1
|
Takahashi S, Sakaguchi Y, Kouno N, Takasawa K, Ishizu K, Akagi Y, Aoyama R, Teraya N, Bolatkan A, Shinkai N, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Sugiyama M, Hamamoto R. Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review. J Med Syst 2024; 48:84. [PMID: 39264388 PMCID: PMC11393140 DOI: 10.1007/s10916-024-02105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
In the rapidly evolving field of medical image analysis utilizing artificial intelligence (AI), the selection of appropriate computational models is critical for accurate diagnosis and patient care. This literature review provides a comprehensive comparison of vision transformers (ViTs) and convolutional neural networks (CNNs), the two leading techniques in the field of deep learning in medical imaging. We conducted a survey systematically. Particular attention was given to the robustness, computational efficiency, scalability, and accuracy of these models in handling complex medical datasets. The review incorporates findings from 36 studies and indicates a collective trend that transformer-based models, particularly ViTs, exhibit significant potential in diverse medical imaging tasks, showcasing superior performance when contrasted with conventional CNN models. Additionally, it is evident that pre-training is important for transformer applications. We expect this work to help researchers and practitioners select the most appropriate model for specific medical image analysis tasks, accounting for the current state of the art and future trends in the field.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Yusuke Sakaguchi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Kenichi Ishizu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Akagi
- Department of Biomedical Informatics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rina Aoyama
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Naoki Teraya
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masashi Sugiyama
- RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
| |
Collapse
|
2
|
Aamir M, Namoun A, Munir S, Aljohani N, Alanazi MH, Alsahafi Y, Alotibi F. Brain Tumor Detection and Classification Using an Optimized Convolutional Neural Network. Diagnostics (Basel) 2024; 14:1714. [PMID: 39202202 PMCID: PMC11353951 DOI: 10.3390/diagnostics14161714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Brain tumors are a leading cause of death globally, with numerous types varying in malignancy, and only 12% of adults diagnosed with brain cancer survive beyond five years. This research introduces a hyperparametric convolutional neural network (CNN) model to identify brain tumors, with significant practical implications. By fine-tuning the hyperparameters of the CNN model, we optimize feature extraction and systematically reduce model complexity, thereby enhancing the accuracy of brain tumor diagnosis. The critical hyperparameters include batch size, layer counts, learning rate, activation functions, pooling strategies, padding, and filter size. The hyperparameter-tuned CNN model was trained on three different brain MRI datasets available at Kaggle, producing outstanding performance scores, with an average value of 97% for accuracy, precision, recall, and F1-score. Our optimized model is effective, as demonstrated by our methodical comparisons with state-of-the-art approaches. Our hyperparameter modifications enhanced the model performance and strengthened its capacity for generalization, giving medical practitioners a more accurate and effective tool for making crucial judgments regarding brain tumor diagnosis. Our model is a significant step in the right direction toward trustworthy and accurate medical diagnosis, with practical implications for improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Aamir
- Department of Computer Science, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan; (M.A.); (S.M.)
- Department of Computer Science, Superior University Lahore, Lahore 54000, Pakistan
| | - Abdallah Namoun
- AI Centre, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Sehrish Munir
- Department of Computer Science, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan; (M.A.); (S.M.)
| | - Nasser Aljohani
- AI Centre, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Meshari Huwaytim Alanazi
- Computer Science Department, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - Yaser Alsahafi
- School of Information Technology, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Faris Alotibi
- College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
3
|
Yamada S, Ito H, Matsumasa H, Ii S, Otani T, Tanikawa M, Iseki C, Watanabe Y, Wada S, Oshima M, Mase M. Automatic assessment of disproportionately enlarged subarachnoid-space hydrocephalus from 3D MRI using two deep learning models. Front Aging Neurosci 2024; 16:1362637. [PMID: 38560023 PMCID: PMC10978765 DOI: 10.3389/fnagi.2024.1362637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Disproportionately enlarged subarachnoid-space hydrocephalus (DESH) is a key feature for Hakim disease (idiopathic normal pressure hydrocephalus: iNPH), but subjectively evaluated. To develop automatic quantitative assessment of DESH with automatic segmentation using combined deep learning models. Methods This study included 180 participants (42 Hakim patients, 138 healthy volunteers; 78 males, 102 females). Overall, 159 three-dimensional (3D) T1-weighted and 180 T2-weighted MRIs were included. As a semantic segmentation, 3D MRIs were automatically segmented in the total ventricles, total subarachnoid space (SAS), high-convexity