1
|
Kowalczyk A, Tuberoso CIG, Jerković I. The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity. Antioxidants (Basel) 2024; 13:1313. [PMID: 39594455 PMCID: PMC11591264 DOI: 10.3390/antiox13111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Rosmarinic acid (RA), a polyphenolic compound found in herbs, such as rosemary, basil, and mint, has garnered significant attention due to its potent antioxidant and anticancer properties. This review examined the molecular mechanisms underlying these properties and their potential application in cancer prevention and therapy. It focuses specifically on RA's role in modulating cancer-related pathways and presents a detailed analysis of recent advancements in this area. A systematic review of PubMed, Scopus, and Web of Science databases was conducted in accordance with PRISMA (Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, focusing on studies published between 2019 and 2024. A total of 25 articles providing evidence from in vitro, in vivo, and in silico studies were selected. These findings elucidate the role of RA in inhibiting tumor cell proliferation, inducing apoptosis, and preventing metastasis in various types of cancer through diverse mechanisms, including its antioxidant properties. Despite these promising results, RA's bioavailability challenges limit its therapeutic efficacy, underscoring the necessity for improved delivery methods. This review concludes that RA exhibits significant potential as a natural agent for cancer prevention and treatment, although further clinical trials are warranted.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Carlo Ignazio Giovanni Tuberoso
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| |
Collapse
|
2
|
Li C, Yan W, Yan H. Oxidative Stress, Glutaredoxins, and Their Therapeutic Potential in Posterior Capsular Opacification. Antioxidants (Basel) 2024; 13:1210. [PMID: 39456463 PMCID: PMC11504336 DOI: 10.3390/antiox13101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by the marked upregulation of inflammatory and growth factors post-surgery. Recently, research on the role of redox environments has gained considerable attention. LECs, which are in direct contact with the aqueous humour after cataract surgery, are subjected to oxidative stress due to decreased levels of reduced glutathione and increased oxygen content compared to contact with the outer fibre layer of the lens before surgery. In this review, we examine the critical role of oxidative stress in PCO formation. We also focus on glutaredoxins (Grxs), which are antioxidative enzymes produced via deglutathionylation, their protective role against PCO formation, and their therapeutic potential. Furthermore, we discuss the latest advancements in PCO therapy, particularly the development of advanced antioxidative pharmacological agents, and emphasise the importance and approaches of anti-inflammatory and antioxidant treatments in PCO management. In conclusion, this review highlights the significant roles of oxidative stress in PCO, the protective effects of Grxs against PCO formation, and the potential of anti-inflammatory and antioxidant therapies in treating PCO.
Collapse
Affiliation(s)
- Chenshuang Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an 710004, China;
| | - Weijia Yan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University Eye Hospital, Hangzhou 310009, China;
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an 710004, China;
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Yang J, Li J, Li S, Yang Y, Su H, Guo H, Lei J, Wang Y, Wen K, Li X, Zhang S, Wang Z. Effects of HOX family regulator-mediated modification patterns and immunity characteristics on tumor-associated cell type in endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:32. [PMID: 39138733 PMCID: PMC11322468 DOI: 10.1186/s43556-024-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- JiaoLin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - JinPeng Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - SuFen Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YuTong Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - HuanCheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - HongRui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YaLin Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - KaiTing Wen
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - SanYuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Singh S, Numan A, Khalid M, Bello I, Panza E, Cinti S. Facile and Affordable Design of MXene-Co 3 O 4 -Based Nanocomposites for Detection of Hydrogen Peroxide in Cancer Cells: Toward Portable Tool for Cancer Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208209. [PMID: 37096900 DOI: 10.1002/smll.202208209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-β1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Ivana Bello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
- BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Naples, 80055, Italy
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, Naples, 80126, Italy
| |
Collapse
|
7
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
8
|
Spallarossa A, Rapetti F, Signorello MG, Rosano C, Iervasi E, Ponassi M, Brullo C. Insights into the Pharmacological Activity of the Imidazo-Pyrazole Scaffold. ChemMedChem 2023; 18:e202300252. [PMID: 37366115 DOI: 10.1002/cmdc.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
In previous studies, we synthesized different imidazo-pyrazoles 1 and 2 with interesting anticancer, anti-angiogenic and anti-inflammatory activities. To further extend the structure-activity relationships of imidazo-pyrazole scaffold and to identify novel antiproliferative/anti-inflammatory agents potentially active with multi-target mechanisms, a library of compounds 3-5 has been designed and synthesized. The chemical modifications characterizing the novel derivatives include: i) decoration of the catechol ring with groups with different electronic, steric and lipophilic properties (compounds 3); ii) insertion of a methyl group on C-6 of imidazo-pyrazole scaffold (compounds 4); iii) shift of the acylhydrazonic substituent from position 7 to 6 of the imidazo-pyrazole substructure (compounds 5). All synthesized compounds were tested against a panel of cancer and normal cell lines. Derivatives 3 a, 3 e, 4 c, 5 g and 5 h showed IC50 values in the low micromolar range against selected tumor cell lines and proved to have antioxidant properties, being able to inhibit ROS production in human platelet. In silico calculation predicted favourable drug-like and pharmacokinetic properties for the most promising compounds. Furthermore, molecular docking and molecular dynamic simulations suggested the ability of most active derivative 3 e to interact with colchicine binding site in the polymeric tubulin α/tubulin β/stathmin4 complex.
