1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
4
|
Kimura H, Kamiyama K, Imamoto T, Takeda I, Kobayashi M, Takahashi N, Kasuno K, Sugaya T, Iwano M. Dichloroacetate reduces cisplatin-induced apoptosis by inhibiting the JNK/14-3-3/Bax/caspase-9 pathway and suppressing caspase-8 activation via cFLIP in murine tubular cells. Sci Rep 2024; 14:24307. [PMID: 39414949 PMCID: PMC11484893 DOI: 10.1038/s41598-024-75229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Cisplatin-induced injury to renal proximal tubular cells stems from mitochondrial damage-induced apoptosis and inflammation. Dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, a potential generator of ROS and ATP, protects against cisplatin-induced nephrotoxicity by promoting the TCA cycle. However, its effects on apoptotic pathways and ROS production in renal tubular cells remain unclear. Here, we investigated the detailed molecular mechanisms of the DCA's effects by immunoblot, RT-PCR, RNA-sequencing, and RNA-silencing in a murine renal proximal tubular (mProx) cell line and mouse kidneys. In mProx cells, DCA suppressed cisplatin-induced apoptosis by attenuating the JNK/14-3-3/Bax/caspase-9 and death receptor/ligand/caspase-8 pathways without impeding inflammatory signaling. RNA-sequencing demonstrated that DCA increased the cisplatin-reduced expression of cFLIP, a caspase-8 inactivator, and decreased the expression of almost all oxidative phosphorylation (OXPHOS) genes. DCA also increased NF-kB activation and ROS production, probably enhancing the cFLIP induction and OXPHOS gene reduction, respectively. Furthermore, cFLIP silencing weakened the DCA's anti-apoptotic effects. Finally, in mouse kidneys, DCA attenuated cisplatin-caused injuries such as functional and histological damages, caspase activation, JNK/14-3-3 activation, and cFLIP reduction. Conclusively, DCA mitigates cisplatin-induced nephrotoxicity by attenuating the JNK/14-3-3/Bax/caspase-9 pathway and inhibiting the caspase-8 pathways via cFLIP induction, probably outweighing the cisplatin plus DCA-derived cytotoxic effects including ROS.
Collapse
Affiliation(s)
- Hideki Kimura
- Department of Clinical Laboratory, University of Fukui Hospital, 23-3 Matsuoka-shimoaizuki, Eiheiji-Cho, Yoshida, Fukui, 910-1193, Japan.
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Kazuko Kamiyama
- Department of Clinical Laboratory, University of Fukui Hospital, 23-3 Matsuoka-shimoaizuki, Eiheiji-Cho, Yoshida, Fukui, 910-1193, Japan
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Toru Imamoto
- Department of Clinical Laboratory, University of Fukui Hospital, 23-3 Matsuoka-shimoaizuki, Eiheiji-Cho, Yoshida, Fukui, 910-1193, Japan
| | - Izumi Takeda
- Department of Clinical Laboratory, University of Fukui Hospital, 23-3 Matsuoka-shimoaizuki, Eiheiji-Cho, Yoshida, Fukui, 910-1193, Japan
| | - Mamiko Kobayashi
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoki Takahashi
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Kasuno
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | - Masayuki Iwano
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
5
|
Tong G, Shen Y, Li H, Qian H, Tan Z. NLRC4, inflammation and colorectal cancer (Review). Int J Oncol 2024; 65:99. [PMID: 39239759 PMCID: PMC11387119 DOI: 10.3892/ijo.2024.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Chronic inflammation is recognized as a major risk factor for cancer and is involved in every phase of the disease. Inflammasomes are central to the inflammatory response and play a crucial role in cancer development. The present review summarizes the role of Nod‑like receptor C4 (NLRC4) in inflammation and colorectal cancer (CRC). Reviews of the literature were conducted using Web of Science, PubMed and CNKI, with search terms including 'NLRC4', 'colorectal cancer', 'auto‑inflammatory diseases' and 'prognosis'. Variants of NLRC4 can cause recessive immune dysregulation and autoinflammation or lead to ulcerative colitis as a heterozygous risk factor. Additionally, genetic mutations in inflammasome components may increase susceptibility to cancer. NLRC4 is considered a tumor suppressor in CRC. The role of NLRC4 in CRC signaling pathways is currently understood to involve five key aspects (caspase 1, NLRP3/IL‑8, IL‑1β/IL‑1, NAIP and p53). The mechanisms by which NLRC4 is involved in CRC are considered to be threefold (through pyroptosis, apoptosis, necroptosis and PANoptosis; regulating the immune response; and protecting intestinal epithelial cells to prevent CRC). However, the impact of NLRC4 mutations on CRC remains unclear. In conclusion, NLRC4 is a significant inflammasome that protects against CRC through various signaling pathways and mechanisms. The association between NLRC4 mutations and CRC warrants further investigation.