SAS, and Sylvian fissure and basal cistern on the 3D U-Net model. As an image classification, DESH, ventricular dilatation (VD), tightened sulci in the high convexities (THC), and Sylvian fissure dilatation (SFD) were automatically assessed on the multimodal convolutional neural network (CNN) model. For both deep learning models, 110 T1- and 130 T2-weighted MRIs were used for training, 30 T1- and 30 T2-weighted MRIs for internal validation, and the remaining 19 T1- and 20 T2-weighted MRIs for external validation. Dice score was calculated as (overlapping area) × 2/total area. Results Automatic region extraction from 3D T1- and T2-weighted MRI was accurate for the total ventricles (mean Dice scores: 0.85 and 0.83), Sylvian fissure and basal cistern (0.70 and 0.69), and high-convexity SAS (0.68 and 0.60), respectively. Automatic determination of DESH, VD, THC, and SFD from the segmented regions on the multimodal CNN model was sufficiently reliable; all of the mean softmax probability scores were exceeded by 0.95. All of the areas under the receiver-operating characteristic curves of the DESH, Venthi, and Sylhi indexes calculated by the segmented regions for detecting DESH were exceeded by 0.97. Conclusion Using 3D U-Net and a multimodal CNN, DESH was automatically detected with automatically segmented regions from 3D MRIs. Our developed diagnostic support tool can improve the precision of Hakim disease (iNPH) diagnosis.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Hironori Matsumasa
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Chifumi Iseki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Otsu, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| |
Collapse
|
4
|
Khalil YA, Ayaz A, Lorenz C, Weese J, Pluim J, Breeuwer M. Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation. Comput Med Imaging Graph 2024; 112:102332. [PMID: 38245925 DOI: 10.1016/j.compmedimag.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Accurate brain tumor segmentation is critical for diagnosis and treatment planning, whereby multi-modal magnetic resonance imaging (MRI) is typically used for analysis. However, obtaining all required sequences and expertly labeled data for training is challenging and can result in decreased quality of segmentation models developed through automated algorithms. In this work, we examine the possibility of employing a conditional generative adversarial network (GAN) approach for synthesizing multi-modal images to train deep learning-based neural networks aimed at high-grade glioma (HGG) segmentation. The proposed GAN is conditioned on auxiliary brain tissue and tumor segmentation masks, allowing us to attain better accuracy and control of tissue appearance during synthesis. To reduce the domain shift between synthetic and real MR images, we additionally adapt the low-frequency Fourier space components of synthetic data, reflecting the style of the image, to those of real data. We demonstrate the impact of Fourier domain adaptation (FDA) on the training of 3D segmentation networks and attain significant improvements in both the segmentation performance and prediction confidence. Similar outcomes are seen when such data is used as a training augmentation alongside the available real images. In fact, experiments on the BraTS2020 dataset reveal that models trained solely with synthetic data exhibit an improvement of up to 4% in Dice score when using FDA, while training with both real and FDA-processed synthetic data through augmentation results in an improvement of up to 5% in Dice compared to using real data alone. This study highlights the importance of considering image frequency in generative approaches for medical image synthesis and offers a promising approach to address data scarcity in medical imaging segmentation.
Collapse
Affiliation(s)
- Yasmina Al Khalil
- Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Aymen Ayaz
- Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | - Jürgen Weese
- Philips Research Laboratories, Hamburg, Germany.
| | - Josien Pluim
- Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marcel Breeuwer
- Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands; Philips Healthcare, Best, The Netherlands.
| |
Collapse
|
5
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
6
|
Zhang L, Xu R, Zhao J. Learning technology for detection and grading of cancer tissue using tumour ultrasound images1. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:157-171. [PMID: 37424493 DOI: 10.3233/xst-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Early diagnosis of breast cancer is crucial to perform effective therapy. Many medical imaging modalities including MRI, CT, and ultrasound are used to diagnose cancer. OBJECTIVE This study aims to investigate feasibility of applying transfer learning techniques to train convoluted neural networks (CNNs) to automatically diagnose breast cancer via ultrasound images. METHODS Transfer learning techniques helped CNNs recognise breast cancer in ultrasound images. Each model's training and validation accuracies were assessed using the ultrasound image dataset. Ultrasound images educated and tested the models. RESULTS MobileNet had the greatest accuracy during training and DenseNet121 during validation. Transfer learning algorithms can detect breast cancer in ultrasound images. CONCLUSIONS Based on the results, transfer learning models may be useful for automated breast cancer diagnosis in ultrasound images. However, only a trained medical professional should diagnose cancer, and computational approaches should only be used to help make quick decisions.
