and their activity. Although cathepsins such as cathepsins D and L have been shown to induce angiogenesis, currently no direct link is known between pericytes and cathepsins interaction. This review aims to shed light on the potential interplay between pericytes and cathepsins in the TME, highlighting the possible implications for cancer therapy and future research directions.
Collapse
Affiliation(s)
- A Mustafa
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - F Elkhamisy
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - N Arghiani
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - M Z I Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
19
|
New Approaches in Early-Stage NSCL Management: Potential Use of PARP Inhibitors and Immunotherapy Combination. Int J Mol Sci 2023; 24:ijms24044044. [PMID: 36835456 PMCID: PMC9961654 DOI: 10.3390/ijms24044044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world, being the first cause of cancer-related mortality. Surgery remains the only potentially curative treatment for Non-Small Cell Lung Cancer (NSCLC), but the recurrence risk remains high (30-55%) and Overall Survival (OS) is still lower than desirable (63% at 5 years), even with adjuvant treatment. Neoadjuvant treatment can be helpful and new therapies and pharmacologic associations are being studied. Immune Checkpoint Inhibitors (ICI) and PARP inhibitors (PARPi) are two pharmacological classes already in use to treat several cancers. Some pre-clinical studies have shown that its association can be synergic and this is being studied in different settings. Here, we review the PARPi and ICI strategies in cancer management and the information will be used to develop a clinical trial to evaluate the potential of PARPi association with ICI in early-stage neoadjuvant setting NSCLC.
Collapse
|
20
|
Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Release 2023; 354:453-464. [PMID: 36649743 DOI: 10.1016/j.jconrel.2023.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Cancer vaccine efficacy is limited by the immunosuppressive nature of the tumor microenvironment created by inflammation, immune inhibitory factors, and regulatory T cells (Tregs). Inspired by the role of cyclooxygenase-2 (COX-2) in inflammation in the tumor site, we proposed that normalization of the tumor microenvironment by celecoxib as a COX-2 inhibitor might improve the efficacy of Dendritic Cell (DC) therapy in a melanoma model. In the present study, liposomal celecoxib (Lip-CLX) was combined with ex vivo generated DC vaccines pulsed with gp100 peptide (in liposomal and non-liposomal forms) for prophylactic and therapeutic evaluation in the B16F10 melanoma model. Tumor site analysis by flow cytometry demonstrated that intravenous administration of Lip-CLX at a dose of 1 mg/kg in four doses effectively normalized the tumor microenvironment by reducing Tregs and IL-10 production. Furthermore, in combination with DC vaccination (DC + Lip-peptide+Lip-CLX), it significantly increased tumor-infiltrating CD4+ and CD8+ T cells and secretion of IFN-γ. This combinatorial strategy produced an effective prophylactic and therapeutic antitumor response, which reduced tumor growth and prolonged the overall survival. In conclusion, our findings suggest that the liposomal celecoxib targets the inhibitory mechanisms of the tumor microenvironment and broadens the impact of DC therapy to improve the outcome of immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Vajiheh Jahani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Chan L, Wood GA, Wootton SK, Bridle BW, Karimi K. Neutrophils in Dendritic Cell-Based Cancer Vaccination: The Potential Roles of Neutrophil Extracellular Trap Formation. Int J Mol Sci 2023; 24:ijms24020896. [PMID: 36674412 PMCID: PMC9866544 DOI: 10.3390/ijms24020896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 54668)
| |
Collapse
|
22
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
23
|
Liang R, Wu C, Liu S, Zhao W. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers. Drug Deliv 2022; 29:1620-1630. [PMID: 35612318 PMCID: PMC9135425 DOI: 10.1080/10717544.2022.2075986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022] Open
Abstract
Despite surgical and therapeutic advances, glioblastoma multiforme (GBM) is among the most fatal primary brain tumor that is aggressive in nature. Patients with GBM have a median lifespan of just 15 months when treated with the current standard of therapy, which includes surgical resection and concomitant chemo-radiotherapy. In recent years, nanotechnology has shown considerable promise in treating a variety of illnesses, and certain nanomaterials have been proven to pass the blood-brain barrier (BBB) and stay in glioblastoma tissues. Recent preclinical research suggests that the diagnosis and treatment of brain tumor is significantly explored through the intervention of nanomaterials that has showed enhanced effect. In order to elicit an antitumor response, it is necessary to retain the therapeutic candidates within glioblastoma tissues and this job is effectively carried out by nanocarrier particularly functionalized nanocarriers. In the arena of neoplastic diseases including GBM have achieved great attention in recent decades. Furthermore, interleukin-13 receptor α chain variant 2 (IL13Rα2) is a highly expressed and studied target in GBM that is lacked by the surrounding environment. The absence of IL13Rα2 in surrounding normal tissues has made it a suitable target in glioblastoma therapy. In this review article, we highlighted the role of IL13Rα2 as a potential target in GBM along with design and fabrication of efficient targeting strategies for IL13Rα2 through surface functionalized nanocarriers.