Collapse
Affiliation(s)
- Andrea Spallarossa
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Federica Rapetti
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| | | | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| |
Collapse
|
9
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
10
|
Zhu D, Ouyang X, Zhang Y, Yu X, Su K, Li L. A promising new cancer marker: Long noncoding RNA EGFR-AS1. Front Oncol 2023; 13:1130472. [PMID: 36910672 PMCID: PMC9999470 DOI: 10.3389/fonc.2023.1130472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancer consists of a group of diseases with the salient properties of an uncontrolled cell cycle, metastasis, and evasion of the immune response, mainly driven by the genomic instability of somatic cells and the physicochemical environment. Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs with a length of more than 200 nucleotides. LncRNA dysregulation participates in diverse disease types and is tightly associated with patient clinical features, such as age, disease stage, and prognosis. In addition, an increasing number of lncRNAs have been confirmed to regulate a series of biological and pathological processes through numerous mechanisms. The lncRNA epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) was recently discovered to be aberrantly expressed in many types of diseases, particularly in cancers. A high level of EGFR-AS1 was demonstrated to correlate with multiple patient clinical characteristics. More importantly, EGFR-AS1 was found to be involved in the mediation of various cellular activities, including cell proliferation, invasion, migration, chemosensitivity, and stemness. Therefore, EGFR-AS1 is a promising marker for cancer management. In this review, we introduce the expression profile, molecular mechanisms, biological functions, and clinical value of EGFR-AS1 in cancers.
Collapse
Affiliation(s)
- Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
La Spina E, Giallongo S, Giallongo C, Vicario N, Duminuco A, Parenti R, Giuffrida R, Longhitano L, Li Volti G, Cambria D, Di Raimondo F, Musumeci G, Romano A, Palumbo GA, Tibullo D. Mesenchymal stromal cells in tumor microenvironment remodeling of BCR-ABL negative myeloproliferative diseases. Front Oncol 2023; 13:1141610. [PMID: 36910610 PMCID: PMC9996158 DOI: 10.3389/fonc.2023.1141610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic myeloproliferative neoplasms encompass the BCR-ABL1-negative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These are characterized by calreticulin (CALR), myeloproliferative leukemia virus proto-oncogene (MPL) and the tyrosine kinase Janus kinase 2 (JAK2) mutations, eventually establishing a hyperinflammatory tumor microenvironment (TME). Several reports have come to describe how constitutive activation of JAK-STAT and NFκB signaling pathways lead to uncontrolled myeloproliferation and pro-inflammatory cytokines secretion. In such a highly oxidative TME, the balance between Hematopoietic Stem Cells (HSCs) and Mesenchymal Stromal Cells (MSCs) has a crucial role in MPN development. For this reason, we sought to review the current literature concerning the interplay between HSCs and MSCs. The latter have been reported to play an outstanding role in establishing of the typical bone marrow (BM) fibrotic TME as a consequence of the upregulation of different fibrosis-associated genes including PDGF- β upon their exposure to the hyperoxidative TME characterizing MPNs. Therefore, MSCs might turn to be valuable candidates for niche-targeted targeting the synthesis of cytokines and oxidative stress in association with drugs eradicating the hematopoietic clone.
Collapse
Affiliation(s)
- Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Wang P, Yan Z, Zhou PK, Gu Y. The Promising Therapeutic Approaches for Radiation-Induced Pulmonary Fibrosis: Targeting Radiation-Induced Mesenchymal Transition of Alveolar Type II Epithelial Cells. Int J Mol Sci 2022; 23:ijms232315014. [PMID: 36499337 PMCID: PMC9737257 DOI: 10.3390/ijms232315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a common consequence of radiation for thoracic tumors, and is accompanied by gradual and irreversible organ failure. This severely reduces the survival rate of cancer patients, due to the serious side effects and lack of clinically effective drugs and methods. Radiation-induced pulmonary fibrosis is a dynamic process involving many complicated and varied mechanisms, of which alveolar type II epithelial (AT2) cells are one of the primary target cells, and the epithelial-mesenchymal transition (EMT) of AT2 cells is very relevant in the clinical search for effective targets. Therefore, this review summarizes several important signaling pathways that can induce EMT in AT2 cells, and searches for molecular targets with potential effects on RIPF among them, in order to provide effective therapeutic tools for the clinical prevention and treatment of RIPF.