Collapse
Affiliation(s)
- Liyan Zhang
- Department of Ultrasound, Sunshine Union Hospital, Weifang, China
| | - Ruiyan Xu
- College of Health, Binzhou Polytechnical College, Binzhou, China
| | - Jingde Zhao
- Department of Imaging, Qingdao Hospital of Traditional Chinese Medicine (Qingdao HaiCi Hospital), Qingdao, China
| |
Collapse
|
7
|
Song G, Xie G, Nie Y, Majid MS, Yavari I. Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods. J Cancer Res Clin Oncol 2023; 149:16293-16309. [PMID: 37698684 DOI: 10.1007/s00432-023-05389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Convolutional Neural Networks (ConvNets) have quickly become popular machine learning techniques in recent years, particularly in the classification and segmentation of medical images. One of the most prevalent types of brain cancers is glioma, and early, accurate diagnosis is essential for both treatment and survival. In this study, MRI scans were examined utilizing deep learning techniques to examine glioma diagnosis studies. METHODS In this systematic review, keywords were used to obtain English-language studies from the Arxiv, IEEE, Springer, ScienceDirect, and PubMed databases for the years 2010-2022. The material needed for review was then collected from the articles once they had been chosen based on the entry and exit criteria and in accordance with the research's goal. RESULTS Finally, 77 different academic articles were chosen. According to a study of published articles, glioma brain tumors were discovered, categorized, and segmented utilizing a coordinated approach that included image collecting, pre-processing, model design and execution, and model output evaluation. The majority of investigations have used publicly accessible photo databases and already-trained algorithms. The bulk of studies have employed Dice's classification accuracy and similarity coefficient metrics to assess model performance. CONCLUSION The results of this study indicate that glioma segmentation has received more attention from researchers than glioma detection and classification. It is advised that more research be done in the areas of glioma detection and, particularly, grading in order to be included in systems that support medical diagnosis.
Collapse
Affiliation(s)
- Guanghui Song
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China.
| | - Guanbao Xie
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China
| | - Yan Nie
- College of Science & Technology, Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Mohammed Sh Majid
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Yavari
- School of Computing and Technology, Eastern Mediterranean University, Northern Cyprus, Famagusta, Cyprus.
| |
Collapse
|
8
|
Yamamoto S, Okita Y, Arita H, Sanada T, Sakai M, Arisawa A, Kagawa N, Shimosegawa E, Nakanishi K, Kinoshita M, Kishima H. Qualitative MR features to identify non-enhancing tumors within glioblastoma's T2-FLAIR hyperintense lesions. J Neurooncol 2023; 165:251-259. [PMID: 37917281 DOI: 10.1007/s11060-023-04454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE To identify qualitative MRI features of non-(contrast)-enhancing tumor (nCET) in glioblastoma's T2-FLAIR hyperintense lesion. METHODS Thirty-three histologically confirmed glioblastoma patients whose T1-, T2- and contrast-enhanced T1-weighted MRI and 11C-methionine positron emission tomography (Met-PET) were available were included in this study. Met-PET was utilized as a surrogate for tumor burden. Imaging features for identifying nCET were searched by qualitative examination of 156 targets. A new scoring system to identify nCET was established and validated by two independent observers. RESULTS Three imaging features were found helpful for identifying nCET; "Bulky gray matter involvement", "Around the rim of contrast-enhancement (Around-rim)," and "High-intensity on T1WI and low-intensity on T2WI (HighT1LowT2)" resulting in an nCET score = 2 × Bulky gray matter involvement - 2 × Around-rim + HighT1LowT2 + 2. The nCET score's classification performances of two independent observers measured by AUC were 0.78 and 0.80, with sensitivities and specificities using a threshold of four being 0.443 and 0.771, and 0.916 and 0.768, respectively. The weighted kappa coefficient for the nCET score was 0.946. CONCLUSION The current investigation demonstrated that qualitative assessments of glioblastoma's MRI might help identify nCET in T2/FLAIR high-intensity lesions. The novel nCET score is expected to aid in expanding treatment targets within the T2/FLAIR high-intensity lesions.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Neurosurgery, Osaka Greneral Medical Center, Bandai-higashi 3-1-56, Sumiyoshi-ku, Osaka, 558-8558, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
- Department of Neurosurgery, Asahikawa Medical University, Midorigaoka-higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Takahiro Sanada
- Department of Neurosurgery, Asahikawa Medical University, Midorigaoka-higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mio Sakai
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Atsuko Arisawa
- Department of Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University, Midorigaoka-higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
9
|
Perillo T, de Giorgi M, Papace UM, Serino A, Cuocolo R, Manto A. Current role of machine learning and radiogenomics in precision neuro-oncology. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:545-555. [PMID: 37720347 PMCID: PMC10501892 DOI: 10.37349/etat.2023.00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 09/19/2023] Open
Abstract
In the past few years, artificial intelligence (AI) has been increasingly used to create tools that can enhance workflow in medicine. In particular, neuro-oncology has benefited from the use of AI and especially machine learning (ML) and radiogenomics, which are subfields of AI. ML can be used to develop algorithms that dynamically learn from available medical data in order to automatically do specific tasks. On the other hand, radiogenomics can identify relationships between tumor genetics and imaging features, thus possibly giving new insights into the pathophysiology of tumors. Therefore, ML and radiogenomics could help treatment tailoring, which is crucial in personalized neuro-oncology. The aim of this review is to illustrate current and possible future applications of ML and radiomics in neuro-oncology.