Collapse
Affiliation(s)
- Guojun Tong
- Department of Colorectal Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Yan Shen
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hui Li
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hai Qian
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Zhenhua Tan
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
6
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
7
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
8
|
Guo X, Zhang Y, Li Q, Shi F, HuangFu Y, Li J, Lao X. The influence of a modified p53 C-terminal peptide by using a tumor-targeting sequence on cellular apoptosis and tumor treatment. Apoptosis 2024; 29:865-881. [PMID: 38145442 DOI: 10.1007/s10495-023-01926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.
Collapse
Affiliation(s)
- Xiaoye Guo
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yiming Zhang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Fangxin Shi
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yifan HuangFu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| |
Collapse
|
9
|
Venkatachalam J, Jeyadoss VS, Bose KSC, Subramanian R. Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells. Mol Biol Rep 2024; 51:611. [PMID: 38704796 DOI: 10.1007/s11033-024-09511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Raghunandhakumar Subramanian
- Cancer and Stem cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, Tamilnadu, India.
| |
Collapse
|
10
|
Zhou Z, Han S, Liao J, Wang R, Yu X, Li M. Isoliquiritigenin Inhibits Oral Squamous Cell Carcinoma and Overcomes Chemoresistance by Destruction of Survivin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2221-2241. [PMID: 37930332 DOI: 10.1142/s0192415x23500957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The oncoprotein survivin plays a pivotal role in controlling cell division and preventing apoptosis by inhibiting caspase activation. Its significant contribution to tumorigenesis and therapeutic resistance has been well established. Isoliquiritigenin (ISL), a natural compound, has been recognized for its powerful inhibitory effects against various tumors. However, whether ISL exerts regulatory effects on survivin and its underlying mechanism in oral squamous cell carcinoma (OSCC) remains unclear. Here, we found that ISL inhibited the viability and colony formation of OSCC, and promoted their apoptosis. The immunoblotting data showed that ISL treatment significantly decreased survivin expression. Mechanistically, ISL suppressed survivin phosphorylation on Thr34 by deregulating Akt-Wee1-CDK1 signaling, which facilitated survivin for ubiquitination degradation. ISL inhibited CAL27 tumor growth and decreased p-Akt and survivin expression in vivo. Meanwhile, survivin overexpression caused cisplatin resistance of OSCC cells. ISL alone or combined with cisplatin overcame chemoresistance in OSCC cells. Overall, our results revealed that ISL exerted potent inhibitory effects via inducing Akt-dependent survivin ubiquitination in OSCC cells.
