1
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Karaca B. Exploring the Frequency and Risk Factors of Hyperprogressive Disease in Patients with Advanced Melanoma Treated with Immune Checkpoint Inhibitors. Curr Oncol 2024; 31:6343-6355. [PMID: 39451776 PMCID: PMC11505979 DOI: 10.3390/curroncol31100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Hyperprogressive disease (HPD) is described as the unexpected rapid growth of a tumour accompanied by a decline in performance status. While immune checkpoint inhibitors (ICIs) have improved outcomes in advanced melanoma, HPD remains a significant challenge in a subset of patients. Although HPD has been extensively studied in various solid tumours, research specifically focusing on advanced melanoma remains limited. We analysed 158 advanced melanoma patients, with 66.5% (n = 105) receiving anti-PD-1 and 33.5% (n = 53) receiving nivolumab plus ipilimumab. The median overall survival was 4.9 months for patients with HPD compared to 8.9 months for those with progressive disease without HPD (p = 0.014). Factors associated with HPD included liver metastasis (p = 0.002), three or more metastatic sites (p < 0.001), elevated lactate dehydrogenase levels (p = 0.004), and Eastern cooperative oncology group performance status ≥2 (p = 0.023). Multivariate analysis identified the Royal Marsden Hospital score (HR 3.675, 95% CI: 1.166-11.580, p = 0.026) as an independent risk factor for HPD, with the MDA-ICI score also trending towards significance (HR 4.466, 95% CI: 0.947-21.061, p = 0.059). This study provides valuable insights into the frequency and factors associated with HPD in advanced melanoma patients treated with ICIs, highlighting the relevance of clinical markers and scoring systems in predicting HPD risk.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Departmant of Internal Medicine, Ege University Medical Faculty, 35100 Izmir, Turkey; (H.Ç.Y.); (G.Ş.); (F.P.A.); (B.K.)
| | | | | | | | | |
Collapse
|
2
|
Murtadha M, Park M, Zhu Y, Caserta E, Napolitano O, Tandoh T, Moloudizargari M, Pozhitkov A, Singer M, Dona AA, Vahed H, Gonzalez A, Ly K, Ouyang C, Sanchez JF, Nigam L, Duplan A, Chowdhury A, Ghoda L, Li L, Zhang B, Krishnan A, Marcucci G, Williams JC, Pichiorri F. A CD38-directed, single-chain T-cell engager targets leukemia stem cells through IFN-γ-induced CD38 expression. Blood 2024; 143:1599-1615. [PMID: 38394668 PMCID: PMC11103097 DOI: 10.1182/blood.2023021570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/25/2024] Open
Abstract
ABSTRACT Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.
Collapse
Affiliation(s)
- Mariam Murtadha
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Miso Park
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Yinghui Zhu
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
- Research Center for Translational Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Enrico Caserta
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ottavio Napolitano
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Theophilus Tandoh
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Milad Moloudizargari
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Alex Pozhitkov
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mahmoud Singer
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ada Alice Dona
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Hawa Vahed
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Asaul Gonzalez
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Kevin Ly
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ching Ouyang
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - James F. Sanchez
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
| | - Lokesh Nigam
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Amanda Duplan
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Arnab Chowdhury
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Lucy Ghoda
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Ling Li
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| | - John C. Williams
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA
| | - Flavia Pichiorri
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
3
|
Čiháková D. T Cells and Macrophages Drive Pathogenesis of Immune Checkpoint Inhibitor Myocarditis. Circulation 2024; 149:67-69. [PMID: 38153995 DOI: 10.1161/circulationaha.123.067189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Affiliation(s)
- Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD. W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
4
|
