1
|
Guha TK, Esplin ED, Horning AM, Chiu R, Paul K, Weimer AK, Becker WR, Laquindanum R, Mills MA, Glen Esplin D, Shen J, Monte E, White S, Karathanos TV, Cotter D, Bi J, Ladabaum U, Longacre TA, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Single-cell spatial mapping reveals alteration of cell type composition and tissue microenvironment during early colorectal cancer formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622725. [PMID: 39605357 PMCID: PMC11601668 DOI: 10.1101/2024.11.20.622725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.5% of all CRC cases), this disease model is well suited for studying the early stages of malignant transformation as patients form many polyps reflective of pre-cancer states. In order to spatially profile and analyze the pre-cancer and tumor microenvironment, we have performed single-cell multiplexed imaging for 52 samples: 12 normal mucosa,16 FAP mucosa,18 FAP polyps, 2 FAP adenocarcinoma, and 4 sporadic colorectal cancer (CRCs) using Co-detection by Indexing (CODEX) imaging platform. The data revealed significant changes in cell type composition occurring in early stage polyps and during the malignant transformation of polyps to CRC. We observe a decrease in CD4+/CD8+ T cell ratio and M1/M2 macrophage ratio along the FAP disease continuum. Advanced dysplastic polyps show a higher population of cancer associated fibroblasts (CAFs), which likely alter the pre-cancer microenvironment. Within polyps and CRCs, we observe strong nuclear expression of beta-catenin and higher number neo-angiogenesis events, unlike FAP mucosa and normal colon counterparts. We identify an increase in cancer stem cells (CSCs) within the glandular crypts of the FAP polyps and also detect Tregs, tumor associated macrophages (TAMs) and vascular endothelial cells supporting CSC survival and proliferation. We detect a potential immunosuppressive microenvironment within the tumor 'nest' of FAP adenocarcinoma samples, where tumor cells tend to segregate and remain distant from the invading immune cells. TAMs were found to infiltrate the tumor area, along with angiogenesis and tumor proliferation. CAFs were found to be enriched near the inflammatory region within polyps and CRCs and may have several roles in supporting tumor growth. Neighborhood analyses between adjacent FAP mucosa and FAP polyps show significant differences in spatial location of cells based on functionality. For example, in FAP mucosa, naive CD4+ T cells alone tend to localize near the fibroblast within the stromal compartment. However, in FAP polyp, CD4+T cells colocalize with the macrophages for T cell activation. Our data are expected to serve as a useful resource for understanding the early stages of neogenesis and the pre-cancer microenvironment, which may benefit early detection, therapeutic intervention and future prevention.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | | | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - D Glen Esplin
- Animal Reference Pathology, Salt Lake City, UT 84107
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | - Daniel Cotter
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Joanna Bi
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| |
Collapse
|
2
|
Monzer A, Ghamlouche F, Wakimian K, Ballout F, Al Bitar S, Yehya A, Kanso M, Saheb N, Tawil A, Doughan S, Hussein M, Mukherji D, Faraj W, Allen JE, Prabhu VV, Abou-Antoun T, Gali-Muhtasib H, Abou-Kheir W. ONC206, an imipridone derivative, demonstrates anti-colorectal cancer activity against stem/progenitor cells in 3D cell cultures and in patient-derived organoids. Pharmacol Rep 2024:10.1007/s43440-024-00676-4. [PMID: 39551911 DOI: 10.1007/s43440-024-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most frequently diagnosed and life-threatening malignancies worldwide. CRC's high recurrence rates and drug resistance have been correlated with a subpopulation of dormant slowly dividing cells termed CRC stem cells (CCSCs). Consequently, there is a pressing need to identify novel therapeutics that can effectively and specifically target CCSCs. Imipridones are promising structurally related anticancer molecules that showed efficacy in several solid and hematological preclinical models and phase I/II/III clinical trials. This study mainly aimed to assess the potential anticancer effects of ONC206, an imipridone derivative, on CRC three-dimensional in vitro culture systems using HCT116 and HT29 cells. Importantly, the study aimed at using CRC patient-derived organoids (PDOs) to test the potential therapeutic effect of ONC206. METHODS Two-dimensional cell proliferation, viability, migration, and invasion assays were used to assess the effects of ONC206 on two colorectal cancer cell lines, HCT116 and HT29, in vitro. Immunofluorescence imaging, flow cytometry, and western blot analysis were also performed to investigate the mechanism of action of this drug. Sphere formation assay and CRC PDOs were employed to evaluate the effect of ONC206 on CRC cells in a 3D setting and specifically its potency in targeting the CRC stem/progenitor subpopulation of cells. RESULTS Our results showed that ONC206 was more potent than its parental molecule ONC201 in inhibiting the proliferation and viability of HCT116 and HT29 cells. Moreover, ONC206 significantly reduced the migration and invasion indices of CRC cells. These effects were accompanied by an increase in reactive oxygen species (ROS) production, sub-G1 phase accumulation, and apoptosis in HCT116 and HT29 cells. Furthermore, ONC206 significantly inhibited the 3D colonospheres growth and self-renewal ability of CCSCs more potently than ONC201, which was associated with a decrease in the expression of CSC-related markers. Lastly, ONC206 significantly reduced the growth of organoids derived from CRC patients. CONCLUSION Collectively, our findings demonstrate that ONC206 is an effective anticancer molecule capable of targeting CCSCs, which may represent a novel therapeutic strategy that can overcome CRC resistance and recurrence.
Collapse
Affiliation(s)
- Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Mariam Kanso
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Maher Hussein
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Walid Faraj
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | | | | | - Tamara Abou-Antoun
- Pediatric Hematology-Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110-101, USA
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
3
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
5
|
Moreira H, Szyjka A, Bęben D, Siwiela O, Radajewska A, Stankiewicz N, Grzesiak M, Wiatrak B, Emhemmed F, Muller CD, Barg E. Genotoxic and Anti-Migratory Effects of Camptothecin Combined with Celastrol or Resveratrol in Metastatic and Stem-like Cells of Colon Cancer. Cancers (Basel) 2024; 16:3279. [PMID: 39409900 PMCID: PMC11476312 DOI: 10.3390/cancers16193279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Colorectal cancer is one of the leading and most lethal neoplasms. Standard chemotherapy is ineffective, especially in metastatic cancer, and does not target cancer stem cells. A promising approach to improve cancer treatment is the combination therapy of standard cytostatic drugs with natural compounds. Several plant-derived compounds have been proven to possess anticancer properties, including the induction of apoptosis and inhibition of cancer invasion. This study was focused on investigating in vitro the combination of camptothecin (CPT) with celastrol (CEL) or resveratrol (RSV) as a potential strategy to target metastatic (LOVO) and stem-like (LOVO/DX) colon cancer cells. Methods: The genotoxic effects that drive cancer cells into death-inducing pathways and the ability to inhibit the migratory properties of cancer cells were evaluated. The γH2AX+ assay and Fast-Halo Assay (FHA) were used to evaluate genotoxic effects, the annexin-V apoptosis assay to rate the level of apoptosis, and the scratch test to assess antimigratory capacity. Results: The results showed that both combinations CPT-CEL and CPT-RSV improve general genotoxicity of CPT alone on metastatic cells and CSCs. However, the assessment of specific double-stranded breaks (DSBs) indicated a better efficacy of the CPT-CEL combination on LOVO cells and CPT-RSV in LOVO/DX cells. Interestingly, the combinations CPT-CEL and CPT-RSV did not improve the pro-apoptotic effect of CPT alone, with both LOVO and LOVO/DX cells suggesting activation of different cell death mechanisms. Furthermore, it was found that the combinations of CPT-CEL and CPT-RSV improve the inhibitory effect of camptothecin on cell migration. Conclusions: These findings suggest the potential utility of combining camptothecin with celastrol or resveratrol in the treatment of colon cancer, including more aggressive forms of the disease. So far, no studies evaluating the effects of combinations of these compounds have been published in the available medical databases.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Anna Szyjka
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dorota Bęben
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Oliwia Siwiela
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Nadia Stankiewicz
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Benita Wiatrak
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Fathi Emhemmed
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Christian D. Muller
- The Hubert Curien pluridisciplinary Institute-IPHC, UMR 7178, University of Strasbourg, 67401 Illkirch, France
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Elimam H, Eldeib MG, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elfar N, Abdel-Wahab MM, Zaki MB, Mohammed OA, Radwan AF, Abdel-Reheim MA, Moussa R, Doghish AS. Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03425-9. [PMID: 39287672 DOI: 10.1007/s00210-024-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease's progression, and their potential applications in its management.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority, Ministry of Health and Population, Cairo, 11567, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
7
|
Huang Z, Zhang K, Jiang Y, Wang M, Li M, Guo Y, Gao R, Li N, Wang C, Chen J, Wang J, Liu N, Liu X, Liu S, Wei M, Yang C, Yang G. Molecular glue triggers degradation of PHGDH by enhancing the interaction between DDB1 and PHGDH. Acta Pharm Sin B 2024; 14:4001-4013. [PMID: 39309493 PMCID: PMC11413658 DOI: 10.1016/j.apsb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in tumor initiation, proliferation, metastasis, drug resistance, and recurrence. Consequently, targeting CSCs has emerged as a promising avenue for cancer therapy. Recently, 3-phosphoglycerate dehydrogenase (PHGDH) has been identified as being intricately associated with the regulation of numerous cancer stem cells. Yet, reports detailing the functional regulators of PHGDH that can mitigate the stemness across cancer types are limited. In this study, the novel "molecular glue" LXH-3-71 was identified, and it robustly induced degradation of PHGDH, thereby modulating the stemness of colorectal cancer cells (CRCs) both in vitro and in vivo. Remarkably, LXH-3-71 was observed to form a dynamic chimera, between PHGDH and the DDB1-CRL E3 ligase. These insights not only elucidate the anti-CSCs mechanism of the lead compound but also suggest that degradation of PHGDH may be a more viable therapeutic strategy than the development of PHGDH inhibitors. Additionally, compound LXH-3-71 was leveraged as a novel ligand for the DDB1-CRL E3 ligase, facilitating the development of new PROTAC molecules targeting EGFR and CDK4 degradation.