Collapse
Affiliation(s)
- Ruijia Liang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Cheng Wu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wenyan Zhao
- Department of General Practice Medicine, Center for General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
24
|
Achmad H, Saleh Ibrahim Y, Mohammed Al-Taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis Ramírez-Coronel A, Turki Jalil A, Setia Budi H, Sawitri W, Elena Stanislavovna M, Gupta J. Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. Int Immunopharmacol 2022; 113:109434. [DOI: 10.1016/j.intimp.2022.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
|
25
|
Guo J, Ma S, Mai Y, Gao T, Song Z, Yang J. Combination of a cationic complexes loaded with mRNA and α-Galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. Int Immunopharmacol 2022; 113:109254. [DOI: 10.1016/j.intimp.2022.109254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
|
26
|
Hopkins C, Javius-Jones K, Wang Y, Hong H, Hu Q, Hong S. Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform. Expert Opin Drug Deliv 2022; 19:1337-1349. [PMID: 35949105 DOI: 10.1080/17425247.2022.2112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting. In addition, nanocarriers can be multifunctionalized to deliver multiple cancer therapeutics in a single drug platform, offering synergistic potential from co-delivery approaches. AREAS COVERED This review focuses on the delivery of cancer therapeutics using emerging nanocarriers to achieve synergistic results via co-delivery of immune-modulating components (i.e. chemotherapeutics, monoclonal antibodies, and genes). EXPERT OPINION Nanocarrier-mediated delivery of combinatorial immunotherapy creates the opportunity to fine-tune drug release while achieving superior tumor targeting and tumor cell death, compared to free drug counterparts. As these nanoplatforms are constantly improved upon, combinatorial immunotherapy will afford the greatest benefit to treat an array of tumor types while inhibiting cancer evasion pathways.
Collapse
Affiliation(s)
- Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
28
|
Melia F, Udomjarumanee P, Zinovkin D, Arghiani N, Pranjol MZI. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front Oncol 2022; 12:975644. [PMID: 36059680 PMCID: PMC9434004 DOI: 10.3389/fonc.2022.975644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The disease still remains incurable and highly lethal in the advanced stage, representing a global health concern. Therefore, it is essential to understand the causes and risk factors leading to its development. Because age-related cellular senescence and type 2 diabetes (T2D) have been recognised as risk factors for CRC development, the recent finding that type 2 diabetic patients present an elevated circulating volume of senescent cells raises the question whether type 2 diabetes facilitates the process of CRC tumorigenesis by inducing premature cell senescence. In this review, we will discuss the mechanisms according to which T2D induces cellular senescence and the role of type 2 diabetes-induced cellular senescence in the pathogenesis and progression of colorectal cancer. Lastly, we will explore the current therapeutic approaches and challenges in targeting senescence.