Wang Y, Jin X, Sun Y, Zhao Y, Qu Z, Wang L, Sun L. Muramyl dipeptide CD10 monoclonal antibody immunoconjugates inhibited acute leukemia in nude mice. Biosci Rep 2023; 43:BSR20222668. [PMID: 37039042 PMCID: PMC10126809 DOI: 10.1042/bsr20222668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Minimal residual disease (MRD) is one of the causes of leukemia recurrence. Previously, we developed anti-CD10 mAb conjugated to muramyl dipeptide immunoconjugate (MDP-Ab) for immune enhancement. The present study aimed to investigate anti-leukemia effect of MDP-Ab administered via different methods in leukemia ectopic graft nude mouse model. BALB/c nude mice were injected with Nalm-6 cells subcutaneously to establish leukemia xenografts in nude mice as a model. MDP-Ab or/and human lymphocytes (LYM) was injected into different sites of the nude mice. Immunohistochemistry staining of CDs in the bone marrow, liver and spleen was performed. IFN-γ was detected by ELISA. We detected the metastasis of leukemia cells to the liver, spleen and bone marrow in nude mouse leukemia model. MDP-Ab and LYM inhibited the growth of tumors, and simultaneous injection of MDP-Ab and LYM into the tumor inhibited the growth of tumors. IFN-γ levels in MDP-Ab (ca) + h-LYM (ca) group, MDP-Ab (ca) + h-LYM (ip) group, MDP-Ab (iv) + h-LYM (ip) group and PBS (ca) + h-LYM (ca) group were significantly higher than those in control group, while IFN-γ level in MDP-Ab (ca) + h-LYM (ca) group was the highest. Moreover, MDP-Ab and h-LYM promoted the expression of hCD4 and hCD8, with the highest expression in MDP-Ab (ca) + h-LYM (ca) group. In conclusion, MDP-Ab effectively promoted the production of IFN-γ, enhanced the antitumor immunity of T lymphocytes and inhibited leukemia.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| | - Xiaofu Jin
- Department of Pediatric Internal Medicine, Jinhua Municipal Central Hospital Medicine Group, Jinhua, Zhejiang 321000, PR China
| | - Yan Sun
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| | - Yanxia Zhao
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| | - Zhenghai Qu
- Department of Pediatric, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| | - Lingzhen Wang
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| | - Lirong Sun
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Shandong 266003, PR China
| |
Collapse
|
5
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
6
|
Peng H, Wu X, Liu S, He M, Xie C, Zhong R, Liu J, Tang C, Li C, Xiong S, Zheng H, He J, Lu X, Liang W. Multiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment. Clin Transl Med 2023; 13:e1155. [PMID: 36588094 PMCID: PMC9806015 DOI: 10.1002/ctm2.1155] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Conventional immunohistochemistry technologies were limited by the inability to simultaneously detect multiple markers and the lack of identifying spatial relationships among cells, hindering understanding of the biological processes in cancer immunology. METHODS Tissue slices of primary tumours from 553 IA∼IIIB non-small cell lung cancer (NSCLC) cases were stained by multiplex immunofluorescence (mIF) assay for 10 markers, including CD4, CD38, CD20, FOXP3, CD66b, CD8, CD68, PD-L1, CD133 and CD163, evaluating the amounts of 26 phenotypes of cells in tumour nest and tumour stroma. StarDist depth learning model was utilised to determine the spatial location of cells based on mIF graphs. Single-cell RNA sequencing (scRNA-seq) on four primary NSCLC cases was conducted to investigate the putative cell interaction networks. RESULTS Spatial proximity among CD20+ B cells, CD4+ T cells and CD38+ T cells (r2 = 0.41) was observed, whereas the distribution of regulatory T cells was associated with decreased infiltration levels of CD20+ B cells and CD38+ T cells (r2 = -0.45). Univariate Cox analyses identified closer proximity between CD8+ T cells predicted longer disease-free survival (DFS). In contrast, closer proximity between CD133+ cancer stem cells (CSCs), longer distances between CD4+ T cells and CD20+ B cells, CD4+ T cells and neutrophils, and CD20+ B cells and neutrophils were correlated with dismal DFS. Data from scRNA-seq further showed that spatially adjacent N1-like neutrophils could boost the proliferation and activation of T and B lymphocytes, whereas spatially neighbouring M2-like macrophages showed negative effects. An immune-related risk score (IRRS) system aggregating robust quantitative and spatial prognosticators showed that high-IRRS patients had significantly worse DFS than low-IRRS ones (HR 2.72, 95% CI 1.87-3.94, p < .001). CONCLUSIONS We developed a framework to analyse the cell interaction networks in tumour microenvironment, revealing the spatial architecture and intricate interplays between immune and tumour cells.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Xiangrong Wu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Shaopeng Liu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Miao He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chao Xie
