1
|
Li Z, Zhang J, Xu T, Hao Z, Li Y. Mechanism of histone demethylase KDM5A in osteoporotic fracture healing through epigenetic regulation of the miR-495/SKP2/Runx2 axis. Mol Med 2025; 31:65. [PMID: 39972431 PMCID: PMC11837617 DOI: 10.1186/s10020-025-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Osteoporosis represents a salient metabolic bone disorder. Histone demethylase plays a vital role in bone development and homeostasis. This study explored the mechanism of histone demethylase KDM5A affecting osteoporotic fracture healing via the miR-495/SKP2/Runx2 axis. METHODS The murine model of osteoporotic fracture was established. The bone mineral density, maximum elastic stress, and maximum load were tested. The relative trabecular bone volume, bone trabecular thickness, and trabecular number at the proximal end of tibia were detected. The histopathological changes of femur tissues and bone microstructure were observed. Expressions of KDM5A and osteogenic factors were detected. The cell proliferation, alkaline phosphatase activity, and calcified nodules were measured. The binding relationships between KDM5A and miR-495 promoter, and miR-495 and SKP2 were verified. The interaction between SKP2 and Runx2 was detected. The ubiquitination level of Runx2 and the stability of Runx2 protein were detected. RESULTS KDM5A was highly expressed in the murine model of osteoporotic fracture. Interference of KDM5A expression facilitated fracture healing in osteoporotic mice. KDM5A downregulated miR-495 expression by promoting the H3K4me3 methylation of the miR-495 promoter. Inhibition of miR-495 reversed the effect of KDM5A silencing on osteoblast proliferation, differentiation, and mineralization. miR-495 facilitated osteoblast proliferation, differentiation, and mineralization by targeting SKP2. SKP2 suppressed Runx2 expression through ubiquitination degradation. Inhibition of Runx2 reversed the promoting effect of SKP2 silencing on osteogenic differentiation. CONCLUSION KDM5A attenuated the inhibition of miR-495 on SKP2 and promoted the ubiquitination degradation of Runx2 protein by SKP2, thereby repressing osteoblast differentiation and retarding osteoporotic fracture healing.
Collapse
Affiliation(s)
- Zhuoran Li
- School of Medicine, University of Nottingham, Nottingham, NG7 2NR, UK
| | - Junyan Zhang
- Department of Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingting Xu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGong New Street, Xinghualing District, Taiyuan, Shanxi Province, 030013, China.
| | - Yadong Li
- Department of Emergency, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Xinghualing District, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
2
|
Zhu Y, Yang W, Wang X, Chen M. AUP1 transcriptionally activated by KDM5B reprograms lipid metabolism to promote the malignant progression of cervical cancer. Int J Oncol 2024; 65:107. [PMID: 39329209 PMCID: PMC11436259 DOI: 10.3892/ijo.2024.5695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Cervical cancer is one of the reproductive malignancies threatening women's lives worldwide. In the present study, it was aimed to explore the role and mechanism of ancient ubiquitous protein 1 (AUP1) in cervical cancer. Through bioinformatics analysis, AUP1 expression in cervical cancer tissues and the correlation between AUP1 and the prognosis of patients were analyzed. AUP1 expression in several cervical cancer cell lines was detected. Following the co‑transfection of short hairpin RNA specific to AUP1 with or without lysine demethylase 5B (KDM5B) overexpression plasmids in SiHa cells, the proliferation and apoptosis of SiHa cells were detected. Additionally, wound healing and Transwell assays were used to detect SiHa cell migration and invasion. Cellular lipid droplets level was detected using the Oil red O staining. Meantime, the levels of triglyceride, cholesterol, oxygen consumption rates and expression of lipid metabolism‑related proteins were detected to assess the lipid metabolism in SiHa cells. Then, the luciferase reporter assay and ChIP assay were used to verify the binding between KDM5B and AUP1. Finally, the effects of AUP1 and KDM5B on the growth and lipid metabolism in SiHa tumor‑bearing mice were measured. AUP1 was significantly upregulated in cervical cancer tissues and cells. AUP1 interference inhibited the malignant biological behaviors and lipid metabolism reprogramming of SiHa cells, which was blocked by KDM5B overexpression. Moreover, KDM5B could transcriptionally activate AUP1 and upregulate AUP1 expression. Furthermore, AUP1 knockdown transcriptionally regulated by KDM5B limited the tumor growth and suppressed the lipid metabolism reprogramming in vivo. Collectively, AUP1 could be transcriptionally activated by KDM5B to reprogram lipid metabolism, thereby promoting the progression of cervical cancer. These findings reveal possible therapeutic strategies in targeting metabolic pathways.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Wenjuan Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310059, P.R. China
| | - Xinyan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Mengmeng Chen