Collapse
Affiliation(s)
- Ziqi Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yurui Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mengmeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mei Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yuda Guo
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ruolin Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ning Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Chenyang Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jia Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
9
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
10
|
Cianciosi D, Forbes-Hernandez T, Armas Diaz Y, Elexpuru-Zabaleta M, Quiles JL, Battino M, Giampieri F. Manuka honey's anti-metastatic impact on colon cancer stem-like cells: unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct 2024; 15:7200-7213. [PMID: 38896046 DOI: 10.1039/d4fo00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Tamara Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
11
|
Xu M, Chen Y, Li P, Ye Q, Feng S, Yan B. Antibiotic use during radical surgery in stage I-III colorectal cancer: correlation with outcomes? BMC Cancer 2024; 24:769. [PMID: 38926655 PMCID: PMC11210026 DOI: 10.1186/s12885-024-12550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Accumulating evidence indicates that the use of antibiotics (ATBs) in cancer patients is potentially correlated with patient prognosis. Interestingly, the use of these agents is not uncommon in colorectal cancer (CRC) patients during surgery; however, their prognostic value in the clinic has never been addressed. MATERIALS AND METHODS Data on ATB use during surgery, including the cumulative defined daily dose (cDDD) and the number of categories, were collected. Differences in the clinical data between the low and high cDDD subgroups and between subgroups with ≤ 4 and >4 categories. Additionally, the disease-free survival (DFS) and overall survival (OS) among these subgroups and the specific categories were compared. Finally, a Cox proportional hazard model was used to validate the risk factors for the outcome. RESULTS The number of categories, rather than the cDDD, was a significant predictor of both DFS (P = 0.043) and OS (P = 0.039). Patients with obstruction are more likely to have a high cDDD, whereas older patients are more likely to have multiple categories. There were no significant differences in the DFS (log rank = 1.36, P = 0.244) or OS (log rank = 0.40, P = 0.528) between patients in the low- and high-cDDD subgroups, whereas patients with ≤ 4 categories had superior DFS (log rank = 9.92, P = 0.002) and OS (log rank = 8.30, P = 0.004) compared with those with >4 categories. Specifically, the use of quinolones was harmful to survival (DFS: log rank = 3.67, P = 0.055; OS: log rank = 5.10, P = 0.024), whereas the use of macrolides was beneficial to survival (DFS: log rank = 12.26, P < 0.001; OS: log rank = 9.77, P = 0.002). Finally, the number of categories was identified as an independent risk factor for both DFS (HR = 2.05, 95% CI: 1.35-3.11, P = 0.001) and OS (HR = 1.82, 95% CI: 1.14-2.90, P = 0.012). CONCLUSIONS The cDDD of ATBs during surgery in stage I-III CRC patients did not correlate with outcome; however, patients in multiple categories or a specific category are likely to have inferior survival. These results suggest that particular caution should be taken when selecting ATBs for these patients in the clinic.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Yuanyuan Chen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Panhua Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China
| | - Qianwen Ye
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Shouhan Feng
- Department of Oncology, Huzhou Traditional Chinese Medicine Hospital affiliated to Zhejiang Chinese Medical University, No. 315 of South Street, Huzhou City, 313000, Zhejiang Province, P.R. China.
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China.
| |
Collapse
|
12
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
13
|
Ke C, Zhou H, Xia T, Xie X, Jiang B. GTP binding protein 2 maintains the quiescence, self-renewal, and chemoresistance of mouse colorectal cancer stem cells via promoting Wnt signaling activation. Heliyon 2024; 10:e27159. [PMID: 38468952 PMCID: PMC10926081 DOI: 10.1016/j.heliyon.2024.e27159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased β-catenin expression while increasing β-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| |
Collapse
|
14
|
Wei P, Han W, Zhang Z, Tian X, Yang C, Wang Q, Xie W, Liu Y, Gao Y, Chang H. Microbiota in colorectal cancer related to liver metastasis. Chin J Cancer Res 2024; 36:17-24. [PMID: 38455371 PMCID: PMC10915638 DOI: 10.21147/j.issn.1000-9604.2024.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
The prevalence of colorectal cancer (CRC) is increasing annually and metastasis is the principal cause of death in patients with CRC, with the liver being the most frequently affected site. Many studies have shown a strong interplay between the gut flora, particularly Fusobacterium nucleatum (F. nucleatum), Escherichia coli, and Bacteroides fragilis, and the development of gut tumors. Some strains can induce gut inflammation and produce toxins that directly harm gut epithelial cells, ultimately accelerating the onset and progression of CRC. However, little clinical evidence exists on the specific interplay between the gut microflora and colorectal cancer liver metastasis (CRLM). Some research showed the existence of viable F. nucleatum in distant metastasis of CRC. Subsequently, gut microbiota products, such as lipopolysaccharides, sodium butyrate, and protein cathepsin K, were also found to affect the development of CRC. This article summarizes the mechanism and research status of the interplay between gut microflora and CRLM, discusses the importance of gut microflora in the treatment of CRLM, and proposes a new approach to understanding the mechanism of CRLM and potential treatments for the microbiome. It is anticipated that the gut microbiota will be a formidable therapeutic and prophylactic tool for treating and preventing CRLM.
Collapse
Affiliation(s)
- Peijun Wei
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weiming Han
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zitong Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xue Tian
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen Yang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiaoxuan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weihao Xie
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ying Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuanhong Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Chang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
15
|
Li Y, Shi J, Liu Z, Lin Y, Xie A, Sun W, Liu J, Liang J. Regulation of the migration of colorectal cancer stem cells via the TLR4/MyD88 signaling pathway by the novel surface marker CD14 following LPS stimulation. Oncol Lett 2024; 27:60. [PMID: 38192670 PMCID: PMC10773188 DOI: 10.3892/ol.2023.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Cell surface markers are most widely used in the study of cancer stem cells (CSCs). However, cell surface markers that are safely and stably expressed in CSCs have yet to be identified. Colonic CSCs express leukocyte CD14. CD14 binding to the ligand lipopolysaccharide (LPS) is involved in the inflammatory response via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway. TLR4 and MyD88 have been reported to promote the proliferation, metastasis and tumorigenicity of colon cancer cells, which is consistent with the characteristics of CSCs. In the present study, the proposed experimental method to detect cell proliferation, metastasis and tumorigenesis was used to confirm that, under LPS stimulation, CD14 promoted the proliferation, migration and tumorigenesis of colonic CSCs via the TLR4/MyD88 signaling pathway. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess the proliferation and migration of the cells. Colony formation and nude mouse xenograft assays were used to assess the capacity of cells to form tumors. Using western blotting and reverse transcription-quantitative PCR, the mRNA and protein levels of CD14, TLR4 and MyD88 were examined. It was confirmed that CD14 promoted the proliferation, metastasis and tumorigenesis of colon CSCs in response to LPS stimulation via the TLR4/MyD88 signaling pathway, and CD14+ colon cancer cells were successfully isolated and sorted. According to the results of proliferation assay, it was determined that CD14 regulated the LPS-induced proliferation of colon CSCs. CD14, TLR4 and MyD88 protein and mRNA expression was upregulated in colon CSCs in response to LPS stimulation. This indicates a potential novel target for colon CSC-related studies.