Collapse
|
13
|
Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts. Molecules 2022; 27:molecules27217495. [DOI: 10.3390/molecules27217495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
In the current work, the leaf and flower extracts of Anthyllis vulneraria were evaluated for their chemical characterization using HPLC-MS and for their radical scavenging capacity toward methoxy radicals produced by a Fenton-type reaction using an electron paramagnetic resonance (EPR) spectroscopy assay. The in vitro antiproliferative activity of these extracts against several human-derived cancer cells (breast: MCF-7; cervical: HeLa; hepatocellular: HepG2) was also evaluated. The results showed that the Anthyllis vulneraria leaf extract was characterized by 17 different phenolic compounds, among which phenolic acids were the most abundant, while its flower extract exhibited higher contents of flavonoids. Furthermore, Anthyllis vulneraria extracts demonstrated a potent radical scavenging activity against methoxy radicals. Both extracts also significantly reduced the viability of the different cancer cell lines. The results of the current study suggested that Anthyllis vulneraria extracts are a promising source of antioxidant compounds with health benefits and pointed to their potential use for treating cancer and developing novel therapeutic agents.
Collapse
|
14
|
Amini MA, Karimi M, Talebi SS, Piri H, Karimi J. The Association of Oxidative Stress and Reactive Oxygen Species Modulator 1 (ROMO1) with Infertility: A Mini Review. Chonnam Med J 2022; 58:91-95. [PMID: 36245774 PMCID: PMC9535111 DOI: 10.4068/cmj.2022.58.3.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is one of the disorders that worries many couples around the world, although novel and molecular methods can be used to cure this disease in different stages. One of the factors that causes infertility in men and women is the increased oxidative stress within the cells, which can lead to damage in zygote formation. ROMO1 is one of the most important proteins in the production of reactive oxygen species. This protein can enhance oxidative stress in the cells and body through cellular pathways, such as TNF-α and NF-κB routes, which will eventually lead to many diseases, especially infertility. We engage several international databases by using keywords; ROMO1, Infertility, and Reactive Oxygen Species, and gained a great quantity of information about ROMO1, Infertility, and Oxidative Stress. Although not proven, it is hypothesized that ROMO1 might elevate oxidative stress by activating NF-κB pathway in the cells, furthermore, TNF-α can arouse ROMO1 that can end up with apoptosis and cell death, which consequently can have a lot of disturbing effects on the body, especially the reproductive system. To sum up, revealing the exact cellular and molecular mechanisms of ROMO1-dependent TNF-α and NF-κB pathways in the pathogenesis of infertility might find interesting therapeutic and management strategies for this disorder.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Karimi
- Department of Medical Biotechnology, School of Sciences and Advanced Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Piri
- Department of Biochemistry and Genetics, Qazvin University of Medical Science, Faculty of Medicine, Qazvin, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Yao Q, Wang C, Wang Y, Zhang X, Jiang H, Chen D. The integrated comprehension of lncRNA HOXA-AS3 implication on human diseases. Clin Transl Oncol 2022; 24:2342-2350. [PMID: 35986859 PMCID: PMC9568475 DOI: 10.1007/s12094-022-02920-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
AbstractLong non-coding RNA (lncRNA) is a non-protein-coding RNA with a length of more than 200 nucleotides. Studies have shown that lncRNAs have vital impacts on various pathological processes and participate in the development of human diseases, usually through acting as competing endogenous RNAs to modulate miRNA expression and biological functions. lncRNA HOXA Cluster Antisense RNA 3 (HOXA-AS3) was a newly discovered lncRNA and has been demonstrated to be abnormally expressed in many diseases. Moreover, HOXA-AS3 expression was closely correlated with the clinicopathologic characteristics in cancer patients. In addition, HOXA-AS3 exhibited significant properties in regulating several biological processes, including cell proliferation, invasion, and migration. Furthermore, HOXA-AS3 has provided promising values in the diagnosis, prognosis, and therapeutic strategies of several diseases such as liver cancer, glioma, lung cancer, oral cancer, gastric cancer, and even atherosclerosis. In this review, we discuss the abnormal expression of HOXA-AS3 in several human disorders and some pathobiological processes and its clinical characteristics, followed by a summary of HOXA-AS3 functions, regulatory mechanisms, and clinical application potential.