- Gynecology and Obstetrics Department, Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
3
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Han M, Zhao R, Lin S, Feng J, Yang S, Zhu W, Chen Y. Female patients with hepatitis B may exhibit a reduced risk of breast cancer: A review of NHANES data. Medicine (Baltimore) 2024; 103:e39373. [PMID: 39183392 PMCID: PMC11346837 DOI: 10.1097/md.0000000000039373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Hepatic viral infections and breast cancer (BC) constitute major global health challenges, yet the interconnection between these hepatic infections and BC continues to be ambiguous. Conducting a comprehensive evaluation of the link between hepatitis virus infection and the incidence of BC and leveraging data from the National Health and Nutrition Examination Survey covering the period from 1999 to March 2022, we utilized logistic regression and subgroup analysis, among other methodologies, to execute a cross-sectional investigation. The univariate logistic regression analysis elucidates that individuals classified as non-Hispanic White exhibit a markedly higher incidence of BC at 2.620 (95% confidence interval [CI], 1.117-7.676; P = .045); moreover, advanced age at 1.063 (95% CI, 1.036-1.093; P < .001), elevated educational attainment at 1.962 (95% CI, 1.17-3.366; P = .012), and higher income levels at 2.835 (95% CI, 1.303-7.439; P = .017) emerge as significant predisposing factors for BC. In contrast, a greater number of live births significantly diminishes the risk of BC, reducing the incidence to 81.1% with each additional birth. Pertaining to hepatitis and vaccination status, our analysis distinctly demonstrates that only hepatitis B at 0.110 (95% CI, 0.018-0.353; P = .002) bears a significant inverse relationship with BC risk, suggesting a protective effect. The multivariate logistic regression analysis further reveals a negative association between hepatitis B infection and BC incidence, whereas hepatitis B vaccination shows a positive correlation with the disease incidence. After adjusting for all covariates, model 3 delineates odds ratios (95% CI) as follows: 0.14 (0.02-0.50; P = .009) and 1.92 (0.99-3.62; P = .046). Our investigation uncovers that within the general populace, there exists an inverse correlation between hepatitis B infection and BC incidence; in addition, the administration of the hepatitis B virus vaccine is potentially positively associated with the prevalence of BC.
Collapse
Affiliation(s)
- Mengyao Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Sen Lin
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiaxin Feng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Yang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Guan T, Zhang Y, Li S, Zhang W, Song Y, Li Y, He Y, Chen Y. Discovery of an efficacious KDM5B PROTAC degrader GT-653 up-regulating IFN response genes in prostate cancer. Eur J Med Chem 2024; 272:116494. [PMID: 38749268 DOI: 10.1016/j.ejmech.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.
Collapse
Affiliation(s)
- Tian Guan
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shen Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbao Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuzhan Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
6
|
Lourenço T, Vale N. Entecavir: A Review and Considerations for Its Application in Oncology. Pharmaceuticals (Basel) 2023; 16:1603. [PMID: 38004468 PMCID: PMC10675314 DOI: 10.3390/ph16111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Entecavir (ETV) is a drug used as a first-line treatment for chronic hepatitis B (CHB) virus infection because it is a guanosine nucleoside analogue with activity against the hepatitis B virus polymerase. The ETV dosage can range from 0.5 mg to 1 mg once a day and the most common side effects include headache, insomnia, fatigue, dizziness, somnolence, vomiting, diarrhea, nausea, dyspepsia, and increased liver enzyme levels. In addition to its conventional use, ETV acts as an inhibitor of lysine-specific demethylase 5B (KDM5B), an enzyme that is overexpressed in breast, lung, skin, liver, and prostate tumors and is involved in the hormonal response, stem cell regeneration, genomic stability, cell proliferation, and differentiation. The KDM5B enzyme acts as a transcriptional repressor in tumor suppressor genes, silencing them, and its overexpression leads to drug resistance in certain tumor types. Furthermore, the literature suggests that KDM5B activates the PI3K/AKT signaling pathway, while reducing KDM5B expression decreases AKT signaling, resulting in decreased tumor cell proliferation. In silico studies have demonstrated that ETV can inhibit tumor cell proliferation and induce apoptosis by reducing KDM5B expression. ETV also appears to inhibit PARP-1, has a high genetic barrier, reducing the chance of resistance development, and can also prevent the reactivation of the hepatitis B virus in cancer patients, which have proven to be significant advantages regarding its use as a repurposed drug in oncology. Therefore, ETV holds promise beyond its original therapeutic indication.