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Ran Zhong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liu
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chenshuo Tang
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Caichen Li
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shan Xiong
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbo Zheng
- Medical DepartmentGenecast Biotechnology Co., LtdBeijingChina
| | - Jianxing He
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xu Lu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Wenhua Liang
- Department of Thoracic Oncology and SurgeryChina State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Medical OncologyThe First People's Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
7
|
Britt AS, Huang C, Huang CH. Hyperprogressive disease in non-small cell lung cancer treated with immune checkpoint inhibitor therapy, fact or myth? Front Oncol 2022; 12:996554. [DOI: 10.3389/fonc.2022.996554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic landscape for patients with non-small cell lung cancer (NSCLC) has dramatically evolved with the development and adoption of immune checkpoint inhibitors (ICI) as front-line therapy. These novel antibodies target the interactions in immunoregulatory pathways, between programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) and B7, resulting in the activation of T cells and cytotoxic response to induce an immunologic response. ICIs have demonstrated significant survival benefits and sustained responses in the treatment of NSCLC leading to the long-term survival of up to 5 year. One unusual response to ICI is a phenomenon termed Hyperprogressive Disease (HYD), which occurs in a subset of patients for whom ICI therapy can induce rapid disease growth, which ultimately leads to poorer outcomes with an incidence rate ranging from 5 to 37% in NSCLC patients. Prior reviews demonstrated that HYD can be defined by rapid tumor progression, deterioration of patient’s symptoms or new onset of disease. The mechanism of HYD could be related to genomic and tumor microenvironment changes and altered immune response. It will be important to establish a common definition of HYD for future research and clinical care.
Collapse
|
8
|
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, Plebanek MP, DeVito NC, Hanks BA. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med 2022; 14:eabq7019. [PMID: 36417489 DOI: 10.1126/scitranslmed.abq7019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.
Collapse
Affiliation(s)
- Balamayooran Theivanthiran
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nagendra Yarla
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Y-Van Nguyen
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Linda Cao
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michelle Ferreira
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA
| | - April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michael P Plebanek
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nicholas C DeVito
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
He T, Qiao Y, Yang Q, Chen J, Chen Y, Chen X, Hao Z, Lin M, Shao Z, Wu P, Xu F. NMI: a potential biomarker for tumor prognosis and immunotherapy. Front Pharmacol 2022; 13:1047463. [PMID: 36506566 PMCID: PMC9727384 DOI: 10.3389/fphar.2022.1047463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
N-Myc and STAT Interactor protein (NMI) is an interferon inducible protein participating in various cellular activities, and is widely involved in the process of tumorigenesis and progression. Studies have shown that the loss of NMI expression in breast cancer can promote its progression by inducing epithelial-mesenchymal transition (EMT). However, the expression level of NMI in other tumors and its impact on immune cell infiltration, patient prognosis, and drug treatment are still unclear. Here, we analyzed the role of NMI in pan-cancer through multiple omics data. We found that NMI was abnormally expressed in a variety of tumor tissues. The expression of NMI was closely related to the unique molecular and immunotyping, diagnosis and prognosis of various tumor tissues. In addition, we identified the main proteins that interact with NMI, and focused on the relationship between the clinical parameters of lower grade glioma (LGG) and NMI expression. Subsequently, we found that the expression of NMI was correlated with the infiltration of multiple immune cells and the expression of immune checkpoints. Finally, we also found that the expression of NMI was correlated with the sensitivity to multiple antitumor drugs. In conclusion, our comprehensive pan-cancer analysis of NMI revealed that it is a potential molecular marker for tumor diagnosis and treatment, plays an important role in tumor immunity, and is a promising molecular target for cancer treatment.