Collapse
Affiliation(s)
- Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
| | - Shuangze Han
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jinzhuang Liao
- The Third Hospital of Changsha, Changsha, Hunan 410015, P. R. China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P. R. China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming Li
- Hunan University of Chinese Medicine, Affiliated Stomatological Hospital, Changsha, Hunan 410208, P. R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
11
|
Jamialahmadi H, Nazari SE, TanzadehPanah H, Saburi E, Asgharzadeh F, Khojasteh-Leylakoohi F, Alaei M, Mirahmadi M, Babaei F, Asghari SZ, Mansouri S, Khalili-Tanha G, Maftooh M, Fiuji H, Hassanian SM, Ferns GA, Khazaei M, Avan A. Targeting transforming growth factor beta (TGF-β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer. Sci Rep 2023; 13:14357. [PMID: 37658230 PMCID: PMC10474052 DOI: 10.1038/s41598-023-41550-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The modulating factors within the tumor microenvironment, for example, transforming growth factor beta (TGF-β), may limit the response to chemo and immunotherapy protocols in colorectal cancer (CRC). In the current study, the therapeutic potential of targeting the TGF-β pathway using Pirfenidone (PFD), a TGF-β inhibitor, either alone or in combination with five fluorouracil (5-FU) has been explored in preclinical models of CRC. The anti-proliferative and migratory effects of PFD were assessed by MTT and wound-healing assays respectively. Xenograft models were used to study the anti-tumor activity, histopathological, and side effects analysis. Targeting of TGF-β resulted in suppression of cell proliferation and migration, associated with modulation of survivin and MMP9/E-cadherin. Moreover, the PFD inhibited TGF-β induced tumor progression, fibrosis, and inflammatory response through perturbation of collagen and E-cadherin. Targeting the TGF-β pathway using PFD may increase the anti-tumor effects of 5-FU and reduce tumor development, providing a new therapeutic approach to CRC treatment.
Collapse
Affiliation(s)
- Hamid Jamialahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid TanzadehPanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mirahmadi
- Department of Pharmacology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Zahra Asghari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeide Mansouri
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
12
|
Liu W, Ji Y, Wang F, Li C, Shi S, Liu R, Li Q, Guo L, Liu Y, Cui H. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer 2023; 23:602. [PMID: 37386395 DOI: 10.1186/s12885-023-11080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The discovery of new anti-melanoma drugs with low side effect is urgently required in the clinic. Recent studies showed that morusin, a flavonoid compound isolated from the root bark of Morus Alba, has the potential to treat multiple types of cancers, including breast cancer, gastric cancer, and prostate cancer. However, the anti-cancer effect of morusin on melanoma cells has not been investigated. METHODS We analyzed the effects of morusin on the proliferation, cell cycle, apoptosis, cell migration and invasion ability of melanoma cells A375 and MV3, and further explored the effects of morusin on tumor formation of melanoma cell. Finally, the effects of morusin on the proliferation, cycle, apoptosis, migration and invasion of A375 cells after knockdown of p53 were detected. RESULTS Morusin effectively inhibits the proliferation of melanoma cells and induces cell cycle arrest in the G2/M phase. Consistently, CyclinB1 and CDK1 that involved in the G2/M phase transition were down-regulated upon morusin treatment, which may be caused by the up-regulation of p53 and p21. In addition, morusin induces cell apoptosis and inhibits migration of melanoma cells, which correlated with the changes in the expression of the associated molecules including PARP, Caspase3, E-Cadherin and Vimentin. Moreover, morusin inhibits tumor growth in vivo with little side effect on the tumor-burden mice. Finally, p53 knockdown partially reversed morusin-mediated cell proliferation inhibition, cell cycle arrest, apoptosis, and metastasis. CONCLUSION Collectively, our study expanded the spectrum of the anti-cancer activity of morusin and guaranteed the clinical use of the drug for melanoma treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China.
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China.