Collapse
Affiliation(s)
- Tânia Lourenço
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
9
|
Han D, Schaffner SH, Davies JP, Benton ML, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. Proc Natl Acad Sci U S A 2023; 120:e2305092120. [PMID: 37722046 PMCID: PMC10523488 DOI: 10.1073/pnas.2305092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
- Department of Chemistry, Vanderbilt University, Nashville, TN37212
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37212
| |
Collapse
|
10
|
Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, Urpa L, Liu JZ, Sanderson M, Rowley C, Ironfield H, Fang T, Daly M, Palotie A, Tsai EA, Huang H, Hurles ME, Gerety SS, Lencz T, Runz H. The impact of rare protein coding genetic variation on adult cognitive function. Nat Genet 2023:10.1038/s41588-023-01398-8. [PMID: 37231097 DOI: 10.1038/s41588-023-01398-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| | - Ruoyu Tian
- Research and Development, Biogen Inc, Cambridge, MA, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Max Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Lea Urpa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jimmy Z Liu
- Research and Development, Biogen Inc, Cambridge, MA, USA
- GlaxoSmithKline, Philadelphia, PA, USA
| | | | | | | | - Terry Fang
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ellen A Tsai
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Heiko Runz
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| |
Collapse
|
11
|
Johnson E, Salari K, Yang S. SETDB1: A perspective into immune cell function and cancer immunotherapy. Immunology 2023; 169:3-12. [PMID: 36524435 PMCID: PMC10121739 DOI: 10.1111/imm.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Oncogene SET Domain Bifurcated 1 (SETDB1)/ESET, an H3K9 methyltransferase, was originally discovered over two decades ago; however, its function in the immune response was not first reported until 2011. SETDB1 immune functions include B cell maturation, T cell activity regulation, and immune escape in cancer cells. In B lymphocytes, SETDB1 mediates the transition from pro-B to pre-B cells and represses endogenous retroviruses (ERV) to encourage B cell lineage differentiation and maturation. SETDB1 alters T cell function by methylating IL-2 and IL-17 promoters and mediating T cell lineage commitment and development. In addition, SETDB1 plays a critical role in ERV silencing within a variety of immune cells, which can indirectly weaken the immune response. Although SETDB1 is critical for normal immune cell function, overexpression in cancer cells negatively impacts immune cell fights against cancer through decreased tumour immunogenicity. Within cancer cells, SETDB1 overexpression represses production and infiltration of antitumour immune cells, mediates immune escape through TE and ERV silencing, represses the type I interferon pathway, and interferes in immune checkpoint blockade (ICB) outcomes by regulation of PD-L1 expression and IFN signalling. In this review, we further discuss the immunological mechanisms of SETDB1 in normal and cancerous cells and its implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleanor Johnson
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
12
|
Han D, Schaffner SH, Davies JP, Lauren Benton M, Plate L, Nordman JT. BRWD3 promotes KDM5 degradation to maintain H3K4 methylation levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534572. [PMID: 37034668 PMCID: PMC10081218 DOI: 10.1101/2023.03.28.534572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.