Collapse
Affiliation(s)
- Francesco Melia
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Palita Udomjarumanee
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| | - Md Zahidul Islam Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| |
Collapse
|
29
|
Ileiwat ZE, Tabish TA, Zinovkin DA, Yuzugulen J, Arghiani N, Pranjol MZI. The mechanistic immunosuppressive role of the tumour vasculature and potential nanoparticle-mediated therapeutic strategies. Front Immunol 2022; 13:976677. [PMID: 36045675 PMCID: PMC9423123 DOI: 10.3389/fimmu.2022.976677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
The tumour vasculature is well-established to display irregular structure and hierarchy that is conducive to promoting tumour growth and metastasis while maintaining immunosuppression. As tumours grow, their metabolic rate increases while their distance from blood vessels furthers, generating a hypoxic and acidic tumour microenvironment. Consequently, cancer cells upregulate the expression of pro-angiogenic factors which propagate aberrant blood vessel formation. This generates atypical vascular features that reduce chemotherapy, radiotherapy, and immunotherapy efficacy. Therefore, the development of therapies aiming to restore the vasculature to a functional state remains a necessary research target. Many anti-angiogenic therapies aim to target this such as bevacizumab or sunitinib but have shown variable efficacy in solid tumours due to intrinsic or acquired resistance. Therefore, novel therapeutic strategies such as combination therapies and nanotechnology-mediated therapies may provide alternatives to overcoming the barriers generated by the tumour vasculature. This review summarises the mechanisms that induce abnormal tumour angiogenesis and how the vasculature’s features elicit immunosuppression. Furthermore, the review explores examples of treatment regiments that target the tumour vasculature.
Collapse
Affiliation(s)
- Zakaria Elias Ileiwat
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| | - Md Zahidul I. Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| |
Collapse
|
30
|
Zhang Z, Liu F, Chen W, Liao Z, Zhang W, Zhang B, Liang H, Chu L, Zhang Z. The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Exp Hematol Oncol 2022; 11:30. [PMID: 35590394 PMCID: PMC9118853 DOI: 10.1186/s40164-022-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 12/31/2022] Open
Abstract
As the most common and abundant RNA modification in eukaryotic cells, N6-methyladenosine (m6A) modification plays an important role in different stages of tumor. m6A can participate in the regulation of tumor immune escape, so as to enhance the monitoring of tumor by the immune system and reduce tumorgenesis. m6A can also affect the tumor progression by regulating the immune cell responses to tumor in tumor microenvironment. In addition, immunotherapy has become the most popular method for the treatment of cancer, in which targets such as immune checkpoints are also closely associated with m6A. This review discusses the roles of N6-methyladenosine modification in tumor immune regulation, their regulatory mechanism, and the prospect of immunotherapy.
Collapse
Affiliation(s)
- Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hubei, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, 430030, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Zhang L, Zhao W, Huang J, Li F, Sheng J, Song H, Chen Y. Development of a Dendritic Cell/Tumor Cell Fusion Cell Membrane Nano-Vaccine for the Treatment of Ovarian Cancer. Front Immunol 2022; 13:828263. [PMID: 35251013 PMCID: PMC8893350 DOI: 10.3389/fimmu.2022.828263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is a malignant tumor that seriously affects women’s health. In recent years, immunotherapy has shown great potential in tumor treatment. As a major contributor of immunotherapy, dendritic cells (DCs) - based tumor vaccine has been demonstrated to have a positive effect in inducing immune responses in animal experiments. However, the effect of tumor vaccines in clinical trials is not ideal. Therefore, it is urgent to improve the existing tumor vaccines for tumor treatment. Here, we developed a fusion cell membrane (FCM) nano-vaccine FCM-NPs, which is prepared by fusing DCs and OC cells and coating the FCM on the poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with the immune adjuvant CpG-oligodeoxynucleotide (CpG-ODN). The fusion process promoted the maturation of DCs, thus up-regulating the expression of costimulatory molecule CD80/CD86 and accelerating lymph node homing of DCs. Furthermore, FCM-NPs has both the immunogenicity of tumor cells and the antigen presenting ability of DCs, it can stimulate naive T lymphocytes to produce a large number of tumor-specific cytotoxic CD8+ T lymphocytes. FCM-NPs exhibited strong immuno-activating effect both in vitro and in vivo. By establishing subcutaneous transplanted tumor model, patient-derived xenograft tumor model and abdominal metastatic tumor model, FCM-NPs was proved to have the effect of delaying the growth and inhibiting the metastasis of OC. FCM-NPs is expected to become a new tumor vaccine for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jinke Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jindong Sheng
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hualin Song
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| |
Collapse
|
32
|
Nassiri M, Gopalan V, Vakili-Azghandi M. Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy. Curr Cancer Drug Targets 2022; 22:373-387. [PMID: 35240973 DOI: 10.2174/1568009622666220303101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe structures, functions and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis and causes death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare with other scientific information.