Collapse
Affiliation(s)
- Teng He
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinbiao Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Yang
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Feng Xu, ; Pin Wu,
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Feng Xu, ; Pin Wu,
| |
Collapse
|
10
|
Wang YY, Li SY, Chen SQ, Wang LL, Han ZQ. Myeloid-derived Suppressor Cells Activate Liver Natural Killer Cells in a Murine Model in Uveal Melanoma. Curr Med Sci 2022; 42:1071-1078. [PMID: 36245024 DOI: 10.1007/s11596-022-2623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Elevated myeloid-derived suppressor cells (MDSCs) in many malignancies are associated with the increased risk for metastases and poor prognosis. Therefore, a mouse model of intraocular melanoma was established to explore how MDSCs influence liver metastases. METHODS In this study, murine B16LS melanoma cells were transplanted into the posterior compartment (PC) of the eye of C57BL/6 mice. Leucocytes from the liver of naive mice and mice bearing melanoma liver metastasis were isolated using isotonic Percoll centrifugation, examined by flow cytometry for their expression of Gr1, CD11b, F4/80, RAE-1, and Mult-1, and further isolated for MDSCs and natural killer (NK) cells. The effects of MDSCs on NK cells were tested by coculturing and assessing the ability of NK cells to produce interferon-gamma (IFN-γ) by ELISA and NK cell cytotoxicity by 3H-thymidine incorporation assay. The impact of IFN-γ on liver metastases was examined via selectively depleting IFN-γ in vivo. RESULTS The results showed that mice with liver metastases had increased levels of CD11b+Gr1+F4/80+ as well as CD11b+Gr1+F4/80- MDSCs. MDSCs significantly enhanced the generation of IFN-γ together with the cytotoxicity of the NK cells. Furthermore, these effects were cell-cell contact-dependent. Although IFN-γ was not of a toxic nature to the melanoma cells, it profoundly inhibited B16LS cell proliferation. Depleting IFN-γ in vivo led to increased liver metastases. CONCLUSION All these findings first revealed that MDSCs accumulated in liver metastasis of intraocular melanoma could activate the NK cells to produce an effective anti-tumor immune response. Thus, the MDSCs' performance in different tumor models would need more investigation to boost current immunotherapy modalities.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang-Ying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - San-Qian Chen
- Department of Obstetrics and Gynecology, Chibi People's Hospital, Chibi, 437300, China
| | - Liang-Liang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Qiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Xu X, Liu L, Wang H, Li W, Zou Y, Zeng Y, Yang Q, Bai D, Dai D. Engineered DBCO+PD-1 Nanovesicles Carrying 1-MT for Cancer-Targeted Immunotherapy. ACS Biomater Sci Eng 2022; 8:4819-4826. [PMID: 36206367 DOI: 10.1021/acsbiomaterials.2c00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver cancer cells evade immune surveillance and anticancer response through various pathways, including the programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) immune checkpoint axis that exhausts CD8+ T cells. Inhibitors or antibodies of the PD-L1/PD-1 signaling axis are considered promising drugs for cancer immunotherapy and exhibit favorable clinical responses. However, adverse effects, immune tolerance, and delivery barriers of most patients limit the clinical application of PD-L1/PD-1 antibodies. Thus, it is critical to develop a novel delivery strategy to enhance anticancer immunotherapy. In this study, we bioengineered cell membrane-derived nanovesicles (NVs) presenting PD-1 proteins and dibenzocyclooctyne (DBCO) to encapsulate 1-methyltryptophan (1-MT) (DBCO+PD-1@1-MT NVs). DBCO can specifically interact with N-azidoacetylmannosamine-tetraacetylate (Ac4ManN3) labeled onto metabolic cells for targeted killing of cancers. We next explored the effects of DBCO+PD-1@1-MT NVs on anticancer Hepa1-6 cells in vitro and in vivo. Results showed that PD-1@1-MT NVs dramatically inhibited Hepa1-6 proliferation, promoted peripheral blood mononuclear cell (PBMC) expansion, and strengthened anticancer therapy via blockading the PD-1/PD-L1 