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Adib M, Taghadosi M, Tahmasebi MN, Sharafat Vaziri A, Jamshidi A, Mahmoudi M, Farhadi E. Anti-inflammatory effects of PRIMA-1 MET (mutant p53 reactivator) induced by inhibition of nuclear factor-κB on rheumatoid arthritis fibroblast-like synoviocytes. Inflammopharmacology 2023; 31:385-394. [PMID: 36350424 DOI: 10.1007/s10787-022-01094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), the main pathological cells in rheumatoid arthritis (RA), display tumor-like phenotype, including hyper-proliferation, apoptosis resistance, and aggressive phenotype. Excessive proliferation and insufficient apoptosis of RA-FLSs can lead to hyperplastic synovial pannus tissue, excess production of inflammatory mediators, and destruction of joints. In this article, we investigate the effect of PRIMA-1MET on the apoptosis induction and inhibition of pro-inflammatory cytokines in RA-FLSs. Synovial tissue samples were obtained from 10 patients with RA. The FLSs were treated with different concentrations of PRIMA-1MET. The rate of apoptosis and cell survival was assessed by flow cytometry and MTT assay and Real-time quantitative PCR was performed to evaluate the transcription of p53, IL-6, IL-1β, TNF-α, Noxa, p21, PUMA, Bax, Survivin, and XIAP in treated RA-FLSs. The protein level of p53, IκBα, and phospho-IκBα were measured using Western blotting. The results showed that PRIMA-1MET induced apoptosis in RA-FLSs and increased significantly the expression of Noxa, and decreased significantly IL-6, IL-1β, p53, and phospho-IκBα expression. PRIMA-1MET can induce apoptosis in RA-FLSs through induction of Noxa expression while p53 was downregulated. Furthermore, PRIMA-1MET treatment results in the suppression of pro-inflammatory cytokine production and NF-κB inhibition. Given the role of p53 and NF-κB in RA-FLSs, PRIMA-1MET can be considered as a new therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Mehrnoosh Adib
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Immunology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Naghi Tahmasebi
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Center of Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, PO-BOX: 1411713137, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY. Blockade of c-Met-Mediated Signaling Pathways by E7050 Suppresses Growth and Promotes Apoptosis in Multidrug-Resistant Human Uterine Sarcoma Cells. Int J Mol Sci 2022; 23:ijms232314884. [PMID: 36499211 PMCID: PMC9740914 DOI: 10.3390/ijms232314884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Wei Lan
- Division of Pulmonary Biology, The Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, OH 45229, USA
| | - Song-Shu Lin
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kong-Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung City 20401, Taiwan
- Correspondence: ; Tel.: +886-2211-8393
| |
Collapse
|
16
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Lee HS, Lee IH, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Study on the Mechanism of Herbal Drug FDY003 for Colorectal Cancer Treatment by Employing Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) originates from the uncontrolled growth of epithelial cells in the colon or rectum. Annually, 1.9 million new CRC cases are being reported, causing 0.9 million deaths worldwide. The suppressive effects of the herbal prescription FDY003, a mixture of Cordyceps militaris, Lonicera japonica Thunberg, and Artemisia capillaris Thunberg, against CRC have previously been reported. Nonetheless, the multiple compound-multiple target mechanisms of FDY003 in CRC cells have not been fully elucidated. In this study, we used network pharmacology (NP) to analyze the polypharmacological mechanisms of action of FDY003 in CRC treatment. FDY003 promoted the suppression of viability of CRC cells and strengthened their sensitivity to anticancer drugs. The NP study enabled the investigation of 17 pharmaceutical compounds and 90 CRC-related genes that were targets of the compounds. The gene ontology terms enriched with the CRC-related target genes of FDY003 were those involved in the control of a variety of phenotypes of CRC cells, for instance, the decision of apoptosis and survival, growth, stress response, and chemical response of cells. In addition, the targeted genes of FDY003 were further enriched in various Kyoto Encyclopedia of Genes and Genomes pathways that coordinate crucial pathological processes of CRC; these are ErbB, focal adhesion, HIF-1, IL-17, MAPK, PD-L1/PD-1, PI3K-Akt, Ras, TNF, and VEGF pathways. The overall analysis results obtained from the NP methodology support the multiple-compound-multiple-target-multiple-pathway pharmacological features of FDY003 as a potential agent for CRC treatment.