Collapse
Affiliation(s)
- Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
33
|
Xiao P, Li Y, Wang D. Amplifying antitumor T cell immunity with versatile drug delivery systems for personalized cancer immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2021.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Lee JA, Shin JM, Song SH, Kim CH, Son S, Shin S, Park JH. Recruitment of dendritic cells using ‘find-me’ signaling microparticles for personalized cancer immunotherapy. Biomaterials 2022; 282:121412. [DOI: 10.1016/j.biomaterials.2022.121412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
|
35
|
Zinovkin DA, Kose SY, Nadyrov EA, Achinovich SL, Los' DM, Gavrilenko TE, Gavrilenko DI, Yuzugulen J, Pranjol MZI. Potential role of tumor-infiltrating T-, B-lymphocytes, tumor-associated macrophages and IgA-secreting plasma cells in long-term survival in the rectal adenocarcinoma patients. Life Sci 2021; 286:120052. [PMID: 34656554 DOI: 10.1016/j.lfs.2021.120052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
AIMS Many studies investigated the associations between the role of immune cells of rectal cancer microenvironment and survival during the first 5 years post-surgery. This is problematic as this disease has the potential to progress even after 5 years after relapse and infiltrating immune cells could play key roles. Therefore, this retrospective study investigates expression and roles of tumor-infiltrating T-lymphocytes (TIL-T), tumor-infiltrating B-lymphocytes (TILB), IgA+ plasma cells (IgA+ PC) and tumor-associated macrophages (TAM) in patients with or without progression over 5 years survival with rectal adenocarcinoma. MAIN METHODS Here we used immunohistochemical staining of CD3, CD20, IgA, CD68 positive cells and its detection in rectal cancer stroma. Data was analyzed using Mann Whitney U test, ROC, survival and Cox's regression analysis. KEY FINDINGS The number of TIL-T (p = 0.0276), TIL-B (p < 0.0001) and IgA+ PC (p = 0.015) immune cells was significantly higher in rectal cancer stroma of patients with favorable outcome. Univariate Cox's regression analysis revealed a predictive role of TIL-T (HR = 0.482; 95% CI, 0.303 to 0.704; p < 0.0001), TIL-B (HR = 0.301; 95% CI, 0.198 to 0.481; p < 0.0001) and IgA+-PC (HR = 0.488; 95% CI, 0.322 to 0.741; p < 0.0001). Multivariate Cox's regression analysis showed prognostic role of TIL-B (HR = 0.940; 95% CI, 0.914 to 0.968; p < 0.0001) and IgA+-PC (HR = 0.985; 95% CI, 0.975 to 0.996; p = 0.006) play role in long time survival. SIGNIFICANCE CD20+ TIL-B and IgA+ cells have significant associations with long -term survival of patients with rectal cancer, with potential therapeutic intervention in cancer immunotherapy.
Collapse
Affiliation(s)
- Dmitry A Zinovkin
- Department of Pathology, Gomel State Medical University, 246000 Gomel, Belarus.