Collapse
Affiliation(s)
- Teresa Perillo
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Marco de Giorgi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Umberto Maria Papace
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Antonietta Serino
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Andrea Manto
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| |
Collapse
|
10
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
11
|
Kawamura K, Lee C, Yoshikawa T, Hani AS, Usami Y, Toyosawa S, Tanaka S, Hiraoka SI. Prediction of cervical lymph node metastasis from immunostained specimens of tongue cancer using a multilayer perceptron neural network. Cancer Med 2023; 12:5312-5322. [PMID: 36307918 PMCID: PMC10028108 DOI: 10.1002/cam4.5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although cervical lymph node metastasis is an important prognostic factor for oral cancer, occult metastases remain undetected even by diagnostic imaging. We developed a learning model to predict lymph node metastasis in resected specimens of tongue cancer by classifying the level of immunohistochemical (IHC) staining for angiogenesis- and lymphangiogenesis-related proteins using a multilayer perceptron neural network (MNN). METHODS We obtained a dataset of 76 patients with squamous cell carcinoma of the tongue who had undergone primary tumor resection. All 76 specimens were IHC stained for the six types shown above (VEGF-C, VEGF-D, NRP1, NRP2, CCR7, and SEMA3E) and 456 slides were prepared. We scored the staining levels visually on all slides. We created virtual slides (4560 images) and the accuracy of the MNN model was verified by comparing it with a hue-saturation (HS) histogram, which quantifies the manually determined visual information. RESULTS The accuracy of the training model with the MNN was 98.6%, and when the training image was converted to grayscale, the accuracy decreased to 52.9%. This indicates that our MNN adequately evaluates the level of staining rather than the morphological features of the IHC images. Multivariate analysis revealed that CCR7 staining level and T classification were independent factors associated with the presence of cervical lymph node metastasis in both HS histograms and MNN. CONCLUSION These results suggest that IHC assessment using MNN may be useful for identifying lymph node metastasis in patients with tongue cancer.
Collapse
Affiliation(s)
- Kohei Kawamura
- 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Chonho Lee
- Cybermedia Center, Osaka University, Osaka, Japan
| | | | - Al-Shareef Hani
- Department of Oral & Maxillofacial Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Susumu Tanaka
- 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Shin-Ichiro Hiraoka
- 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Gan F, Liu H, Qin WG, Zhou SL. Application of artificial intelligence for automatic cataract staging based on anterior segment images: comparing automatic segmentation approaches to manual segmentation. Front Neurosci 2023; 17:1182388. [PMID: 37152605 PMCID: PMC10159175 DOI: 10.3389/fnins.2023.1182388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose Cataract is one of the leading causes of blindness worldwide, accounting for >50% of cases of blindness in low- and middle-income countries. In this study, two artificial intelligence (AI) diagnosis platforms are proposed for cortical cataract staging to achieve a precise diagnosis. Methods A total of 647 high quality anterior segment images, which included the four stages of cataracts, were collected into the dataset. They were divided randomly into a training set and a test set using a stratified random-allocation technique at a ratio of 8:2. Then, after automatic or manual segmentation of the lens area of the cataract, the deep transform-learning (DTL) features extraction, PCA dimensionality reduction, multi-features fusion, fusion features selection, and classification models establishment, the automatic and manual segmentation DTL platforms were developed. Finally, the accuracy, confusion matrix, and area under the receiver operating characteristic (ROC) curve (AUC) were used to evaluate the performance of the two platforms. Results In the automatic segmentation DTL platform, the accuracy of the model in the training and test sets was 94.59 and 84.50%, respectively. In the manual segmentation DTL platform, the accuracy of the model in the training and test sets was 97.48 and 90.00%, respectively. In the test set, the micro and macro average AUCs of the two platforms reached >95% and the AUC for each classification was >90%. The results of a confusion matrix showed that all stages, except for mature, had a high recognition rate. Conclusion Two AI diagnosis platforms were proposed for cortical cataract staging. The resulting automatic segmentation platform can stage cataracts more quickly, whereas the resulting manual segmentation platform can stage cataracts more accurately.