Collapse
Affiliation(s)
- Yufei Li
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiayi Shi
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhixin Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yonggang Lin
- Department of Extracorporeal Circulation, Mudanjiang Cardiovascular Disease Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - An Xie
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wenxiu Sun
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiaqi Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jun Liang
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
16
|
Gui Y, Qian X, Ding Y, Chen Q, Fangyu Ye, Ye Y, Hou Y, Yu J, Zhao L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis 2024; 15:61. [PMID: 38233377 PMCID: PMC10794174 DOI: 10.1038/s41419-024-06451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanping Gui
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoping Qian
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, 210008, China
| | - Qianqian Chen
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangyu Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yu
- Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Omran MM, Fouda MS, Mekkawy SA, Tabll AA, Abdelaziz AG, Omran AM, Emran TM. Molecular Biomarkers and Signaling Pathways of Cancer Stem Cells in Colorectal Cancer. Technol Cancer Res Treat 2024; 23:15330338241254061. [PMID: 38794896 PMCID: PMC11128179 DOI: 10.1177/15330338241254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2018] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequently found cancer in the world, and it is frequently discovered when it is already far along in its development. About 20% of cases of CRC are metastatic and incurable. There is more and more evidence that colorectal cancer stem cells (CCSCs), which are in charge of tumor growth, recurrence, and resistance to treatment, are what make CRC so different. Because we know more about stem cell biology, we quickly learned about the molecular processes and possible cross-talk between signaling pathways that affect the balance of cells in the gut and cancer. Wnt, Notch, TGF-β, and Hedgehog are examples of signaling pathway members whose genes may change to produce CCSCs. These genes control self-renewal and pluripotency in SCs and then decide the function and phenotype of CCSCs. However, in terms of their ability to create tumors and susceptibility to chemotherapeutic drugs, CSCs differ from normal stem cells and the bulk of tumor cells. This may be the reason for the higher rate of cancer recurrence in patients who underwent both surgery and chemotherapy treatment. Scientists have found that a group of uncontrolled miRNAs related to CCSCs affect stemness properties. These miRNAs control CCSC functions like changing the expression of cell cycle genes, metastasis, and drug resistance mechanisms. CCSC-related miRNAs mostly control signal pathways that are known to be important for CCSC biology. The biomarkers (CD markers and miRNA) for CCSCs and their diagnostic roles are the main topics of this review study.
Collapse
Affiliation(s)
- Mohamed M. Omran
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manar S. Fouda
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara A. Mekkawy
- Molecular Biotechnology Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Azza M. Omran
- Clinical Pharma Program, Faculty of Pharmacy, Delta University, Dakahlia, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| |
Collapse
|
20
|
Santos LDS, Silva VR, de Castro MVL, Dias RB, Valverde LDF, Rocha CAG, Soares MBP, Quadros CA, Dos Santos ER, Oliveira RMM, Carlos RM, Nogueira PCL, Bezerra DP. New ruthenium-xanthoxylin complex eliminates colorectal cancer stem cells by targeting the heat shock protein 90 chaperone. Cell Death Dis 2023; 14:832. [PMID: 38102125 PMCID: PMC10724293 DOI: 10.1038/s41419-023-06330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
In this work, we describe a novel ruthenium-xanthoxylin complex, [Ru(phen)2(xant)](PF6) (RXC), that can eliminate colorectal cancer (CRC) stem cells by targeting the chaperone Hsp90. RXC exhibits potent cytotoxicity in cancer cell lines and primary cancer cells, causing apoptosis in HCT116 CRC cells, as observed by cell morphology, YO-PRO-1/PI staining, internucleosomal DNA fragmentation, mitochondrial depolarization, and PARP cleavage (Asp214). Additionally, RXC can downregulate the HSP90AA1 and HSP90B1 genes and the expression of HSP90 protein, as well as the expression levels of its downstream/client elements Akt1, Akt (pS473), mTOR (pS2448), 4EBP1 (pT36/pT45), GSK-3β (pS9), and NF-κB p65 (pS529), implying that these molecular chaperones can be molecular targets for RXC. Moreover, this compound inhibited clonogenic survival, the percentage of the CRC stem cell subpopulation, and colonosphere formation, indicating that RXC can eliminate CRC stem cells. RXC reduced cell migration and invasion, decreased vimentin and increased E-cadherin expression, and induced an autophagic process that appeared to be cytoprotective, as autophagy inhibitors enhanced RXC-induced cell death. In vivo studies showed that RXC inhibits tumor progression and experimental metastasis in mice with CRC HCT116 cell xenografts. Taken together, these results highlight the potential of the ruthenium complex RXC in CRC therapy with the ability to eliminate CRC stem cells by targeting the chaperone Hsp90.
Collapse
Affiliation(s)
- Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Maria V L de Castro
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, BA, 40110-909, Brazil
| | - Ludmila de F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia, Salvador, BA, 40110-909, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems, University Center SENAI/CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, BA, 41253-190, Brazil
- Bahia State University, Salvador, BA, 41150-000, Brazil
| | - Edjane R Dos Santos
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, MT, 78557-267, Brazil
| | - Regina M M Oliveira
- Coordination of Science and Technology, Balsas Science Center, Federal University of Maranhão, Balsas, MA, 65800-000, Brazil
| | - Rose M Carlos
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13561-901, Brazil
| | - Paulo C L Nogueira
- Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil.
| |
Collapse
|
21
|
Blachman A, Birocco AM, Curcio S, Camperi SA, Gianvincenzo PD, Rodriguez JA, Barredo-Vacchelli GR, Cenci G, Sosnik A, Moya S, Calabrese GC. Dermatan Sulfate/Chitosan Nanoparticles Loaded with an Anti-Inflammatory Peptide Increase the Response of Human Colorectal Cancer Cells to 5-Fluorouracil. Macromol Biosci 2023; 23:e2300193. [PMID: 37469233 DOI: 10.1002/mabi.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
The gold standard drug for colorectal cancer (CRC) treatment, 5-Fluorouracil (5-FU), induces pharmacological tolerance in long-term management. The transcriptional factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) plays a key role in 5-FU resistance. The aim of this work is to study the capability of polyelectrolytes complex nanoparticles of dermatan sulfate (DS) and chitosan (CS), loaded with the anti-inflammatory tripeptide IRW, to sensitize colorectal cancer cells to 5-FU. Fluorescence and flow cytometry studies confirmed the recognition by the nanoformulation, of the cluster of differentiation 44 (CD44) receptor, involved in the initiation and progression of colorectal tumors. Dynamic light scattering (DLS) and flow cytometry reinforced the importance of DS and CD44 receptor in the interaction, as the addition of DS or anti-CD44 antibody blocked the binding. Moreover, the nanoformulation also interacts with 3D colon cancer cultures, namely colonospheres, enriched in cancer stem cells (CSC), subpopulation responsible for drug resistance and metastasis. To evaluate the consequences of this interaction, the subcellular distribution of the transcriptional factor NFκB, is determined by immunofluorescence analysis. Internalization and the intracellular release of IRW inhibited nuclear translocation of NFκB and increased cellular sensitivity to 5-FU. Altogether, the nanoformulation could provide a selective delivery platform for IRW distribution to colorectal tumors, being an innovative strategy toward overcoming 5-FU resistance in CRC therapy.