Collapse
Affiliation(s)
- Dongsheng Han
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Jonathan P. Davies
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jared T. Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
13
|
Takahashi S, Takada I. Recent advances in prostate cancer: WNT signaling, chromatin regulation, and transcriptional coregulators. Asian J Androl 2023; 25:158-165. [PMID: 36695247 PMCID: PMC10069695 DOI: 10.4103/aja2022109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer is one of the most common diseases in men worldwide. Surgery, radiation therapy, and hormonal therapy are effective treatments for early-stage prostate cancer. However, the development of castration-resistant prostate cancer has increased the mortality rate of prostate cancer. To develop novel drugs for castration-resistant prostate cancer, the molecular mechanisms of prostate cancer progression must be elucidated. Among the signaling pathways regulating prostate cancer development, recent studies have revealed the importance of noncanonical wingless-type MMTV integration site family (WNT) signaling pathways, mainly that involving WNT5A, in prostate cancer progression and metastasis; however, its role remains controversial. Moreover, chromatin remodelers such as the switch/sucrose nonfermentable (SWI/SNF) complex and chromodomain helicase DNA-binding proteins 1 also play important roles in prostate cancer progression through genome-wide gene expression changes. Here, we review the roles of noncanonical WNT signaling pathways, chromatin remodelers, and epigenetic enzymes in the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Sayuri Takahashi
- Department of Urology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Urology, The Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ichiro Takada
- Department of Urology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
14
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Duan J, Liu C, Yi J, Wang Y. Shared sex hormone metabolism-related gene prognostic index between breast and endometrial cancers. Front Endocrinol (Lausanne) 2023; 14:1126862. [PMID: 36742386 PMCID: PMC9895087 DOI: 10.3389/fendo.2023.1126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
AIMS As sex hormone-dependent tumors, it remains to be clarified whether there is a common genetic signature and its value between breast and endometrial cancers. The aim of this study was to establish the shared sex hormone metabolism-related gene prognostic index (SHMRGPI) between breast and endometrial cancers and to analyze its potential role in the therapeutic and prognostic assessment of endometrial cancers. METHODS Using transcriptome data from TCGA, tumor-associated gene modules were identified by weighted gene co-expression network analysis, and the intersection of module genes with female sex hormone synthesis and metabolism genes was defined as sex hormone metabolism-related gene. SHMRGPI was established by the least absolute shrinkage and selection operator and Cox regression. Its prognostic value of patients with endometrial cancer was validated, and a nomogram was constructed. We further investigated the relationship between SHMRGPI groups and clinicopathological features, immune infiltration, tumor mutation burden, and drug sensitivity. RESULTS A total of 8 sex hormone metabolism-related gene were identified as key genes for the construction of prognostic models. Based on SHMRGPI, endometrial cancer patients were divided into high and low SHMRGPI groups. Patients in the low SHMRGPI group had longer overall survival (OS) compared with the high group (P< 0.05). Furthermore, we revealed significant differences between SHMRGPI groups as regards tumor immune cell infiltration, somatic mutation, microsatellite instability and drug sensitivity. Patients with low SHMRGPI may be the beneficiaries of immunotherapy and targeted therapy. CONCLUSIONS The SHMRGPI established in this study has prognostic power and may be used to screen patients with endometrial cancer who may benefit from immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Junyi Duan
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jiahong Yi
- Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The 985th Hospital of The People’s Liberation Army Joint Logistic Support Force, Taiyuan, China
- *Correspondence: Yun Wang,
| |
Collapse
|
16
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
17
|
Lesbon JCC, Garnica TK, Xavier PLP, Rochetti AL, Reis RM, Müller S, Fukumasu H. A Screening of Epigenetic Therapeutic Targets for Non-Small Cell Lung Cancer Reveals PADI4 and KDM6B as Promising Candidates. Int J Mol Sci 2022; 23:ijms231911911. [PMID: 36233212 PMCID: PMC9570250 DOI: 10.3390/ijms231911911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnostic and therapeutic approaches for lung cancer, new therapies targeting metastasis by the specific regulation of cancer genes are needed. In this study, we screened a small library of epigenetic inhibitors in non-small-cell lung cancer (NSCLC) cell lines and evaluated 38 epigenetic targets for their potential role in metastatic NSCLC. The potential candidates were ranked by a streamlined approach using in silico and in vitro experiments based on publicly available databases and evaluated by real-time qPCR target gene expression, cell viability and invasion assays, and transcriptomic analysis. The survival rate of patients with lung adenocarcinoma is inversely correlated with the gene expression of eight epigenetic targets, and a systematic review of the literature confirmed that four of them have already been identified as targets for the treatment of NSCLC. Using nontoxic doses of the remaining inhibitors, KDM6B and PADI4 were identified as potential targets affecting the invasion and migration of metastatic lung cancer cell lines. Transcriptomic analysis of KDM6B and PADI4 treated cells showed altered expression of important genes related to the metastatic process. In conclusion, we showed that KDM6B and PADI4 are promising targets for inhibiting the metastasis of lung adenocarcinoma cancer cells.