| | - Suheyla Y Kose
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Eldar A Nadyrov
- Department of Pathology, Gomel State Medical University, 246000 Gomel, Belarus
| | - Sergey L Achinovich
- Department of Anatomical Pathology, Gomel Regional Clinical Oncological Hospital, Gomel, Belarus
| | - Dmitry M Los'
- Department of Anatomical Pathology, Gomel Regional Clinical Oncological Hospital, Gomel, Belarus
| | - Tatyana E Gavrilenko
- Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | - Dmitry I Gavrilenko
- Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | | |
Collapse
|
36
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Ajarrag S, St-Pierre Y. Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers (Basel) 2021; 13:cancers13215533. [PMID: 34771696 PMCID: PMC8582867 DOI: 10.3390/cancers13215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Glioblastomas are among the most common and aggressive brain tumors. The high rate of recurrence and mortality associated with this cancer underscores the need for the development of new therapeutical targets. Galectins are among the new targets that have attracted the attention of many scientists working in the field of cancer. They form a group of small proteins found in many tissues where they accomplish various physiological roles, including regulation of immune response and resistance to cell death. In many types of cancer, however, production of abnormally high levels of galectins by cancer cells can be detrimental to patients. Elevated levels of galectins can, for example, suppress the ability of the host’s immune system to kill cancer cells. They can also provide cancer cells with resistance to drugs-induced cell death. Here, we review the recent progress that has contributed to a better understanding of the mechanisms of actions of galectins in glioblastoma. We also discuss recent development of anti-galectin drugs and the challenges associated with their use in clinical settings, with particular attention to their role in reducing the efficacy of immunotherapy, a promising treatment that exploits the capacity of the immune system to recognize and kill cancer cells. Abstract Traditional wisdom suggests that galectins play pivotal roles at different steps in cancer progression. Galectins are particularly well known for their ability to increase the invasiveness of cancer cells and their resistance to drug-induced cell death. They also contribute to the development of local and systemic immunosuppression, allowing cancer cells to escape the host’s immunological defense. This is particularly true in glioma, the most common primary intracranial tumor. Abnormally high production of extracellular galectins in glioma contributes to the establishment of a strong immunosuppressive environment that favors immune escape and tumor progression. Considering the recent development and success of immunotherapy in halting cancer progression, it is logical to foresee that galectin-specific drugs may help to improve the success rate of immunotherapy for glioma. This provides a new perspective to target galectins, whose intracellular roles in cancer progression have already been investigated thoroughly. In this review, we discuss the mechanisms of action of galectins at different steps of glioma progression and the potential of galectin-specific drugs for the treatment of glioma.
Collapse
|
38
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
39
|
Daly S, O’Sullivan A, MacLoughlin R. Cellular Immunotherapy and the Lung. Vaccines (Basel) 2021; 9:1018. [PMID: 34579255 PMCID: PMC8473388 DOI: 10.3390/vaccines9091018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The new era of cellular immunotherapies has provided state-of-the-art and efficient strategies for the prevention and treatment of cancer and infectious diseases. Cellular immunotherapies are at the forefront of innovative medical care, including adoptive T cell therapies, cancer vaccines, NK cell therapies, and immune checkpoint inhibitors. The focus of this review is on cellular immunotherapies and their application in the lung, as respiratory diseases remain one of the main causes of death worldwide. The ongoing global pandemic has shed a new light on respiratory viruses, with a key area of concern being how to combat and control their infections. The focus of cellular immunotherapies has largely been on treating cancer and has had major successes in the past few years. However, recent preclinical and clinical studies using these immunotherapies for respiratory viral infections demonstrate promising potential. Therefore, in this review we explore the use of multiple cellular immunotherapies in treating viral respiratory infections, along with investigating several routes of administration with an emphasis on inhaled immunotherapies.
Collapse
Affiliation(s)
- Sorcha Daly
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
40
|
Do-Thi VA, Lee H, Jeong HJ, Lee JO, Kim YS. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System. Cancers (Basel) 2021; 13:cancers13164039. [PMID: 34439192 PMCID: PMC8394727 DOI: 10.3390/cancers13164039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the use of the BacMam system to deliver and express self-assembling IL-15 and IL-15Rα genes to murine B16F10 melanoma and CT26 colon cancer cells. BacMam-based IL-15 and IL-15Rα were well-expressed and assembled to form the biologically functional IL-15:IL-15Rα complex. Immunization with this IL-15:IL-15Rα cancer vaccine delayed tumor growth in mice by inducing effector memory CD4+ and CD8+ cells and effector NK cells which are tumor-infiltrating. It caused strong antitumor immune responses of CD8+ effector cells in a tumor-antigen specific manner both in vitro and in vivo and significantly attenuated Treg cells which a control virus-infected cancer vaccine could induce. Post-treatment with this cancer vaccine after a live cancer cell injection also prominently delayed the growth of the tumor. Collectively, we demonstrate a vaccine platform consisting of BacMam virus-infected B16F10 or CT26 cancer cells that secrete IL-15:IL-15Rα. This study is the first demonstration of a functionally competent soluble IL-15:IL-15Rα complex-related cancer vaccine using a baculovirus system and advocates that the BacMam system can be used as a secure and rapid method of producing a protective and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hye Jin Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
- Correspondence: (J.-O.L.); (Y.S.K.)