Collapse
Affiliation(s)
- Agustín Blachman
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ariadna María Birocco
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Curcio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Jésica Ayelén Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Romina Barredo-Vacchelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Cenci
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sergio Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Graciela Cristina Calabrese
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Quiroz-Reyes AG, Delgado-González P, Islas JF, Soto-Domínguez A, González-Villarreal CA, Padilla-Rivas GR, Garza-Treviño EN. Oxaliplatin Enhances the Apoptotic Effect of Mesenchymal Stem Cells, Delivering Soluble TRAIL in Chemoresistant Colorectal Cancer. Pharmaceuticals (Basel) 2023; 16:1448. [PMID: 37895919 PMCID: PMC10610062 DOI: 10.3390/ph16101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
A key problem in colorectal cancer (CRC) is the development of resistance to current therapies due to the presence of cancer stem cells (CSC), which leads to poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that activates apoptosis in cancer cells through union with TRAIL death receptors. Cell therapies as delivery systems can produce soluble TRAIL (sTRAIL) and full-length TRAIL (flTRAIL), showing a high capacity to produce apoptosis in vitro and in vivo assays. However, the apoptotic activity of TRAIL as monotherapy had limitations, so it is important to explore other ways to enhance susceptibility to TRAIL. This study evaluated the cytotoxic and proapoptotic activity of soluble TRAIL overexpressed by mesenchymal stem cells (MSC) in an oxaliplatin-resistant CRC cell line. Bone marrow-MSC were lentiviral transduced for soluble TRAIL expression. DR5 death receptor expression was determined in Caco-2 and CMT-93 CRC cell lines. Sensitivity to first-line chemotherapies and recombinant TRAIL was evaluated by half-maximal inhibitory concentrations. Cytotoxic and proapoptotic activity of soluble TRAIL-MSC alone and combined with chemotherapy pre-treatment was evaluated using co-cultures. Caco-2 and CMT-93 cell lines expressed 59.08 ± 5.071 and 51.65 ± 11.99 of DR5 receptor and had IC50 of 534.15 ng/mL and 581.34 ng/mL for recombinant murine TRAIL (rmTRAIL), respectively. This finding was classified as moderate resistance to TRAIL. The Caco-2 cell line showed resistance to oxaliplatin and irinotecan. MSC successfully overexpressed soluble TRAIL and induced cancer cell death at a 1:6 ratio in co-culture. Oxaliplatin pre-treatment in the Caco-2 cell line increased the cell death percentage (50%) and apoptosis by sTRAIL. This finding was statistically different from the negative control (p < 0.05), and activity was even higher with the oxaliplatin-flTRAIL combination. Thus, oxaliplatin increases apoptotic activity induced by soluble TRAIL in a chemoresistant CRC cell line.
Collapse
Affiliation(s)
- Adriana G Quiroz-Reyes
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico; (A.G.Q.-R.); (P.D.-G.); (J.F.I.); (G.R.P.-R.)
| | - Paulina Delgado-González
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico; (A.G.Q.-R.); (P.D.-G.); (J.F.I.); (G.R.P.-R.)
| | - José F. Islas
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico; (A.G.Q.-R.); (P.D.-G.); (J.F.I.); (G.R.P.-R.)
| | - Adolfo Soto-Domínguez
- Department of Histology, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico;
| | | | - Gerardo R. Padilla-Rivas
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico; (A.G.Q.-R.); (P.D.-G.); (J.F.I.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 81, Mexico; (A.G.Q.-R.); (P.D.-G.); (J.F.I.); (G.R.P.-R.)
| |
Collapse
|
23
|
Deng J, Pan T, Lv C, Cao L, Li L, Zhou X, Li G, Li H, Vicencio JM, Xu Y, Wei F, Wang Y, Liu Z, Zhou G, Yin M. Exosomal transfer leads to chemoresistance through oxidative phosphorylation-mediated stemness phenotype in colorectal cancer. Theranostics 2023; 13:5057-5074. [PMID: 37771767 PMCID: PMC10526671 DOI: 10.7150/thno.84937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Recently years have seen the increasing evidence identifying that OXPHOS is involved in different processes of tumor progression and metastasis and has been proposed to be a potential therapeutical target for cancer treatment. However, the exploration in oxidative phosphorylation-mediated chemoresistance is still scarce. In our study, we identify exosomal transfer leads to chemoresistance by reprogramming metabolic phenotype in recipient cells. Methods: RNA sequencing analysis was used to screen altered targets mediating exosome transfer-induced chemoresistance. Seahorse assay allowed us to measure mitochondrial respiration. Stemness was measured by spheroids formation assay. Serum exosomes were isolated for circ_0001610 quantification. Results: The induced oxidative phosphorylation leads to more stem-like properties, which is dependent on the transfer of exosomal circ_0001610. Exosome transfer results in the removal of miR-30e-5p-mediated suppression of PGC-1a, a master of mitochondrial biogenesis and function. Consequently, increased PGC-1a reshapes cellular metabolism towards oxidative phosphorylation, leading to chemoresistance. Inhibition of OXPHOS or exosomal si-circ_0001610 increases the sensitivity of chemotherapy by decreasing cell stemness in vitro and in vivo. Conclusion: Our data suggests that exosomal circ_0001610-induced OXPHOS plays an important role in chemoresistance and supports a therapeutical potential of circ_0001610 inhibitors in the treatment of oxaliplatin-resistant colorectal cancer by manipulating cell stemness.
Collapse
Affiliation(s)
- Jinhai Deng
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Chunxin Lv
- Oncology Department, Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100191, PR China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Huanxin Li
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jose M Vicencio
- Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Yihan Xu
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing 400044, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanglin Zhou
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| |
Collapse
|
24
|
Lozada-Martinez ID, Bolaño-Romero MP, Lambis-Anaya L, Liscano Y, Suarez-Causado A. CEA-delta could be a biomarker of tumor phenotype, clinical stage, and chemotherapeutic response in rectal cancer with OCT4-positive cancer stem cells. Front Oncol 2023; 13:1258863. [PMID: 37746252 PMCID: PMC10514348 DOI: 10.3389/fonc.2023.1258863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background There is very limited evidence on biomarkers for evaluating the clinical behavior and therapeutic response in rectal cancer (RC) with positive expression of cancer stem cells (CSCs). Methods An exploratory prospective study was conducted, which included fresh samples of tumor tissue from 109 patients diagnosed with primary RC. Sociodemographic, pathological and clinical characteristics were collected from medical records and survey. The OCT4 protein was isolated using the Western Blot technique. It was calculated the ΔCEA, ΔOCT4, and ΔOCT4/GUSB values by assessing the changes before and after chemotherapy, aiming to evaluate the therapeutic response. Results Patients had an average age of 69.9 years, with 55% (n=60) being male. Approximately 63.3% of the tumors were undifferentiated, and the most frequent staging classification was pathological stage III (n=64; 58.7%). Initial positive expression was observed in 77.1% of the patients (n=84), and the median ΔCEA was -1.03 (-3.82 - 0.84) ng/ml, with elevated levels (< -0.94 ng/ml) found in 51.4% of the subjects (n=56). Being OCT4 positive and having an elevated ΔCEA value were significantly associated with undifferentiated tumor phenotype (p=0.002), advanced tumor progression stage (p <0.001), and negative values of ΔOCT4 (p <0.001) (suggestive of poor therapeutic response) compared to those without this status. Conclusion This study identified a significant and directly proportional association among the values of ΔCEA, ΔOCT4, and ΔOCT4/GUSB. These findings suggest that ΔCEA holds potential as a clinical biomarker for determining the undifferentiated tumor phenotype, advanced clinical stage, and poor therapeutic response in RC with CSCs positive expression.
Collapse
Affiliation(s)
- Ivan David Lozada-Martinez
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Maria Paz Bolaño-Romero
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Lina Lambis-Anaya
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
| | - Amileth Suarez-Causado
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
25
|
Clevenger AJ, McFarlin MK, Collier CA, Sheshadri VS, Madyastha AK, Gorley JPM, Solberg SC, Stratman AN, Raghavan SA. Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. Cell Mol Bioeng 2023; 16:261-281. [PMID: 37811008 PMCID: PMC10550901 DOI: 10.1007/s12195-023-00776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00776-w.
Collapse
Affiliation(s)
- Abigail J. Clevenger
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Vibha S. Sheshadri
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
26
|
Desette A, Guichet PO, Emambux S, Masliantsev K, Cortes U, Ndiaye B, Milin S, George S, Faigner M, Tisserand J, Gaillard A, Brot S, Wager M, Tougeron D, Karayan-Tapon L. Deciphering Brain Metastasis Stem Cell Properties From Colorectal Cancer Highlights Specific Stemness Signature and Shared Molecular Features. Cell Mol Gastroenterol Hepatol 2023; 16:757-782. [PMID: 37482243 PMCID: PMC10520365 DOI: 10.1016/j.jcmgh.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND & AIMS Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.