Collapse
Affiliation(s)
- Fan Gan
- Medical College of Nanchang University, Nanchang, China
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Liu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Wei-Guo Qin
- Department of Cardiothoracic Surgery, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Shui-Lian Zhou
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Shui-Lian Zhou,
| |
Collapse
|
13
|
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncol 2022; 11:82. [PMID: 36316731 PMCID: PMC9620610 DOI: 10.1186/s40164-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Takafumi Koyama
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Nobuji Kouno
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.258799.80000 0004 0372 2033Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303 Japan
| | - Tomohiro Yasuda
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Shuntaro Yui
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Makoto Hirata
- grid.272242.30000 0001 2168 5385Department of Genetic Medicine and Services, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Kuniko Sunami
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashi Kubo
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ken Takasawa
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Hidenori Machino
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Kazuma Kobayashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Ken Asada
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Masaaki Komatsu
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Syuzo Kaneko
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Yasushi Yatabe
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Noboru Yamamoto
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
14
|
Yamazawa E, Takahashi S, Shin M, Tanaka S, Takahashi W, Nakamoto T, Suzuki Y, Takami H, Saito N. MRI-Based Radiomics Differentiates Skull Base Chordoma and Chondrosarcoma: A Preliminary Study. Cancers (Basel) 2022; 14:cancers14133264. [PMID: 35805036 PMCID: PMC9265125 DOI: 10.3390/cancers14133264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this study, we created a novel MRI-based machine learning model to differentiate skull base chordoma and chondrosarcoma with multiparametric signatures. While these tumors share common radiographic characteristics, clinical behavior is distinct. Therefore, distinguishing these tumors before initial surgical intervention would be useful, potentially impacting the surgical strategy. Although there are some limitations, such as the risk of overfitting and the lack of an extramural cohort for truly independent final validation, our machine learning model distinguishing chordoma from chondrosarcoma yielded superior diagnostic accuracy to that achieved by 20 board-certified neurosurgeons. Abstract Chordoma and chondrosarcoma share common radiographic characteristics yet are distinct clinically. A radiomic machine learning model differentiating these tumors preoperatively would help plan surgery. MR images were acquired from 57 consecutive patients with chordoma (N = 32) or chondrosarcoma (N = 25) treated at the University of Tokyo Hospital between September 2012 and February 2020. Preoperative T1-weighted images with gadolinium enhancement (GdT1) and T2-weighted images were analyzed. Datasets from the first 47 cases were used for model creation, and those from the subsequent 10 cases were used for validation. Feature extraction was performed semi-automatically, and 2438 features were obtained per image sequence. Machine learning models with logistic regression and a support vector machine were created. The model with the highest accuracy incorporated seven features extracted from GdT1 in the logistic regression. The average area under the curve was 0.93 ± 0.06, and accuracy was 0.90 (9/10) in the validation dataset. The same validation dataset was assessed by 20 board-certified neurosurgeons. Diagnostic accuracy ranged from 0.50 to 0.80 (median 0.60, 95% confidence interval 0.60 ± 0.06%), which was inferior to that of the machine learning model (p = 0.03), although there are some limitations, such as the risk of overfitting and the lack of an extramural cohort for truly independent final validation. In summary, we created a novel MRI-based machine learning model to differentiate skull base chordoma and chondrosarcoma from multiparametric signatures.
Collapse
Affiliation(s)
- Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| | - Satoshi Takahashi
- RIKEN Center for Advanced Intelligence Project, 2-1 Hirosawa, Wako 351-0198, Japan;
- Division of Medical AI Research and Development, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
- Department of Neurosurgery, University of Teikyo Hospital, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8606, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3964-1211 (M.S.); +81-3-3815-5411 (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3964-1211 (M.S.); +81-3-3815-5411 (S.T.)
| | - Wataru Takahashi
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
| | - Takahiro Nakamoto
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
- Department of Biological Science and Engineering, Faculty of Health Sciences, Hokkaido University Kita 12, Nishi 5, Kita-ku, Sapporo-shi 060-0808, Japan
| | - Yuichi Suzuki
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (W.T.); (T.N.); (Y.S.)