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhang Z, Zhang Y, Lao S, Qiu J, Pan Z, Feng X. The clinicopathological and prognostic significances of IGF-1R and Livin expression in patients with colorectal cancer. BMC Cancer 2022; 22:855. [PMID: 35931997 PMCID: PMC9354317 DOI: 10.1186/s12885-022-09961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/31/2022] [Indexed: 11/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer worldwide. However, limited effective biomarkers are associated with the tumorigenesis and prognosis of CRC. Methods The present study identified potential signatures from The Cancer Genome Atlas (TCGA) database and further validated the identified biomarkers in CRC tissues by immunohistochemistry (IHC). Results The expression of insulin-like growth factor 1 receptor (IGF-1R) and Livin gene was significantly upregulated in CRC samples compared to the adjacent normal samples in the TCGA dataset. IHC indicated that IGF-1R and Livin protein levels are increased in CRC and adenoma tissues compared to normal tissues. Notably, the IGF-1R protein levels differed significantly between adenoma and CRC. The elevated IGF-1R and Livin expression was associated with CRC clinicopathological features, including age, gender, histological subtype, individual cancer stages, nodal metastasis, and TP53-mutant in TCGA. Additionally, the IGF-1R promoter methylation level was closely related to CRC. Consistent with the TCGA study, IHC indicated that overexpressed IGF-1R and Livin proteins were independent risk factors for stage and metastasis. A marked correlation was established between IGF-1R and Livin expression in CRC, while the survival map showed no significant correlation with CRC. Kaplan–Meier survival curves showed that CRC patients with high IGF-1R or Livin expression had a prolonged overall disease-free survival than those with low expression in TCGA. Conclusion IGF-1R and Livin are associated with CRC tumorigenesis and might be valuable for novel biomarker identification and targeted therapeutic strategy development. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09961-y.
Collapse
Affiliation(s)
- Zhenling Zhang
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yuxin Zhang
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Si Lao
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jian Qiu
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ziang Pan
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoying Feng
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
19
|
Feng J. The p53 Pathway Related Genes Predict the Prognosis of Colon Cancer. Int J Gen Med 2022; 15:169-177. [PMID: 35023955 PMCID: PMC8747760 DOI: 10.2147/ijgm.s346280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background Colon cancer is a common gastrointestinal malignancy. This study aimed to explore the relationship between p53 pathway-related genes and prognosis of colon cancer. Methods The mRNA datasets of colon cancer and adjacent tissues were downloaded from The Cancer Genome Atlas (TCGA) database, and the differential expression of genes in two groups was analyzed. Then, P53 pathway-related genes were intersected with differentially expressed genes (DEGs) to obtain P53 pathway-related differentially expressed genes. Then, overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) in clusters were compared by consistent cluster analysis. Univariate and multivariate Cox regression analysis of DEGs was performed to obtain survival-related DEGs. Risk scores were calculated for each sample based on survival-related DEGs, and patients were divided into high/low risk scores. Prognostic differences, tumor immune cell infiltration levels, and immune pathway activation status were compared between the two groups. Results We identified 28 DEGs and two clusters. There are significant differences in PFS between the two clusters (P=0.011), and no significant difference between OS and DSS. We obtained 3 DEGs (CDKN2A, BAK1, BTG1) that were significantly related to PFS, and CDKN2A was considered an independent prognostic factor. PFS showed statistically significant difference between high/low risk score groups (P=0.015). There were significant differences in immune cell infiltration level and immune pathway activity between two groups. Conclusion The p53 pathway-related genes are significantly related to PFS in colon cancer patients and play an important role in regulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinggao Feng
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, Yongzhou City, Hunan Province, 425100, People's Republic of China