Collapse
Affiliation(s)
- Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Sheik Emambux
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Ulrich Cortes
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Birama Ndiaye
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'Anatomie et de Cytologie Pathologiques, CHU de Poitiers, Poitiers, France
| | - Simon George
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mathieu Faigner
- Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | | | - Afsaneh Gaillard
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Sébastien Brot
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - David Tougeron
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'hépato-gastro-entérologie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
27
|
Suman S, Hota SK, Misra P, Sahu N, Sahu S. Immunohistochemical Expression of the Stem Cell Marker CD133 in Colorectal Carcinoma. Cureus 2023; 15:e41242. [PMID: 37529823 PMCID: PMC10387822 DOI: 10.7759/cureus.41242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Background Colorectal carcinoma (CRC) is the second-leading cause of cancer-related death. Despite the combined (surgery, chemotherapy, radiotherapy, and immunotherapy) modalities of treatment, the prognosis remains poor, mostly because of recurrence and distant metastasis. Cancer stem cells (CSC) are thought to be responsible for the development and spread of tumors. Hence, targeted therapy against these cells hopes to reduce the chance of recurrence and metastasis and improve the prognosis. Many immune markers have been identified to detect CSC in CRC. Here, we tried to assess the immunohistochemical expression of the stem cell marker CD133 in colorectal carcinoma and its correlation with various pathological parameters. Methodology A total of 51 cases of CRC were analyzed. Immunohistochemistry for CD133 was done after standardization in our laboratory. Expression status was decided based on the total score obtained by multiplying the intensity score by the percentage score. CD133 expression was correlated with the age and gender of the patient, tumor location, histological grade, extent of invasion, lymphovascular invasion (LVI), perineural invasion (PNI), and nodal status. Results High CD133 expression was seen in 21 (41.17%) cases. There was no significant association between CD133 expression and the pathological parameters except the tumor site. CD133 expression was significantly higher as we moved from the proximal colon to the rectum. Conclusions CD133 expression was significantly higher in the distal part of the large intestine as compared to the proximal part. But there was no linear correlation between CD133 expression and histological grade, extent of invasion, or nodal status.
Collapse
Affiliation(s)
- Sweta Suman
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | | | - Pranati Misra
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Nageswar Sahu
- Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Subrat Sahu
- Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
28
|
Sałagacka-Kubiak A, Zawada D, Saed L, Kordek R, Jeleń A, Balcerczak E. ABCG2 Gene and ABCG2 Protein Expression in Colorectal Cancer-In Silico and Wet Analysis. Int J Mol Sci 2023; 24:10539. [PMID: 37445716 DOI: 10.3390/ijms241310539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
ABCG2 (ATP-binding cassette superfamily G member 2) is a cell membrane pump encoded by the ABCG2 gene. ABCG2 can protect cells against compounds initiating and/or intensifying neoplasia and is considered a marker of stem cells responsible for cancer growth, drug resistance and recurrence. Expression of the ABCG2 gene or its protein has been shown to be a negative prognostic factor in various malignancies. However, its prognostic significance in colorectal cancer remains unclear. Using publicly available data, ABCG2 was shown to be underexpressed in colon and rectum adenocarcinomas, with lower expression compared to both the adjacent nonmalignant lung tissues and non-tumour lung tissues of healthy individuals. This downregulation could result from the methylation level of some sites of the ABCG2 gene. This was connected with microsatellite instability, weight and age among patients with colon adenocarcinoma, and with tumour localization, population type and age of patients for rectum adenocarcinoma. No association was found between ABCG2 expression level and survival of colorectal cancer patients. In wet analysis of colorectal cancer samples, neither ABCG2 gene expression, analysed by RT-PCR, nor ABCG2 protein level, assessed by immunohistochemistry, was associated with any clinicopathological factors or overall survival. An ABCG2-centered protein-protein interaction network build by STRING showed proteins were found to be involved in leukotriene, organic anion and xenobiotic transport, endodermal cell fate specification, and histone methylation and ubiquitination. Hence, ABCG2 underexpression could be an indicator of the activity of certain signalling pathways or protein interactors essential for colorectal carcinogenesis.
Collapse
Affiliation(s)
- Aleksandra Sałagacka-Kubiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dawid Zawada
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lias Saed
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
29
|
Rainho MDA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:273-283. [PMID: 37457136 PMCID: PMC10344721 DOI: 10.20517/cdr.2022.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Ísis Salviano Soares de Amorim
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Andre Luiz Mencalha
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
30
|
Taib N, Merhi M, Inchakalody V, Mestiri S, Hydrose S, Makni-Maalej K, Raza A, Sahir F, Azizi F, Nizamuddin PB, Fernandes Q, Yoosuf ZSKM, Almoghrabi S, Al-Zaidan L, Shablak A, Uddin S, Maccalli C, Al Homsi MU, Dermime S. Treatment with decitabine induces the expression of stemness markers, PD-L1 and NY-ESO-1 in colorectal cancer: potential for combined chemoimmunotherapy. J Transl Med 2023; 21:235. [PMID: 37004094 PMCID: PMC10067322 DOI: 10.1186/s12967-023-04073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.
Collapse
Affiliation(s)
- Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Karama Makni-Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fairooz Sahir
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Parveen B Nizamuddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Medicine, Qatar University, 2713, Doha, Qatar
| | - Zeenath Safira K M Yoosuf
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, 2713, Doha, Qatar
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Human Immunology Department, Research Branch, Sidra Medicine, 26999, Doha, Qatar
| | | | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar.
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar.
| |
Collapse
|
31
|
Stage IV Colorectal Cancer Management and Treatment. J Clin Med 2023; 12:jcm12052072. [PMID: 36902858 PMCID: PMC10004676 DOI: 10.3390/jcm12052072] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related mortality worldwide. Up to 50% of patients with CRC develop metastatic CRC (mCRC). Surgical and systemic therapy advances can now offer significant survival advantages. Understanding the evolving treatment options is essential for decreasing mCRC mortality. We aim to summarize current evidence and guidelines regarding the management of mCRC to provide utility when making a treatment plan for the heterogenous spectrum of mCRC. (2) Methods: A comprehensive literature search of PubMed and current guidelines written by major cancer and surgical societies were reviewed. The references of the included studies were screened to identify additional studies that were incorporated as appropriate. (3) Results: The standard of care for mCRC primarily consists of surgical resection and systemic therapy. Complete resection of liver, lung, and peritoneal metastases is associated with better disease control and survival. Systemic therapy now includes chemotherapy, targeted therapy, and immunotherapy options that can be tailored by molecular profiling. Differences between colon and rectal metastasis management exist between major guidelines. (4) Conclusions: With the advances in surgical and systemic therapy, as well as a better understanding of tumor biology and the importance of molecular profiling, more patients can anticipate prolonged survival. We provide a summary of available evidence for the management of mCRC, highlighting the similarities and presenting the difference in available literature. Ultimately, a multidisciplinary evaluation of patients with mCRC is crucial to selecting the appropriate pathway.
Collapse
|
32
|
Zheng Z, Hou X, Bian Z, Jia W, Zhao L. Gut microbiota and colorectal cancer metastasis. Cancer Lett 2023; 555:216039. [PMID: 36528182 DOI: 10.1016/j.canlet.2022.216039] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Gut microbiota play critical roles in the development of colorectal cancer (CRC) metastasis, but the underlying mechanisms remain elusive. This review discusses the molecular mechanisms by which the gut microbiota contribute to a tumor-permissive microenvironment and facilitate malignant transformation and dissemination of tumor cells, thereby mediating CRC metastasis.