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-O.L.); (Y.S.K.)
| |
Collapse
|
41
|
Broadway R, Patel NM, Hillier LE, El-Briri A, Korneva YS, Zinovkin DA, Pranjol MZI. Potential Role of Diabetes Mellitus-Associated T Cell Senescence in Epithelial Ovarian Cancer Omental Metastasis. Life (Basel) 2021; 11:788. [PMID: 34440532 PMCID: PMC8401827 DOI: 10.3390/life11080788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75-79 age group in women, have been shown to be influenced by immune cells within the "milky spots" or immune clusters of the omentum. As T2DM has been reported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions.
Collapse
Affiliation(s)
- Rhianne Broadway
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Nikita M. Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Lucy E. Hillier
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Amal El-Briri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Yulia S. Korneva
- Department of Pathological Anatomy, Smolensk State Medical University, Krupskoy St., 28, 214019 Smolensk, Russia;
- Smolensk Regional Institute of Pathology, Gagarina av, 214020 Smolensk, Russia
| | - Dmitry A. Zinovkin
- Department of Pathology, Gomel State Medical University, 246000 Gomel Region, Belarus;
| | - Md Zahidul I. Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| |
Collapse
|
42
|
Ribatti D, Solimando AG, Pezzella F. The Anti-VEGF(R) Drug Discovery Legacy: Improving Attrition Rates by Breaking the Vicious Cycle of Angiogenesis in Cancer. Cancers (Basel) 2021; 13:cancers13143433. [PMID: 34298648 PMCID: PMC8304542 DOI: 10.3390/cancers13143433] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to anti-vascular endothelial growth factor (VEGF) molecules causes lack of response and disease recurrence. Acquired resistance develops as a result of genetic/epigenetic changes conferring to the cancer cells a drug resistant phenotype. In addition to tumor cells, tumor endothelial cells also undergo epigenetic modifications involved in resistance to anti-angiogenic therapies. The association of multiple anti-angiogenic molecules or a combination of anti-angiogenic drugs with other treatment regimens have been indicated as alternative therapeutic strategies to overcome resistance to anti-angiogenic therapies. Alternative mechanisms of tumor vasculature, including intussusceptive microvascular growth (IMG), vasculogenic mimicry, and vascular co-option, are involved in resistance to anti-angiogenic therapies. The crosstalk between angiogenesis and immune cells explains the efficacy of combining anti-angiogenic drugs with immune check-point inhibitors. Collectively, in order to increase clinical benefits and overcome resistance to anti-angiogenesis therapies, pan-omics profiling is key.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-547832
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy;
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX39DU, UK;
| |
Collapse
|
43
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
44
|
Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines (Basel) 2021; 9:vaccines9060634. [PMID: 34200702 PMCID: PMC8230410 DOI: 10.3390/vaccines9060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor β (TGF-β), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.