Collapse
Affiliation(s)
- Jéssika Cristina Chagas Lesbon
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Taismara Kustro Garnica
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Pedro Luiz Porfírio Xavier
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Arina Lázaro Rochetti
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Hospital de Amor, Antenor Duarte Viléla, 1331-Dr. Paulo Prata, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str 15-60438, 60438 Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
- Correspondence:
| |
Collapse
|
18
|
Abu-Hanna J, Patel JA, Anastasakis E, Cohen R, Clapp LH, Loizidou M, Eddama MMR. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature. Clin Epigenetics 2022; 14:98. [PMID: 35915507 PMCID: PMC9344682 DOI: 10.1186/s13148-022-01305-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
Histone 3 lysine 27 (H3K27) demethylation constitutes an important epigenetic mechanism of gene activation. It is mediated by the Jumonji C domain-containing lysine demethylases KDM6A and KDM6B, both of which have been implicated in a wide myriad of diseases, including blood and solid tumours, autoimmune and inflammatory disorders, and infectious diseases. Here, we review and summarise the pre-clinical evidence, both in vitro and in vivo, in support of the therapeutic potential of inhibiting H3K27-targeting demethylases, with a focus on the small-molecule inhibitor GSK-J4. In malignancies, KDM6A/B inhibition possesses the ability to inhibit proliferation, induce apoptosis, promote differentiation, and heighten sensitivity to currently employed chemotherapeutics. KDM6A/B inhibition also comprises a potent anti-inflammatory approach in inflammatory and autoimmune disorders associated with inappropriately exuberant inflammatory and autoimmune responses, restoring immunological homeostasis to inflamed tissues. With respect to infectious diseases, KDM6A/B inhibition can suppress the growth of infectious pathogens and attenuate the immunopathology precipitated by these pathogens. The pre-clinical in vitro and in vivo data, summarised in this review, suggest that inhibiting H3K27 demethylases holds immense therapeutic potential in many diseases.
Collapse
Affiliation(s)
- Jeries Abu-Hanna
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Jigisha A Patel
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | | | - Richard Cohen
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK.,Department of Gastroenterology, University College London Hospital, London, UK
| | - Lucie H Clapp
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK
| | - Mohammad M R Eddama
- Division of Surgery and Interventional Science, Research Department of Surgical Biotechnology, University College London, GI Services, Ground Floor, 250 Euston Road, London, NW1 2PG, UK. .,Department of Gastroenterology, University College London Hospital, London, UK.
| |
Collapse
|
19
|
Dhanyamraju PK, Schell TD, Amin S, Robertson GP. Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Res 2022; 82:2503-2514. [PMID: 35584245 PMCID: PMC9296591 DOI: 10.1158/0008-5472.can-21-3844] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
20
|
Mori JO, Shafran JS, Stojanova M, Katz MH, Gignac GA, Wisco JJ, Heaphy CM, Denis GV. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: Rationale for targeting BET proteins. Prostate 2022; 82:1005-1015. [PMID: 35403746 PMCID: PMC11134172 DOI: 10.1002/pros.24351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Collapse
Affiliation(s)
- Joakin O. Mori
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jordan S. Shafran
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Marija Stojanova
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark H. Katz
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gretchen A. Gignac
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jonathan J. Wisco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher M. Heaphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gerald V. Denis
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Male-Specific Activation of Lysine Demethylases 5B and 5C Mediates Alcohol-Induced Liver Injury and Hepatocyte Dedifferentiation. Hepatol Commun 2022; 6:1373-1391. [PMID: 35084807 PMCID: PMC9134811 DOI: 10.1002/hep4.1895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex differences in sensitivity to ALD are well described, but these are often disregarded in studies of ALD development. We aimed to define sex-specific pathways in liver exposed to alcohol. Mice were fed the Lieber-DeCarli alcohol liquid diet or a combination of a high-fat diet with alcohol in water. Single-cell RNA sequencing (scRNA-Seq) was performed on liver cells from male and female mice. Mice were treated with adeno-associated virus (AAV)-short hairpin (sh)Control or AAV-sh lysine demethylase 5b (shKdm5b) and/or AAV-shKdm5c vectors. Changes after Kdm5b/5c knockdown were assessed by RNA-Seq and histone H3 lysine K4 (H3K4)me3 chromatin immunoprecipitation-Seq analysis. Using scRNA-Seq analysis, we found several sex-specific pathways induced by alcohol, including pathways related to lipid metabolism and hepatocyte differentiation. Bioinformatic analysis suggested that two epigenetic regulators, H3K4-specific lysine demethylases KDM5B and KDM5C, contribute to sex differences in alcohol effects. We found that in alcohol-fed male mice, KDM5B and KDM5C are involved in hepatocyte nuclear factor 4 alpha (Hnf4a) down-regulation, hepatocyte dedifferentiation, and an increase in fatty acid synthesis. This effect is mediated by alcohol-induced KDM5B and KDM5C recruitment to Hnf4a and other gene promoters in male but not in female mice. Kdm5b and Kdm5c knockdown or KDM5-inhibitor treatment prevented alcohol-induced lipid accumulation and restored levels of Hnf4a and other hepatocyte differentiation genes in male mice. In addition, Kdm5b knockdown prevented hepatocellular carcinoma development in male mice by up-regulating Hnf4a and decreasing tumor cell proliferation. Conclusion: Alcohol specifically activates KDM5 demethylases in male mice to promote alcohol-induced hepatocyte dedifferentiation and tumor development.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKSUSA
- Kansas City VA Medical CenterKansas CityMOUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
22
|
High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies. Int J Mol Sci 2022; 23:ijms23073483. [PMID: 35408843 PMCID: PMC8998945 DOI: 10.3390/ijms23073483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field.