Collapse
Affiliation(s)
- Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
33
|
Zhu S, Yin J, Ye Q, Xiang J, Zhang Z, Yan B. Combined preoperative prognostic nutritional index and D-dimer score predicts outcome in colorectal cancer. BMC Surg 2023; 23:30. [PMID: 36750842 PMCID: PMC9903491 DOI: 10.1186/s12893-023-01925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The prognostic nutritional index (PNI) and D-dimer (DD) levels represent useful prognostic indicators in colorectal cancer (CRC); however, a combination of these indicators, namely, the PNI and DD score (PDS) was less addressed. METHODS A retrospective study with 183 patients after curative surgery was conducted. Patients were divided into 3 subgroups: PDS 0, decreased PNI and increased DD levels; PDS 1, decreased or increased PNI and DD levels; PDS 2, increased PNI and decreased DD levels. The differences in disease-free survival (DFS) and overall survival (OS) were compared among these subgroups, and risk factors for outcome were determined. RESULTS A total of 56, 65 and 62 patients were assigned to the PDS 0, 1 and 2 subgroups, respectively. PDS was significant in predicting both the DFS (area under the curve (AUC) = 0.68, P < 0.001) and OS (AUC = 0.74, P < 0.001). PDS 0 patients were more likely to be associated with old age (P = 0.032), laparotomy (P < 0.001), elevated CEA (P = 0.001), T3 + T4 (P = 0.001) and advanced TNM stage (P = 0.031). PDS 0 patients had significantly inferior DFS (log rank = 18.35, P < 0.001) and OS (log rank = 28.34, P < 0.001) than PDS 1 or 2 patients. PDS was identified as an independent risk factor for both DFS (PDS 1: HR = 0.54, 95% CI: 0.30-1.00, P = 0.049; PDS 2: HR = 0.40, 95% CI: 0.20-0.79, P = 0.009) and OS (PDS 1: HR = 0.44, 95% CI: 0.22-0.88, P = 0.020; PDS 2: HR = 0.17, 95% CI: 0.06-0.45, P < 0.001). CONCLUSION The PDS is a useful prognostic indicator for CRC patients after curative surgery, and PDS 0 patients have inferior survival. Additional future studies are needed to validate these findings.
Collapse
Affiliation(s)
- Shibin Zhu
- Department of Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Jianyuan Yin
- Department of Critical Care Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Zihao Zhang
- Department of Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China.
| |
Collapse
|
34
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
35
|
Luque C, Cepero A, Perazzoli G, Mesas C, Quiñonero F, Cabeza L, Prados J, Melguizo C. In Vitro Efficacy of Extracts and Isolated Bioactive Compounds from Ascomycota Fungi in the Treatment of Colorectal Cancer: A Systematic Review. Pharmaceuticals (Basel) 2022; 16:22. [PMID: 36678519 PMCID: PMC9864996 DOI: 10.3390/ph16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite the advances and success of current treatments (e.g., chemotherapy), there are multiple serious side effects which require the development of new treatment strategies. In recent years, fungi have gained considerable attention as a source of extracts and bioactive compounds with antitumor capabilities because of their antimicrobial and antioxidant properties and even their anti-inflammatory and antiviral activities. In the present review, a systematic search of the existing literature in four electronic databases was carried out in which the antitumor activity against CRC cells of Ascomycota fungi extracts or compounds was tested. The systematical research in the four databases resulted in a total of 883 articles. After applying exclusion and inclusion criteria, a total of 75 articles were finally studied. The order Eurotiales was the most studied (46% of the articles), and the ethyl acetate extraction was the most used method (49% of the papers). Penicillium extracts and gliotoxin and acetylgliotoxin G bioactive compounds showed the highest cytotoxic activity. This review also focuses on the action mechanisms of the extracts and bioactive compounds of fungi against CRC, which were mediated by apoptosis induction and the arrest of the cell cycle, which induces a notable reduction in the CRC cell proliferation capacity, and by the reduction in cell migration that limits their ability to produce metastasis. Thus, the ability of fungi to induce the death of cancer cells through different mechanisms may be the basis for the development of new therapies that improve the current results, especially in the more advanced stages of the CCR.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
36
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Chen HP, Chen CI, Liu KW, Chen TJ, Tian YF, Kuo YH, Li WS, Tsai HH, Wu LC, Yeh CF, Li CF, Chou CL, Lai HY. High SLC28A2 expression endows an inferior survival for rectal cancer patients managed by neoadjuvant CCRT. Pathol Res Pract 2022; 239:154158. [DOI: 10.1016/j.prp.2022.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
|
38
|
He S, Li S, Guo J, Zeng X, Liang D, Zhu Y, Li Y, Yang D, Zhao X. CD166-specific CAR-T cells potently target colorectal cancer cells. Transl Oncol 2022; 27:101575. [PMID: 36327697 PMCID: PMC9637812 DOI: 10.1016/j.tranon.2022.101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is emerging as an effective cancer treatment, such as for hematological malignancies, however its effectiveness as an approach to treat solid tumors, such as in colorectal cancer (CRC), remains to be better developed. One area of intense development has been in the identification and characterization of novel cancer-related ligand receptors for CAR design and evaluation. It is known that the CD6 receptors CD166 and CD318 are highly expressed in CRC, and several CAR-Ts have also been explored in preclinical and clinical studies for the treatment of CRC, with promising safety and efficacy findings. Here, we constructed a CAR based on the extracellular domain of CD6 and demonstrate its cytotoxic effect in target positive human CRC cell lines. Unexpectedly, we found that CD6-CAR-T cells targeted CD166 instead of CD318. Furthermore, CD6-CAR-T cells show robust cytotoxicity to CD166-positive cell lines in a dose-dependent manner with cytokine IFN-γ significantly released. Particularly, CD6-CAR-T cells show potent cytotoxicity targeting CRC cancer stem cells (CSCs), highlighting that CD6-CAR-T is a promising approach for the therapy of CRC.
Collapse
Affiliation(s)
- Shuai He
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shirong Li
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jing Guo
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaozhu Zeng
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yongjie Zhu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yi Li
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
39
|
Cui G, Li G, Pang Z, Florholmen J, Goll R. The presentation and regulation of the IL-8 network in the epithelial cancer stem-like cell niche in patients with colorectal cancer. Biomed Pharmacother 2022; 152:113252. [PMID: 35687912 DOI: 10.1016/j.biopha.2022.113252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulative evidence suggests that the biological behavior of cancer stem-like cells (CSCs) is regulated by their surrounding niche, in which cytokines function as one of the main mediators for the interaction between CSCs and their microenvironment in the colorectal cancer (CRC). METHODS We characterized the presentation of CSCs and the interleukin (IL)- 8 network in the adenoma/CRC epithelium using quantitative real-time PCR (q-PCR), immunohistochemistry (IHC) and double immunofluorescence. In addition, the capacity of IL-1β to stimulate epithelial IL-8 production in colon cancer Caco-2 cells was examined in vitro and the IL-8 product was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS IHC observation showed increased expression of both CSCs and IL-8 in the adenoma and CRC epithelium, and q-PCR results revealed that increased expression of IL-1β transcript was strongly correlated with increased IL-8 transcript levels in both adenoma and CRC tissues. Double immunofluorescence images demonstrated the coexpression of the IL-8 receptors IL-8RA and IL-8RB with LGR5 labeled CSCs in CRC tissue sections. Consistently, in vitro experiments showed that coculture of Caco-2 cells with IL-1β at concentrations of 1, 5, 10 and 20 ng/ml resulted in a dose-dependent release of IL-8, which could be specifically inhibited by cotreatment with the IL-1β receptor antagonist. CONCLUSIONS These results demonstrate activation of the IL-8 network in the niche of CSCs from the precancerous adenoma stage to the CRC stage, which is potentially stimulated by IL-1β in CRC cells.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Faculty of Health Science, Nord University, Campus Levanger, Levanger, Norway.
| | - Gui Li
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jon Florholmen
- Department of Gastroenterology, University Hospital of North Norway, University of Tromsø, Tromsø, Norway
| | - Rasmus Goll
- Department of Gastroenterology, University Hospital of North Norway, University of Tromsø, Tromsø, Norway
| |
Collapse
|
40
|
Blondy S, Durand S, Lacroix A, Christou N, Bouchaud C, Peyny M, Battu S, Chauvanel A, Carré V, Jauberteau MO, Lalloué F, Mathonnet M. Detection of Glycosylated Markers From Cancer Stem Cells With ColoSTEM Dx Kit for Earlier Prediction of Colon Cancer Aggressiveness. Front Oncol 2022; 12:918702. [PMID: 35936672 PMCID: PMC9355573 DOI: 10.3389/fonc.2022.918702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, colon cancer prognosis still difficult to predict, especially in the early stages. Recurrences remain elevated, even in the early stages after curative surgery. Carcidiag Biotechnologies has developed an immunohistochemistry (IHC) kit called ColoSTEM Dx, based on a MIX of biotinylated plant lectins that specifically detects colon cancer stem cells (CSCs) through glycan patterns that they specifically (over)express. A retrospective clinical study was carried out on tumor tissues from 208 non-chemotherapeutic-treated and 21 chemotherapeutic-treated patients with colon cancer, which were stained by IHC with the MIX. Clinical performances of the kit were determined, and prognostic and predictive values were evaluated. With 78.3% and 70.6% of diagnostic sensitivity and specificity respectively, our kit shows great clinical performances. Moreover, patient prognosis is significantly poorer when the MIX staining is “High” compared to “Low”, especially at 5-years of overall survival and for early stages. The ColoSTEM Dx kit allows an earlier and a more precise determination of patients’ outcome. Thus, it affords an innovating clinical tool for predicting tumor aggressiveness earlier and determining prognosis value regarding therapeutic response in colon cancer patients.