Collapse
|
45
|
Gray SG. Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma. BMC Pulm Med 2021; 21:148. [PMID: 33952230 PMCID: PMC8097826 DOI: 10.1186/s12890-021-01513-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of immunotherapy in cancer is now well-established, and therapeutic options such as checkpoint inhibitors are increasingly being approved in many cancers such as non-small cell lung cancer (NSCLC). Malignant pleural mesothelioma (MPM) is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Evidence from clinical trials of checkpoint inhibitors in this rare disease, suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. MAIN TEXT While the majority of studies currently focus on the established checkpoint inhibitors (CTLA4 and PD1/PDL1), there are many other potential checkpoints that could also be targeted. In this review I provide a synopsis of current clinical trials of immunotherapies in MPM, explore potential candidate new avenues that may become future targets for immunotherapy and discuss aspects of immunotherapy that may affect the clinical outcomes of such therapies in this cancer. CONCLUSIONS The current situation regarding checkpoint inhibitors in the management of MPM whilst encouraging, despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Additional studies are therefore required to further delineate and improve our understanding of both checkpoint inhibitors and the immune system in MPM. Moreover, many new potential checkpoints have yet to be studied for their therapeutic potential in MPM. All these plus the existing checkpoint inhibitors will require the development of new biomarkers for patient stratification, response and also for predicting or monitoring the emergence of resistance to these agents in MPM patients. Other potential therapeutic avenues such CAR-T therapy or treatments like oncolytic viruses or agents that target the interferon pathway designed to recruit more immune cells to the tumor also hold great promise in this hard to treat cancer.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, CPL 30, TCDSJ Cancer Institute, St James's Hospital, Dublin, D08 RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biology, Technical University of Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
Wang X, Zhao X, He Z. Mesenchymal stem cell carriers enhance anti-tumor efficacy of oncolytic virotherapy. Oncol Lett 2021; 21:238. [PMID: 33664802 PMCID: PMC7882891 DOI: 10.3892/ol.2021.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) specifically infect, replicate and eventually destroy tumor cells, with no concomitant toxicity to adjacent normal cells. Furthermore, OVs can regulate tumor microenvironments and stimulate anti-tumor immune responses. Mesenchymal stem cells (MSCs) have inherent tumor tropisms and immunosuppressive functions. MSCs carrying OVs not only protect viruses from clearing by the immune system, but they also deliver the virus to tumor lesions. Equally, cytokines released by MSCs enhance anti-tumor immune responses, suggesting that MSCs carrying OVs may be considered as a promising strategy in enhancing the anti-tumor efficacies of virotherapy. In the present review, preclinical and clinical studies were evaluated and discussed, as well as the effectiveness of MSCs carrying OVs for tumor treatment.
Collapse
Affiliation(s)
- Xianyao Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xing Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
47
|
Weissman S, Saleem S, Sharma S, Krupka M, Inayat F, Aziz M, Tabibian JH. Incidence, mortality, and risk factors of immunotherapy-associated hepatotoxicity: A nationwide hospitalization analysis. LIVER RESEARCH 2021; 5:28-32. [PMID: 33828870 PMCID: PMC8023224 DOI: 10.1016/j.livres.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Anti-neoplastic immunotherapy has revolutionized cancer management; however. its safety profile with respect to liver-related injury remains largely unexplored. Herein, we analyzed a United States national database to determine the incidence, mortality, and predictors of hepatotoxicity in the setting of anti-neoplastic immunotherapy. METHODS This was a nationwide retrospective study of hospital encounters from 2011 to 2014 using the National Inpatient Sample (NIS) database. We utilized the International Classification of Diseases, Ninth Revision (ICD-9) coding system to identify all adult patients who underwent anti-neoplastic immunotherapy during hospitalization. The primary outcome was the incidence of hepatotoxicity during the same hospitalization. Secondary outcomes included in-hospital mortality as well as socioeconomic and ethno-racial predictors of hepatotoxicity. Analyses were performed using IBM SPSS Statistics 23.0. RESULTS The sample included 3002 patients who underwent inpatient anti-neoplastic immunotherapy. The incidence of hepatotoxicity was 10.1%, which was significantly higher as compared to a matched inpatient population (adjusted odds ratio (aOR) 4.93, 95% confidence interval (CI): 3.80-6.40. P = 0.001). No significant mortality difference was seen in those that developed hepatotoxicity compared to those who did not (aOR 0.47. 95% CI: 0.03-8.03, P = 0.612). Age under 60 (aOR 1.56. 95% CI: 123-1.78, P = 0.050) and white race (aOR 1.85. 95% CI: 1.35-2.04, P<0.010) were independent risk factors for developing immunotherapy-associated hepatotoxicity. CONCLUSIONS In this large, nationwide database analysis, we found that anti-neoplastic immunotherapy was associated with a nearly five-fold risk of in-hospital hepatotoxicity as compared to a matched inpatient population, though without an associated mortality difference. Additionally, younger age and white race were identified as predictors of immunotherapy-associated hepatotoxicity. Heightened vigilance and prospective investigation of the risk factors and liver-related adverse effects of anti-neoplastic immunotherapy are warranted.