| |
Collapse
|
20
|
Waniczek D, Nowak M, Lorenc-Góra J, Muc-Wierzgoń M, Mazurek U, Bichalska-Lach M, Lorenc Z. The transcriptional activity profile of inhibitor apoptosis protein encoding genes in colon cancer patients: A STROBE-compliant study. Medicine (Baltimore) 2021; 100:e27882. [PMID: 34797333 PMCID: PMC8601263 DOI: 10.1097/md.0000000000027882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
The inhibitor of apoptosis family proteins (IAPs) plays a crucial role in the process of carcinogenesis by regulating apoptosis and maintaining the tissue balance.In this study, a transcriptomic analysis of IAP-encoding genes in colon cancer was performed using oligonucleotide microarrays.Adenocarcinoma and healthy colon tissue samples were collected from 32 patients (16 females and 16 males) who underwent surgery due to colon cancer. The mRNA was extracted from tissue samples and tested using oligonucleotide microarrays (Affymetrix). The results were validated using the qRT-PCR technique. Hierarchical grouping was used to allocate 37 samples of normalized mRNA concentrations into 4 groups, with statistically significant differences in gene expression between these groups. The group of genes associated with colon cancer, including IAP-encoding gene - BIRC5 (Survivin), was selected for further testing.Our study confirmed an increased expression of BIRC5 in colon cancer tissue when compared to the control group. Increased levels of Neuronal Apoptosis Inhibitory Proteins were detected only in low-stage colon cancer, while the expression of Human X Chromosome-Encoded inhibitor of apoptosis family proteins decreased in colon cancer.The transcriptional activity of IAP-encoding genes varied, depending on the severity of colon cancer. The concentration of mRNA, encoding BIRC5 was elevated in samples obtained from more advanced colon cancer. Hence BIRC5 could be used as a complementary parameter for the diagnosis and prognosis of colon cancer.
Collapse
Affiliation(s)
- Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marcin Nowak
- Department of General, Colorectal and Polytrauma Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Justyna Lorenc-Góra
- Department of Surgical Nursing and Propaedeutics of Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Medicine, Faculty of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec Medical University of Silesia, Katowice, Poland
| | - Magda Bichalska-Lach
- Department of Surgical Nursing and Propaedeutics of Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Lorenc
- Department of General, Colorectal and Polytrauma Surgery, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
21
|
Albelwi FF, Teleb M, Abu-Serie MM, Moaty MNAA, Alsubaie MS, Zakaria MA, El Kilany Y, Aouad MR, Hagar M, Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int J Mol Sci 2021; 22:ijms221910324. [PMID: 34638665 PMCID: PMC8508768 DOI: 10.3390/ijms221910324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed A. Zakaria
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Yeldez El Kilany
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
- Correspondence: (M.H.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
- Correspondence: (M.H.); (N.R.)
| |
Collapse
|
22
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
23
|
Zeng S, Chen L, Sun Q, Zhao H, Yang H, Ren S, Liu M, Meng X, Xu H. Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling cascade. Eur J Pharmacol 2021; 906:174253. [PMID: 34118224 DOI: 10.1016/j.ejphar.2021.174253] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Dysregulated Wnt/β-catenin signaling pathway plays a critical role in the pathogenesis of colorectal cancer (CRC). Scutellarin, a flavonoid compound in Scutellaria barbata, has been reported to suppress CRC, with the action mechanism elusive. In this study, Scutellarin was found to inhibit the carcinogenesis of colitis-associated cancer (CAC) in mice caused by azoxymethane/dextran sulfate sodium, with alleviation of pathologic symptoms. Besides, Scutellarin attenuated mouse serum concentrations of TNF-α and IL-6, heightened Bax expression and diminished B-cell lymphoma-2 (Bcl-2) level in CAC tissues of mice, through down-regulating Wnt/β-catenin signaling cascade. In CRC HT-29 cells, Scutellarin retarded the proliferation and migration, induced apoptosis, with boosted Bax expression and decreased Bcl-2 level, which may be attributed to its repression of Wnt/β-catenin signals in HT-29 cells. Our findings demonstrate that Scutellarin may ameliorate colitis-associated colorectal cancer by weakening Wnt/β-catenin signaling cascade.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|