Collapse
Affiliation(s)
| | - Stéphanie Durand
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- *Correspondence: Fabrice Lalloué, ; Stéphanie Durand, ; Muriel Mathonnet,
| | - Aurélie Lacroix
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
| | - Niki Christou
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- Department of Digestive Surgery, Dupuytren University Hospital, Limoges, France
| | | | - Maud Peyny
- Carcidiag Biotechnologies company, Guéret, France
| | - Serge Battu
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Limoges, France
| | - Alain Chauvanel
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | | | - Marie-Odile Jauberteau
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- Department of Immunology, Dupuytren University Hospital, Limoges, France
| | - Fabrice Lalloué
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- *Correspondence: Fabrice Lalloué, ; Stéphanie Durand, ; Muriel Mathonnet,
| | - Muriel Mathonnet
- INSERM U1308 - CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”, Faculty of Medicine, University of Limoges, Limoges, France
- Department of Digestive Surgery, Dupuytren University Hospital, Limoges, France
- *Correspondence: Fabrice Lalloué, ; Stéphanie Durand, ; Muriel Mathonnet,
| |
Collapse
|
41
|
Hervieu C, Verdier M, Barthout E, Bégaud G, Christou N, Sage M, Pannequin J, Battu S, Mathonnet M. A Label-Free Cell Sorting Approach to Highlight the Impact of Intratumoral Cellular Heterogeneity and Cancer Stem Cells on Response to Therapies. Cells 2022; 11:2264. [PMID: 35892561 PMCID: PMC9332486 DOI: 10.3390/cells11152264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells play a crucial role in tumor initiation, metastasis, and resistance to treatment. Cellular heterogeneity and plasticity complicate the isolation of cancer stem cells. The impact of intra-tumor cellular heterogeneity using a label-free approach remains understudied in the context of treatment resistance. Here, we use the sedimentation field-flow fractionation technique to separate, without labeling, cell subpopulations of colorectal cancer cell lines and primary cultures according to their biophysical properties. One of the three sorted cell subpopulations exhibits characteristics of cancer stem cells, including high tumorigenicity in vivo and a higher frequency of tumor-initiating cells compared to the other subpopulations. Due to its chemoresistance, two- and three-dimensional in vitro chemosensitivity assays highlight the therapeutic relevance of this cancer stem cell subpopulation. Thus, our results reveal the major implication of intra-tumor cellular heterogeneity, including cancer stem cells in treatment resistance, thanks to our label-free cell sorting approach. This approach enables-by breaking down the tumor-the study the individualized response of each sorted tumor cell subpopulation and to identify chemoresistance, thus offering new perspectives for personalized therapy.
Collapse
Affiliation(s)
- Céline Hervieu
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Mireille Verdier
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Elodie Barthout
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Gaëlle Bégaud
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Niki Christou
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges, France
| | - Magali Sage
- BISCEm US42 INSERM-UAR 2015 CNRS “Integrative Biology Health Chemistry Environment”, Ω-Health Institute, 87025 Limoges, France;
| | - Julie Pannequin
- UMR 5203 CNRS-INSERM, Institute of Functional Genomics, University of Montpellier, 34094 Montpellier, France;
| | - Serge Battu
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
| | - Muriel Mathonnet
- UMR INSERM 1308-CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Ω-Health Institute, Faculty of Medicine, University of Limoges, 87025 Limoges, France; (C.H.); (M.V.); (E.B.); (G.B.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges, France
| |
Collapse
|
42
|
Betge J, Rindtorff N, Sauer J, Rauscher B, Dingert C, Gaitantzi H, Herweck F, Srour-Mhanna K, Miersch T, Valentini E, Boonekamp KE, Hauber V, Gutting T, Frank L, Belle S, Gaiser T, Buchholz I, Jesenofsky R, Härtel N, Zhan T, Fischer B, Breitkopf-Heinlein K, Burgermeister E, Ebert MP, Boutros M. The drug-induced phenotypic landscape of colorectal cancer organoids. Nat Commun 2022; 13:3135. [PMID: 35668108 PMCID: PMC9170716 DOI: 10.1038/s41467-022-30722-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them. The heterogeneity underlying cancer organoid phenotypes is not yet well understood. Here, the authors develop an imaging analysis assay for high throughput phenotypic screening of colorectal organoids that allows to define specific morphological changes that occur following different drug treatments.
Collapse
Affiliation(s)
- Johannes Betge
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,German Cancer Research Center (DKFZ), Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, Heidelberg, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Niklas Rindtorff
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Jan Sauer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Computational Genome Biology Group, Heidelberg, Germany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Clara Dingert
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Haristi Gaitantzi
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Frank Herweck
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Kauthar Srour-Mhanna
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,German Cancer Research Center (DKFZ), Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, Heidelberg, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Thilo Miersch
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Kim E Boonekamp
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Veronika Hauber
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Tobias Gutting
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany.,Department of Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Larissa Frank
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Sebastian Belle
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Timo Gaiser
- Mannheim Cancer Center, Mannheim, Germany.,Heidelberg University, Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany
| | - Inga Buchholz
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Ralf Jesenofsky
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Nicolai Härtel
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Tianzuo Zhan
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany.,Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), Computational Genome Biology Group, Heidelberg, Germany
| | - Katja Breitkopf-Heinlein
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Elke Burgermeister
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany.,Mannheim Cancer Center, Mannheim, Germany
| | - Matthias P Ebert
- Heidelberg University, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim, Germany. .,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany. .,Mannheim Cancer Center, Mannheim, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
43
|
Celastrol and Resveratrol Modulate SIRT Genes Expression and Exert Anticancer Activity in Colon Cancer Cells and Cancer Stem-like Cells. Cancers (Basel) 2022; 14:cancers14061372. [PMID: 35326523 PMCID: PMC8945991 DOI: 10.3390/cancers14061372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The recovery rate in patients with metastatic colorectal cancer (CRC) remains low and declines with successive lines of treatment. This phenomenon is caused by the development of drug resistance and the presence of colorectal cancer stem cells (CSCs). Phytochemicals, like -celastrol and resveratrol, are very promising for colon cancer therapy, owing to their low or no toxicity and their pleiotropic activity, enabling them to interact with various biological targets. In the present study, the potential anticancer mechanisms of both compounds against metastatic colon cancer cells and the capacity to eradicate CSCs were investigated. Abstract Metastatic colorectal cancer (CRC) remains a hard-to-cure neoplasm worldwide. Its curability declines with successive lines of treatment due to the development of various cancer resistance mechanisms and the presence of colorectal cancer stem cells (CSCs). Celastrol and resveratrol are very promising phytochemicals for colon cancer therapy, owing to their pleiotropic activity that enables them to interact with various biological targets. In the present study, the anticancer activities of both compounds were investigated in metastatic colon cancer cells (LoVo cells) and cancer stem-like cells (LoVo/DX). We showed that celastrol is a very potent anti-tumor compound against metastatic colon cancer, capable of attenuating CSC-like cells at the molecular and cellular levels. In contrast, resveratrol has a much greater effect on colon cancer cells that are expressing standard sensitivity to anticancer drugs, than on CSC-like cells. In addition, both polyphenols have different influences on the expression of SIRT genes, which seems to be at least partly related to their anti-tumor activity.