immune checkpoint axis, owing to the 1-methyltryptophan (1-MT) enhancement of anticancer immunotherapy efficacy through suppressing the activity of indoleamine 2,3-dioxygenase (IDO). Thus, 1-MT was encapsulated into PD-1 NVs to synergistically enhance cancer immunotherapy. Results have shown that PD-1@1-MT NVs obviously attenuated tumor growth, promoting IFN-γ production, increasing the T cells infiltration in tumors and spleens, and improving the survival period of tumor-bearing mice compared to monotherapy. Therefore, we propose a promising delivery strategy of the combination of DBCO+PD-1 NVs and 1-MT for specific and effective cancer-targeted immunotherapy.
Collapse
Affiliation(s)
- Xichao Xu
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Liang Liu
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Huan Wang
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Wenwen Li
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Yigui Zou
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Yinzhen Zeng
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Qinghua Yang
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Daming Bai
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Dongling Dai
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Endoscopy Center and Gastroenterology Department, Shenzhen Children's Hospital, Shenzhen 518036, China
| |
Collapse
|
12
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
13
|
Wang MX, Gao SY, Yang F, Fan RJ, Yang QN, Zhang TL, Qian NS, Dai GH. Hyperprogression under treatment with immune-checkpoint inhibitors in patients with gastrointestinal cancer: A natural process of advanced tumor progression? World J Clin Oncol 2022; 13:729-737. [PMID: 36212599 PMCID: PMC9537503 DOI: 10.5306/wjco.v13.i9.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has shown great promise in treating various types of malignant tumors. However, some patients with gastrointestinal cancer have been known to experience rapid disease progression after treatment, a situation referred to as hyperprogressive disease (HPD). This minireview focuses on the definitions and potential mechanisms of HPD, natural disease progression in gastrointestinal malignancies, and tumor immunological microenvironment.
Collapse
Affiliation(s)
- Mo-Xuan Wang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Shu-Yue Gao
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Fan Yang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Run-Jia Fan
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Qin-Na Yang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Tian-Lan Zhang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Nian-Song Qian
- Department of Oncology, Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guang-Hai Dai
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
15
|
Peng H, Wu X, Zhong R, Yu T, Cai X, Liu J, Wen Y, Ao Y, Chen J, Li Y, He M, Li C, Zheng H, Chen Y, Pan Z, He J, Liang W. Profiling Tumor Immune Microenvironment of Non-Small Cell Lung Cancer Using Multiplex Immunofluorescence. Front Immunol 2021; 12:750046. [PMID: 34804034 PMCID: PMC8600321 DOI: 10.3389/fimmu.2021.750046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
This study attempted to profile the tumor immune microenvironment (TIME) of non-small cell lung cancer (NSCLC) by multiplex immunofluorescence of 681 NSCLC cases. The number, density, and proportion of 26 types of immune cells in tumor nest and tumor stroma were evaluated, revealing some close interactions particularly between intrastromal neutrophils and intratumoral regulatory T cells (Treg) (r2 = 0.439, P < 0.001), intrastromal CD4+CD38+ T cells and CD20-positive B cells (r2 = 0.539, P < 0.001), and intratumoral CD8-positive T cells and M2 macrophages expressing PD-L1 (r2 = 0.339, P < 0.001). Three immune subtypes correlated with distinct immune characteristics were identified using the unsupervised consensus clustering approach. The immune-activated subtype had the longest disease-free survival (DFS) and demonstrated the highest infiltration of CD4-positive T cells, CD8-positive T cells, and CD20-positive B cells. The immune-defected subtype was rich in cancer stem cells and macrophages, and these patients had