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (E.Y.); (H.T.); (N.S.)
| |
Collapse
|
15
|
Kouli O, Hassane A, Badran D, Kouli T, Hossain-Ibrahim K, Steele JD. Automated brain tumour identification using magnetic resonance imaging: a systematic review and meta-analysis. Neurooncol Adv 2022; 4:vdac081. [PMID: 35769411 PMCID: PMC9234754 DOI: 10.1093/noajnl/vdac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Automated brain tumor identification facilitates diagnosis and treatment planning. We evaluate the performance of traditional machine learning (TML) and deep learning (DL) in brain tumor detection and segmentation, using MRI. Methods A systematic literature search from January 2000 to May 8, 2021 was conducted. Study quality was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Detection meta-analysis was performed using a unified hierarchical model. Segmentation studies were evaluated using a random effects model. Sensitivity analysis was performed for externally validated studies. Results Of 224 studies included in the systematic review, 46 segmentation and 38 detection studies were eligible for meta-analysis. In detection, DL achieved a lower false positive rate compared to TML; 0.018 (95% CI, 0.011 to 0.028) and 0.048 (0.032 to 0.072) (P < .001), respectively. In segmentation, DL had a higher dice similarity coefficient (DSC), particularly for tumor core (TC); 0.80 (0.77 to 0.83) and 0.63 (0.56 to 0.71) (P < .001), persisting on sensitivity analysis. Both manual and automated whole tumor (WT) segmentation had “good” (DSC ≥ 0.70) performance. Manual TC segmentation was superior to automated; 0.78 (0.69 to 0.86) and 0.64 (0.53 to 0.74) (P = .014), respectively. Only 30% of studies reported external validation. Conclusions The comparable performance of automated to manual WT segmentation supports its integration into clinical practice. However, manual outperformance for sub-compartmental segmentation highlights the need for further development of automated methods in this area. Compared to TML, DL provided superior performance for detection and sub-compartmental segmentation. Improvements in the quality and design of studies, including external validation, are required for the interpretability and generalizability of automated models.
Collapse
Affiliation(s)
- Omar Kouli
- School of Medicine, University of Dundee , Dundee UK
- NHS Greater Glasgow and Clyde , Dundee UK
| | | | | | - Tasnim Kouli
- School of Medicine, University of Dundee , Dundee UK
| | | | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee , UK
| |
Collapse
|
16
|
Automated Endocardial Border Detection and Left Ventricular Functional Assessment in Echocardiography Using Deep Learning. Biomedicines 2022; 10:biomedicines10051082. [PMID: 35625819 PMCID: PMC9138644 DOI: 10.3390/biomedicines10051082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Endocardial border detection is a key step in assessing left ventricular systolic function in echocardiography. However, this process is still not sufficiently accurate, and manual retracing is often required, causing time-consuming and intra-/inter-observer variability in clinical practice. To address these clinical issues, more accurate and normalized automatic endocardial border detection would be valuable. Here, we develop a deep learning-based method for automated endocardial border detection and left ventricular functional assessment in two-dimensional echocardiographic videos. First, segmentation of the left ventricular cavity was performed in the six representative projections for a cardiac cycle. We employed four segmentation methods: U-Net, UNet++, UNet3+, and Deep Residual U-Net. UNet++ and UNet3+ showed a sufficiently high performance in the mean value of intersection over union and Dice coefficient. The accuracy of the four segmentation methods was then evaluated by calculating the mean value for the estimation error of the echocardiographic indexes. UNet++ was superior to the other segmentation methods, with the acceptable mean estimation error of the left ventricular ejection fraction of 10.8%, global longitudinal strain of 8.5%, and global circumferential strain of 5.8%, respectively. Our method using UNet++ demonstrated the best performance. This method may potentially support examiners and improve the workflow in echocardiography.
Collapse
|
17
|
Li Y, Gu H, Wang H, Qin P, Wang J. BUSnet: A Deep Learning Model of Breast Tumor Lesion Detection for Ultrasound Images. Front Oncol 2022; 12:848271. [PMID: 35402269 PMCID: PMC8989926 DOI: 10.3389/fonc.2022.848271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022] Open
Abstract
Ultrasound (US) imaging is a main modality for breast disease screening. Automatically detecting the lesions in US images is essential for developing the artificial-intelligence-based diagnostic support technologies. However, the intrinsic characteristics of ultrasound imaging, like speckle noise and acoustic shadow, always degenerate the detection accuracy. In this study, we developed a deep learning model called BUSnet to detect the breast tumor lesions in US images with high accuracy. We first developed a two-stage method including the unsupervised region proposal and bounding-box regression algorithms. Then, we proposed a post-processing method to enhance the detecting accuracy further. The proposed method was used to a benchmark dataset, which includes 487 benign samples and 210 malignant samples. The results proved the effectiveness and accuracy of the proposed method.