Collapse
|
44
|
Yu PC, Liu D, Han ZX, Liang F, Hao CY, Lei YT, Guo CR, Wang WH, Li XH, Yang XN, Li CZ, Yu Y, Fan YZ. Thymopentin-Mediated Inhibition of Cancer Stem Cell Stemness Enhances the Cytotoxic Effect of Oxaliplatin on Colon Cancer Cells. Front Pharmacol 2022; 13:779715. [PMID: 35242031 PMCID: PMC8886222 DOI: 10.3389/fphar.2022.779715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Thymopentin (TP5) is an immunomodulatory pentapeptide that has been widely used in malignancy patients with immunodeficiency due to radiotherapy and chemotherapy. Here, we propose that TP5 directly inhibits the stemness of colon cancer cells HCT116 and therefore enhances the cytotoxicity of oxaliplatin (OXA) in HCT116 cells. In the absence of serum, TP5 was able to induce cancer stemness reduction in cultured HCT116 cells and significantly reduced stemness-related signals, such as the expression of surface molecular markers (CD133, CD44 and CD24) and stemness-related genes (ALDH1, SOX2, Oct-4 and Nanog), and resulted in altered Wnt/β-catenin signaling. Acetylcholine receptors (AchRs) are implicated in this process. OXA is a common chemotherapeutic agent with therapeutic effects in various cancers. Although TP5 had no direct effect on the proliferation of HCT116, this pentapeptide significantly increased the sensitivity of HCT116 to OXA, where the effect of TP5 on the stemness of colon cancer cells through stimulation of AchRs may contribute to this process. Our results provide a promising strategy for increasing the sensitivity of colon cancer cells to chemotherapeutic agents by incorporating immunomodulatory peptides.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Liu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zeng-Xiang Han
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Three Departments of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Fang Liang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cui-Yun Hao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Tao Lei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Na Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying-Zhe Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
46
|
Cancer Stem Cells and Their Vesicles, Together with Other Stem and Non-Stem Cells, Govern Critical Cancer Processes: Perspectives for Medical Development. Int J Mol Sci 2022; 23:ijms23020625. [PMID: 35054811 PMCID: PMC8775347 DOI: 10.3390/ijms23020625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Stem cells, identified several decades ago, started to attract interest at the end of the nineties when families of mesenchymal stem cells (MSCs), concentrated in the stroma of most organs, were found to participate in the therapy of many diseases. In cancer, however, stem cells of high importance are specific to another family, the cancer stem cells (CSCs). This comprehensive review is focused on the role and the mechanisms of CSCs and of their specific extracellular vesicles (EVs), which are composed of both exosomes and ectosomes. Compared to non-stem (normal) cancer cells, CSCs exist in small populations that are preferentially distributed to the niches, such as minor specific tissue sites corresponding to the stroma of non-cancer tissues. At niches and marginal sites of other cancer masses, the tissue exhibits peculiar properties that are typical of the tumor microenvironment (TME) of cancers. The extracellular matrix (ECM) includes components different from non-cancer tissues. CSCs and their EVs, in addition to effects analogous to those of MSCs/EVs, participate in processes of key importance, specific to cancer: generation of distinct cell subtypes, proliferation, differentiation, progression, formation of metastases, immune and therapy resistance, cancer relapse. Many of these, and other, effects require CSC cooperation with surrounding cells, especially MSCs. Filtered non-cancer cells, especially macrophages and fibroblasts, contribute to collaborative cancer transition/integration processes. Therapy developments are mentioned as ongoing preclinical initiatives. The preliminary state of clinical medicine is presented in terms of both industrial development and future treatments. The latter will be administered to specific patients together with known drugs, with the aim of eradicating their tumor growth and metastases.
Collapse
|
47
|
Zhou Y, Cheng F, Zhang Z, Xiang J, Xue T, Ye Q, Yan B. Preoperative Absolute Lymphocyte Count to Carcinoembryonic Antigen Ratio Is a Superior Predictor of Survival in Stage I to III Colorectal Cancer. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221126249. [PMID: 36186673 PMCID: PMC9515526 DOI: 10.1177/11795549221126249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Preoperative absolute lymphocyte count (ALC) and carcinoembryonic antigen
(CEA) are useful prognostic indicators in colorectal cancer (CRC); however,
the role of the ALC-to-CEA ratio (LCR) has been less addressed. Methods: A total of 189 stage I to III CRC patients who underwent radical resection
were enrolled retrospectively. The significance of the LCR in predicting
disease-free survival (DFS) and overall survival (OS) was calculated and
compared with other markers based on ALC. The DFS and OS differences among
the low- and high-LCR subgroups and risk factors for the outcome were
estimated by Kaplan–Meier analysis and the Cox proportional hazards model,
respectively. Results: Taking 0.28 as the cutoff point, the LCR has a sensitivity and a specificity
of 75.60% and 77.00%, respectively, in predicting OS. The prognostic
efficacy of LCR was significantly superior to that of other markers based on
ALC for predicting DFS and OS. A total of 34.92% (66/189) of patients
displayed a low LCR (<0.28), and these patients were more likely to
present poor cell differentiation (P = .03), tumor deposits
(P < .01) and advanced T (P <
.01) and liver metastasis (P = .02). Patients with a low
LCR had significantly worse DFS (Log Rank = 34.98, P <
.01) and OS (Log Rank = 43.17, P < .01) than those with
a high LCR. The LCR was an independent prognostic factor for both DFS
(hazard ratio (HR) = 0.35, 95% confidence interval (CI): 0.20-0.62,
P < .01) and OS (HR = 0.18, 95% CI: 0.08-0.37,
P < .01). Conclusions: The LCR is a superior predictor of survival in stage I to III CRC, and
patients with a low LCR have an inferior outcome; however, additional
studies are required to validate its prognostic role.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Fei Cheng
- Department of Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Zihao Zhang
- Department of Clinical Laboratory, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, Sanya, P.R. China
| |
Collapse
|
48
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: https:/doi.org/10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
|
49
|
Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
|
50
|
Lang F, Contreras-Gerenas MF, Gelléri M, Neumann J, Kröger O, Sadlo F, Berniak K, Marx A, Cremer C, Wagenknecht HA, Allgayer H. Tackling Tumour Cell Heterogeneity at the Super-Resolution Level in Human Colorectal Cancer Tissue. Cancers (Basel) 2021; 13:cancers13153692. [PMID: 34359592 PMCID: PMC8345115 DOI: 10.3390/cancers13153692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Tumour cell heterogeneity is the most fundamental problem in cancer diagnosis and therapy. Micro-diagnostic technologies able to differentiate the heterogeneous molecular, especially metastatic, potential of single cells or cell clones already within early primary tumours of carcinoma patients would be of utmost importance. Single molecule localisation microscopy (SMLM) has recently allowed the imaging of subcellular features at the nanoscale. However, the technology has mostly been limited to cultured cell lines only. We introduce a first-in-field approach for quantitative SMLM-analysis of chromatin nanostructure in individual cells in resected, routine-pathology colorectal carcinoma patient tissue sections, illustrating, as a first example, changes in nuclear chromatin nanostructure and microRNA intracellular distribution within carcinoma cells as opposed to normal cells, chromatin accessibility and microRNAs having been shown to be critical in gene regulation and metastasis. We believe this technology to have an enormous potential for future differential diagnosis between individual cells in the tissue context. Abstract Tumour cell heterogeneity, and its early individual diagnosis, is one of the most fundamental problems in cancer diagnosis and therapy. Single molecule localisation microscopy (SMLM) resolves subcellular features but has been limited to cultured cell lines only. Since nuclear chromatin architecture and microRNAs are critical in metastasis, we introduce a first-in-field approach for quantitative SMLM-analysis of chromatin nanostructure in individual cells in resected, routine-pathology colorectal carcinoma (CRC) patient tissue sections. Chromatin density profiles proved to differ for cells in normal and carcinoma colorectal tissues. In tumour sections, nuclear size and chromatin compaction percentages were significantly different in carcinoma versus normal epithelial and other cells of colorectal tissue. SMLM analysis in nuclei from normal colorectal tissue revealed abrupt changes in chromatin density profiles at the nanoscale, features not detected by conventional widefield microscopy. SMLM for microRNAs relevant for metastasis was achieved in colorectal cancer tissue at the nuclear level. Super-resolution microscopy with quantitative image evaluation algorithms provide powerful tools to analyse chromatin nanostructure and microRNAs of individual cells from normal and tumour tissue at the nanoscale. Our new perspectives improve the differential diagnosis of normal and (metastatically relevant) tumour cells at the single-cell level within the heterogeneity of primary tumours of patients.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, 76131 Karlsruhe, Germany; (F.L.); (H.-A.W.)
| | - María F. Contreras-Gerenas
- Department of Experimental Surgery—Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany;
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Jan Neumann
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
| | - Ole Kröger
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
| | - Filip Sadlo
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
| | - Krzysztof Berniak
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland;
| | - Alexander Marx
- Institute of Pathology, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany;
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; (M.G.); (J.N.); (C.C.)
- Interdisciplinary Centre for Scientific Computing (IWR), University Heidelberg, Mathematikon B, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; (O.K.); (F.S.)
- Institute of Pharmacy & Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, 76131 Karlsruhe, Germany; (F.L.); (H.-A.W.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-(0)621-383-71630/-1406/-71635; Fax: +49-(0)621-383-71631
| |
Collapse
|