Collapse
Affiliation(s)
- Simcha Weissman
- Department of Medicine, Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ, USA
| | - Saad Saleem
- Department of Medicine, Sunrise Hospital and Medical Center, Las Vegas, NV, USA
| | - Sachit Sharma
- Department of Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Menashe Krupka
- Department of Medicine, Westchester Medical Center, Valhalla, NY, USA
| | - Faisal Inayat
- Department of Medicine, Allama lqbal Medical College, Lahore, Pakistan
| | - Muhammad Aziz
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center, Toledo, OH, USA
| | - James H. Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Corresponding author. Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA. (J.H. Tabibian)
| |
Collapse
|
48
|
Stephen ZR, Zhang M. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Adv Healthc Mater 2021; 10:e2001415. [PMID: 33236511 PMCID: PMC8034553 DOI: 10.1002/adhm.202001415] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has demonstrated great clinical success in certain cancers, driven primarily by immune checkpoint blockade and adoptive cell therapies. Immunotherapy can elicit strong, durable responses in some patients, but others do not respond, and to date immunotherapy has demonstrated success in only a limited number of cancers. To address this limitation, combinatorial approaches with chemo- and radiotherapy have been applied in the clinic. Extensive preclinical evidence suggests that hyperthermia therapy (HT) has considerable potential to augment immunotherapy with minimal toxicity. This progress report will provide a brief overview of immunotherapy and HT approaches and highlight recent progress in the application of nanoparticle (NP)-based HT in combination with immunotherapy. NPs allow for tumor-specific targeting of deep tissue tumors while potentially providing more even heating. NP-based HT increases tumor immunogenicity and tumor permeability, which improves immune cell infiltration and creates an environment more responsive to immunotherapy, particularly in solid tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
49
|
Drakes ML, Czerlanis CM, Stiff PJ. Immune Checkpoint Blockade in Gynecologic Cancers: State of Affairs. Cancers (Basel) 2020; 12:cancers12113301. [PMID: 33182298 PMCID: PMC7695253 DOI: 10.3390/cancers12113301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Most endometrial cancer patients are diagnosed at an early stage, receive standard treatment, and survive well. Ovarian cancer has no specific symptoms and usually escapes diagnosis until the patient has advanced disease. This disease results in the highest number of deaths of gynecologic cancers. Current treatments for gynecologic cancers in the advanced stage are not sufficiently effective for good outcome in most patients. This review discusses two novel treatments, which are immune checkpoint inhibitor antibodies that block immune checkpoint molecules cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) in patients. The antibody blocking of CTLA-4 or PD-1 alone is promising treatment for some categories of advanced disease endometrial cancer, but it has little effect against ovarian cancer. Our study primarily discusses the status of clinical trials for these two diseases and the biological parameters governing the different outcomes to these therapies. We also propose mechanisms whereby blocking CTLA-4 and PD-1 may be used in combination with other agents to give much better survival in advanced disease ovarian cancer patients. Abstract This review provides an update on the current use of immune checkpoint inhibitors (ICI) in female gynecologic cancers, and it addresses the potential of these agents to provide therapy options for disease management and long-term remission in advanced disease patients, where surgery, chemotherapy, and/or radiation fail to meet this goal. The topic of immune checkpoint inhibitors (ICI) blocking cytotoxic T lymphocyte associated protein-4 (CTLA-4) and the programmed death-1 (PD-1) axis has come to the forefront of translational medicine over the last decade for several malignancies. The text will focus primarily on a discussion of ovarian cancer, which is the most frequent cause of death of gynecologic cancers; endometrial cancer, which is the most often diagnosed gynecologic cancer; and cervical cancer, which is the third most common female gynecologic malignancy, all of which unfavorably alter the lives of many women. We will address the critical factors that regulate the outcome of these cancer types to ICI therapy, the ongoing clinical trials in this area, as well as the adverse immune responses that impact the outcome of patients given ICI regimens.
Collapse
|