Collapse
Affiliation(s)
- Yujie Li
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Gu
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Hongyu Wang
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Pan Qin
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Jia Wang
- Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Asada K, Takasawa K, Machino H, Takahashi S, Shinkai N, Bolatkan A, Kobayashi K, Komatsu M, Kaneko S, Okamoto K, Hamamoto R. Single-Cell Analysis Using Machine Learning Techniques and Its Application to Medical Research. Biomedicines 2021; 9:biomedicines9111513. [PMID: 34829742 PMCID: PMC8614827 DOI: 10.3390/biomedicines9111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, the diversity of cancer cells in tumor tissues as a result of intratumor heterogeneity has attracted attention. In particular, the development of single-cell analysis technology has made a significant contribution to the field; technologies that are centered on single-cell RNA sequencing (scRNA-seq) have been reported to analyze cancer constituent cells, identify cell groups responsible for therapeutic resistance, and analyze gene signatures of resistant cell groups. However, although single-cell analysis is a powerful tool, various issues have been reported, including batch effects and transcriptional noise due to gene expression variation and mRNA degradation. To overcome these issues, machine learning techniques are currently being introduced for single-cell analysis, and promising results are being reported. In addition, machine learning has also been used in various ways for single-cell analysis, such as single-cell assay of transposase accessible chromatin sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq) analysis, and multi-omics analysis; thus, it contributes to a deeper understanding of the characteristics of human diseases, especially cancer, and supports clinical applications. In this review, we present a comprehensive introduction to the implementation of machine learning techniques in medical research for single-cell analysis, and discuss their usefulness and future potential.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
- Correspondence: (K.A.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
| | - Satoshi Takahashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
| | - Norio Shinkai
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.K.); (S.K.)
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.K.); (S.K.)
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.T.); (H.M.); (S.T.); (N.S.); (A.B.); (M.K.)
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.K.); (S.K.)
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryuji Hamamoto
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.K.); (S.K.)
- Correspondence: (K.A.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| |
Collapse
|
19
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|
20
|
Asada K, Komatsu M, Shimoyama R, Takasawa K, Shinkai N, Sakai A, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Kaneko S, Hamamoto R. Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics. J Pers Med 2021; 11:886. [PMID: 34575663 PMCID: PMC8471764 DOI: 10.3390/jpm11090886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic began at the end of December 2019, giving rise to a high rate of infections and causing COVID-19-associated deaths worldwide. It was first reported in Wuhan, China, and since then, not only global leaders, organizations, and pharmaceutical/biotech companies, but also researchers, have directed their efforts toward overcoming this threat. The use of artificial intelligence (AI) has recently surged internationally and has been applied to diverse aspects of many problems. The benefits of using AI are now widely accepted, and many studies have shown great success in medical research on tasks, such as the classification, detection, and prediction of disease, or even patient outcome. In fact, AI technology has been actively employed in various ways in COVID-19 research, and several clinical applications of AI-equipped medical devices for the diagnosis of COVID-19 have already been reported. Hence, in this review, we summarize the latest studies that focus on medical imaging analysis, drug discovery, and therapeutics such as vaccine development and public health decision-making using AI. This survey clarifies the advantages of using AI in the fight against COVID-19 and provides future directions for tackling the COVID-19 pandemic using AI techniques.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Ryo Shimoyama
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Norio Shinkai
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akira Sakai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
- Department of Endoscopy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Kazuma Kobayashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.A.); (M.K.); (R.S.); (K.T.); (N.S.); (A.B.); (S.T.); (H.M.); (K.K.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.S.); (M.Y.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
22
|
Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers (Basel) 2021; 13:cancers13143611. [PMID: 34298824 PMCID: PMC8306149 DOI: 10.3390/cancers13143611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Radiogenomics enables prediction of the status and prognosis of patients using non-invasively obtained imaging data. Current machine learning (ML) methods used in radiogenomics require huge datasets, which involve the handling of large heterogeneous datasets from multiple cohorts/hospitals. In this study, two different glioma datasets were used to test various ML and image pre-processing methods to confirm whether the models trained on one dataset are universally applicable to other datasets. Our result suggested that the ML method that yielded the highest accuracy in a single dataset was likely to be overfitted. We demonstrated that implementation of standardization and dimension reduction procedures prior to classification, enabled the development of ML methods that are less affected by the multiple cohort difference. We advocate using caution in interpreting the results of radiogenomic studies of the training and testing datasets that