Collapse
|
23
|
Jamshidi S, Catchpole S, Chen J, So CWE, Burchell J, Rahman KM, Taylor-Papadimitriou J. KDM5B protein expressed in viable and fertile ΔARID mice exhibit no demethylase activity. Int J Oncol 2021; 59:96. [PMID: 34713299 PMCID: PMC8562390 DOI: 10.3892/ijo.2021.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Post‑translational modification of histones serve a crucial role in the control of gene transcription. Trimethylation of lysine 4 on histone 3 is associated with transcription activation. There are currently six known methylases and six known demethylases that can control the methylation status of this site. Lysine demethylase 5B (KDM5B) is one such demethylase, which can repress gene expression. In particular KDM5B has been found to be overexpressed in a number of cancer types, and small‑molecular weight inhibitors of its demethylase activity have been identified. Previous characterisation of Kdm5b knock‑out mice has revealed that this genotype leads to either embryonic or neonatal lethality. However, the ΔA‑T rich interaction domain (ΔARID)‑KDM5B strain of mice, which have the ARID domain and five amino acids within the Jumonji (Jmj)N domain spliced out from KDM5B, remain viable and fertile. In the present study, ΔARID‑KDM5B was found to have no demethylase activity as determined by in vitro demethylase assays and by immunofluorescence in transfected Cos‑1 cells. Furthermore, molecular dynamic simulations revealed conformational changes within the ΔARID‑KDM5B structure compared with that in WT‑KDM5B, particularly in the JmjC domain, which is responsible for the catalytic activity of WT‑KDM5B. This supports the experimental data that shows the loss of demethylase activity. Since Kdm5b knock‑out mice show varying degrees of lethality, these data suggest that KDM5B serves a crucial function in development in a manner that is independent of its demethylase activity.
Collapse
Affiliation(s)
- Shirin Jamshidi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Steven Catchpole
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Jie Chen
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Joy Burchell
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
24
|
Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021; 225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023]
Abstract
The human transactive responsive (TAR) DNA-binding protein 43 (TDP-43) is involved in a number of physiological processes in the body. Its primary function involves RNA regulation. The TDP-43 protein is also involved in many diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD) and even cancers. These TDP-43 mediated diseases are collectively called as TDP-43 proteinopathies. Intense research in the last decade has increased our understanding on TDP-43 structure and function in biology. The three-dimensional structures of TDP-43 domains such as N-terminal domain (NTD), RNA-recognition motif-1 (RRM1), RNA-recognition motif-2 (RRM2) and the C-terminal domain (CTD) or low-complexity domain (LCD) have been solved. These structures have yielded insights into novel binding sites and pockets at various TDP-43 domains, which can be targeted by designing a diverse library of ligands including small molecules, peptides and oligonucleotides as molecular tools to (i) study TDP-43 function, (ii) develop novel diagnostic agents and (iii) discover disease-modifying therapies to treat TDP-43 proteinopathies. This review provides a summary on recent progress in the development of TDP-43 binding ligands and uses the solved structures of various TDP-43 domains to investigate putative ligand binding regions that can be exploited to discover novel molecular probes to modulate TDP-43 structure and function.
Collapse
|
25
|
Rao M, Venkatraman P, Mukhopadhyay D, Roychoudhury S, Vanderford NL, Rangnekar VM. Value added by an inter-continental cancer consortium. Genes Cancer 2021; 12:65-68. [PMID: 34046148 PMCID: PMC8147722 DOI: 10.18632/genesandcancer.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mahadev Rao
- Manipal Academy of Higher Education, Manipal 576104, India
| | | | | | | | | | - Vivek M. Rangnekar
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
26
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|