Collapse
|
16
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
17
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
18
|
Functional stratification of cancer drugs through integrated network similarity. NPJ Syst Biol Appl 2022; 8:11. [PMID: 35440787 PMCID: PMC9018743 DOI: 10.1038/s41540-022-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Drugs not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored networks modulated by several drugs across multiple cancer cell lines by integrating their targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing a similar mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation and found literature evidence for a set of drug pairs. Overall, network-level exploration of drug-modulated pathways and their deep comparison may potentially help optimize treatment strategies and suggest new drug combinations.
Collapse
|
19
|
Capeloa T, Krzystyniak J, d’Hose D, Canas Rodriguez A, Payen VL, Zampieri LX, Van de Velde JA, Benyahia Z, Pranzini E, Vazeille T, Fransolet M, Bouzin C, Brusa D, Michiels C, Gallez B, Murphy MP, Porporato PE, Sonveaux P. MitoQ Inhibits Human Breast Cancer Cell Migration, Invasion and Clonogenicity. Cancers (Basel) 2022; 14:cancers14061516. [PMID: 35326667 PMCID: PMC8946220 DOI: 10.3390/cancers14061516] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
To successfully generate distant metastases, metastatic progenitor cells must simultaneously possess mesenchymal characteristics, resist to anoïkis, migrate and invade directionally, resist to redox and shear stresses in the systemic circulation, and possess stem cell characteristics. These cells primarily originate from metabolically hostile areas of the primary tumor, where oxygen and nutrient deprivation, together with metabolic waste accumulation, exert a strong selection pressure promoting evasion. Here, we followed the hypothesis according to which metastasis as a whole implies the existence of metabolic sensors. Among others, mitochondria are singled out as a major source of superoxide that supports the metastatic phenotype. Molecularly, stressed cancer cells increase mitochondrial superoxide production, which activates the transforming growth factor-β pathway through src directly within mitochondria, ultimately activating focal adhesion kinase Pyk2. The existence of mitochondria-targeted antioxidants constitutes an opportunity to interfere with the metastatic process. Here, using aggressive triple-negative and HER2-positive human breast cancer cell lines as models, we report that MitoQ inhibits all the metastatic traits that we tested in vitro. Compared to other mitochondria-targeted antioxidants, MitoQ already successfully passed Phase I safety clinical trials, which provides an important incentive for future preclinical and clinical evaluations of this drug for the prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Tania Capeloa
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Joanna Krzystyniak
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Donatienne d’Hose
- Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (B.G.)
| | - Amanda Canas Rodriguez
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Valery L. Payen
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Luca X. Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Justine A. Van de Velde
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Zohra Benyahia
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Erica Pranzini
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Via le Morgagni 50, 50134 Firenze, Italy
| | - Thibaut Vazeille
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
| | - Maude Fransolet
- Faculty of Sciences, Bology, Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium; (M.F.); (C.M.)
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Davide Brusa
- IREC Flow Cytometry and Cell Sorting Platform, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Carine Michiels
- Faculty of Sciences, Bology, Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium; (M.F.); (C.M.)
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (B.G.)
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK;
| | - Paolo E. Porporato
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (T.C.); (J.K.); (A.C.R.); (V.L.P.); (L.X.Z.); (J.A.V.d.V.); (Z.B.); (E.P.); (T.V.); (P.E.P.)
- Correspondence:
| |
Collapse
|
20
|
Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol 2022; 10:846723. [PMID: 35359452 PMCID: PMC8961331 DOI: 10.3389/fcell.2022.846723] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling plays a critical role in the development and tissue homeostasis in metazoans, and deregulation of TGF-β signaling leads to many pathological conditions. Mounting evidence suggests that TGF-β signaling can actively alter metabolism in diverse cell types. Furthermore, metabolic pathways, beyond simply regarded as biochemical reactions, are closely intertwined with signal transduction. Here, we discuss the role of TGF-β in glucose, lipid, amino acid, redox and polyamine metabolism with an emphasis on how TGF-β can act as a metabolic modulator and how metabolic changes can influence TGF-β signaling. We also describe how interplay between TGF-β signaling and cell metabolism regulates cellular homeostasis as well as the progression of multiple diseases, including cancer.
Collapse
|
21
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
22
|
Chen M, Zhu JY, Mu WJ, Guo L. Cysteine dioxygenase type 1 (CDO1): its functional role in physiological and pathophysiological processes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|