the worst prognosis. The immune-exempted subtype had the highest levels of neutrophils and Tregs. Intratumoral CD68-positive macrophages, M1 macrophages, and intrastromal CD4+ cells, CD4+FOXP3- cells, CD8+ cells, and PD-L1+ cells were further found to be the most robust prognostic biomarkers for DFS, which were used to construct and validate the immune-related risk score for risk stratification (high vs. median vs. low) and the prediction of 5-year DFS rates (23.2% vs. 37.9% vs. 43.1%, P < 0.001). In conclusion, the intricate and intrinsic structure of TIME in NSCLC was demonstrated, showing potency in subtyping and prognostication.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Tao Yu
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Jun Liu
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yiyuan Ao
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jiana Chen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yutian Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Miao He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongbo Zheng
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Yanhui Chen
- Genecast Biotechnology Co., Ltd., Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Medical Oncology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
16
|
Sahin I, George A, Zhang S, Huntington KE, Ordulu Z, Zhou L, El-Deiry WS. Hyperprogression of a mismatch repair-deficient colon cancer in a humanized mouse model following administration of immune checkpoint inhibitor pembrolizumab. Oncotarget 2021; 12:2131-2146. [PMID: 34676046 PMCID: PMC8522841 DOI: 10.18632/oncotarget.28086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Immunotherapy is an established treatment modality in oncology. However, in addition to primary or acquired therapy resistance with immune checkpoint blockade (ICB), hyperprogressive disease (HPD) or hyperprogression (HP) with acceleration of tumor growth occurs in a subset of patients receiving ICB therapy. A validated and predictive animal model would help investigate HPD/HP to develop new approaches for this challenging clinical entity. Using human cytotoxic T-cell line TALL-104 injected intraperitoneally into immunodeficient NCRU-nude athymic mice bearing mismatch repair-deficient (MMR-d) human colon carcinoma HCT116 p53-null (but not wild-type p53) tumor xenograft, we observed accelerated tumor growth after PD-1 blockade with pembrolizumab administration. There was increased colon tumor cell proliferation as determined by immunohistochemical Ki67 staining of tumor sections. There was no increase in MDM2 or MDM4/MDMX in the p53-null HCT116 cells versus the wild-type p53-expressing isogenic tumor cells, suggesting the effects in this model may be MDM2 or MDM4/MDMX-independent. Human cytokine profiling revealed changes in IFN-γ, TRAIL-R2/TNFRSF10B, TRANCE/TNFSF11/RANK L, CCL2/JE/MCP-1, Chitinase 3-like 1, IL-4 and TNF-α. This represents a novel humanized HPD mouse model with a link to deficiency of the p53 pathway of tumor suppression in the setting of MMR-d. Our novel humanized preclinical TALL-104/p53-null HCT116 mouse model implicates p53-deficiency in an MMR-d tumor as a possible contributor to HPD/HP and may help with evaluating therapeutic strategies in cancer immunotherapy to extend clinical benefits of ICB's in a broader patient population.
Collapse
Affiliation(s)
- Ilyas Sahin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Present Address: University of Florida Health Cancer Center, Gainesville, FL, USA.,These authors contributed equally to this work
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,These authors contributed equally to this work
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,These authors contributed equally to this work
| | - Kelsey E Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Zehra Ordulu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Present Address: University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Cancer Center at Brown University, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Warren Alpert Medical School of Brown University, Providence, RI, USA.,Molecular and Cellular Biology Graduate Program, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|