are small or mixed, with a view to implementing practical ML methods in radiogenomics. Abstract Radiogenomics use non-invasively obtained imaging data, such as magnetic resonance imaging (MRI), to predict critical biomarkers of patients. Developing an accurate machine learning (ML) technique for MRI requires data from hundreds of patients, which cannot be gathered from any single local hospital. Hence, a model universally applicable to multiple cohorts/hospitals is required. We applied various ML and image pre-processing procedures on a glioma dataset from The Cancer Image Archive (TCIA, n = 159). The models that showed a high level of accuracy in predicting glioblastoma or WHO Grade II and III glioma using the TCIA dataset, were then tested for the data from the National Cancer Center Hospital, Japan (NCC, n = 166) whether they could maintain similar levels of high accuracy. Results: we confirmed that our ML procedure achieved a level of accuracy (AUROC = 0.904) comparable to that shown previously by the deep-learning methods using TCIA. However, when we directly applied the model to the NCC dataset, its AUROC dropped to 0.383. Introduction of standardization and dimension reduction procedures before classification without re-training improved the prediction accuracy obtained using NCC (0.804) without a loss in prediction accuracy for the TCIA dataset. Furthermore, we confirmed the same tendency in a model for IDH1/2 mutation prediction with standardization and application of dimension reduction that was also applicable to multiple hospitals. Our results demonstrated that overfitting may occur when an ML method providing the highest accuracy in a small training dataset is used for different heterogeneous data sets, and suggested a promising process for developing an ML method applicable to multiple cohorts.
Collapse
|
23
|
Komatsu M, Sakai A, Dozen A, Shozu K, Yasutomi S, Machino H, Asada K, Kaneko S, Hamamoto R. Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines 2021; 9:720. [PMID: 34201827 PMCID: PMC8301304 DOI: 10.3390/biomedicines9070720] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Artificial intelligence (AI) is being increasingly adopted in medical research and applications. Medical AI devices have continuously been approved by the Food and Drug Administration in the United States and the responsible institutions of other countries. Ultrasound (US) imaging is commonly used in an extensive range of medical fields. However, AI-based US imaging analysis and its clinical implementation have not progressed steadily compared to other medical imaging modalities. The characteristic issues of US imaging owing to its manual operation and acoustic shadows cause difficulties in image quality control. In this review, we would like to introduce the global trends of medical AI research in US imaging from both clinical and basic perspectives. We also discuss US image preprocessing, ingenious algorithms that are suitable for US imaging analysis, AI explainability for obtaining informed consent, the approval process of medical AI devices, and future perspectives towards the clinical application of AI-based US diagnostic support technologies.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (H.M.); (K.A.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Akira Sakai
- Artificial Intelligence Laboratory, Research Unit, Fujitsu Research, Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP—Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ai Dozen
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Kanto Shozu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Suguru Yasutomi
- Artificial Intelligence Laboratory, Research Unit, Fujitsu Research, Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP—Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (H.M.); (K.A.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (H.M.); (K.A.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (H.M.); (K.A.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (H.M.); (K.A.); (S.K.)
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.)
- Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
24
|
Asada K, Kaneko S, Takasawa K, Machino H, Takahashi S, Shinkai N, Shimoyama R, Komatsu M, Hamamoto R. Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology. Front Oncol 2021; 11:666937. [PMID: 34055633 PMCID: PMC8149908 DOI: 10.3389/fonc.2021.666937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Syuzo Kaneko
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Takahashi
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shinkai
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Shimoyama
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
A New Era of Neuro-Oncology Research Pioneered by Multi-Omics Analysis and Machine Learning. Biomolecules 2021; 11:biom11040565. [PMID: 33921457 PMCID: PMC8070530 DOI: 10.3390/biom11040565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Although the incidence of central nervous system (CNS) cancers is not high, it significantly reduces a patient’s quality of life and results in high mortality rates. A low incidence also means a low number of cases, which in turn means a low amount of information. To compensate, researchers have tried to increase the amount of information available from a single test using high-throughput technologies. This approach, referred to as single-omics analysis, has only been partially successful as one type of data may not be able to appropriately describe all the characteristics of a tumor. It is presently unclear what type of data can describe a particular clinical situation. One way to solve this problem is to use multi-omics data. When using many types of data, a selected data type or a combination of them may effectively resolve a clinical question. Hence, we conducted a comprehensive survey of papers in the field of neuro-oncology that used multi-omics data for analysis and found that most of the papers utilized machine learning techniques. This fact shows that it is useful to utilize machine learning techniques in multi-omics analysis. In this review, we discuss the current status of multi-omics analysis in the field of neuro-oncology and the importance of using machine learning techniques.
Collapse
|