1
|
Febo M, Mahar R, Rodriguez NA, Buraima J, Pompilus M, Pinto AM, Grudny MM, Bruijnzeel AW, Merritt ME. Age-related differences in affective behaviors in mice: possible role of prefrontal cortical-hippocampal functional connectivity and metabolomic profiles. Front Aging Neurosci 2024; 16:1356086. [PMID: 38524115 PMCID: PMC10957556 DOI: 10.3389/fnagi.2024.1356086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. Methods We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Results Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and during re-testing in a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. Discussion The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Nicholas A. Rodriguez
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Joy Buraima
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marjory Pompilus
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Aeja M. Pinto
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matteo M. Grudny
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Adriaan W. Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
2
|
Song KH, Ge X, Engelbach JA, Thio LL, Neil JJ, Ackerman JJH, Garbow JR. Subcutaneous deuterated substrate administration in mice: An alternative to tail vein infusion. Magn Reson Med 2024; 91:681-686. [PMID: 37849055 DOI: 10.1002/mrm.29888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium (2 H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies. Motivated by the need for an alternative, the time courses for common small-molecule deuterated substrates and downstream metabolites in brain following subcutaneous infusion were determined in mice and are presented herein. METHODS Three 2 H-labeled substrates-[6,6-2 H2 ]glucose, [2 H3 ]acetate, and [3,4,4,4-2 H4 ]beta-hydroxybutyrate-and 2 H2 O were administered to mice in-magnet via subcutaneous catheter. Brain time courses of the substrates and downstream metabolites (and semi-heavy water) were determined via single-voxel DMRS. RESULTS Subcutaneous catheter placement and substrate administration was readily accomplished with limited personnel training. Substrates reached pseudo-steady state in brain within ∼30-40 min of bolus infusion. Time constants characterizing the appearance in brain of deuterated substrates or semi-heavy water following 2 H2 O administration were similar (∼15 min). CONCLUSION Administration of deuterated substrates via subcutaneous catheter for in vivo DMRS experiments with mice is robust, requires limited personnel training, and enables substantial dosing. It is suitable for metabolic studies where pseudo-steady state substrate administration/accumulation is sufficient. It is particularly advantageous for serial longitudinal studies over an extended period because it avoids inevitable damage to the tail vein following multiple catheterizations.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A Engelbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liu Lin Thio
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Staklinski SJ, Chang MC, Ahrens‐Nicklas RC, Kaur S, Stefanatos AK, Dudenhausen EE, Merritt ME, Kilberg MS. Characterizing asparagine synthetase deficiency variants in lymphoblastoid cell lines. JIMD Rep 2023; 64:167-179. [PMID: 36873094 PMCID: PMC9981421 DOI: 10.1002/jmd2.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023] Open
Abstract
Asparagine synthetase (ASNS) catalyzes the synthesis of asparagine (Asn) from aspartate and glutamine. Biallelic mutations in the ASNS gene result in ASNS Deficiency (ASNSD). Children with ASNSD exhibit congenital microcephaly, epileptic-like seizures, and continued brain atrophy, often leading to premature mortality. This report describes a 4-year-old male with global developmental delay and seizures with two novel mutations in the ASNS gene, c.614A > C (maternal) and c.1192dupT (paternal) encoding p.H205P and p.Y398Lfs*4 variants, respectively. We employed the novel use of immortalized lymphoblastoid cell lines (LCL) to show that the proliferation of the heterozygotic parental LCL was not severely affected by culture in Asn-free medium, but growth of the child's cells was suppressed by about 50%. Asn production by the LCL from both the father and the child was significantly decreased relative to the mother's cells. mRNA and protein analysis of the paternal LCL cells for the Y398Lfs*4 variant revealed reductions in both. Attempts to ectopically express the truncated Y398Lfs*4 variant in either HEK293T or ASNS-null cells resulted in little or no detectable protein. Expression and purification of the H205P variant from HEK293T cells revealed enzymatic activity similar to wild-type ASNS. Stable expression of WT ASNS rescued the growth of ASNS-null JRS cells in Asn-free medium and the H205P variant was only slightly less effective. However, the Y398Lfs*4 variant appeared to be unstable in JRS cells. These results indicate that co-expression of the H205P and Y398Lfs*4 variants leads to a significant reduction in Asn synthesis and cellular growth.
Collapse
Affiliation(s)
- Stephen J. Staklinski
- Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
- School of Biological SciencesCold Spring Harbor Laboratory, Cold Spring HarborNew YorkNew YorkUSA
| | - Mario C. Chang
- Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Rebecca C. Ahrens‐Nicklas
- Division of Human Genetics, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Shagun Kaur
- Division of Human Genetics, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Arianna K. Stefanatos
- Department of Child and Adolescent Psychiatry and Behavioral SciencesChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Elizabeth E. Dudenhausen
- Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
4
|
Coelho M, Mahar R, Belew GD, Torres A, Barosa C, Cabral F, Viegas I, Gastaldelli A, Mendes VM, Manadas B, Jones JG, Merritt ME. Enrichment of hepatic glycogen and plasma glucose from H₂ 18 O informs gluconeogenic and indirect pathway fluxes in naturally feeding mice. NMR IN BIOMEDICINE 2023; 36:e4837. [PMID: 36151589 PMCID: PMC9845176 DOI: 10.1002/nbm.4837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Deuterated water (2 H2 O) is a widely used tracer of carbohydrate biosynthesis in both preclinical and clinical settings, but the significant kinetic isotope effects (KIE) of 2 H can distort metabolic information and mediate toxicity. 18 O-water (H2 18 O) has no significant KIE and is incorporated into specific carbohydrate oxygens via well-defined mechanisms, but to date it has not been evaluated in any animal model. Mice were given H2 18 O during overnight feeding and 18 O-enrichments of liver glycogen, triglyceride glycerol (TG), and blood glucose were quantified by 13 C NMR and mass spectrometry (MS). Enrichment of oxygens 5 and 6 relative to body water informed indirect pathway contributions from the Krebs cycle and triose phosphate sources. Compared with mice fed normal chow (NC), mice whose NC was supplemented with a fructose/glucose mix (i.e., a high sugar [HS] diet) had significantly higher indirect pathway contributions from triose phosphate sources, consistent with fructose glycogenesis. Blood glucose and liver TG 18 O-enrichments were quantified by MS. Blood glucose 18 O-enrichment was significantly higher for HS versus NC mice and was consistent with gluconeogenic fructose metabolism. TG 18 O-enrichment was extensive for both NC and HS mice, indicating a high turnover of liver triglyceride, independent of diet. Thus H2 18 O informs hepatic carbohydrate biosynthesis in similar detail to 2 H2 O but without KIE-associated risks.
Collapse
Affiliation(s)
- Margarida Coelho
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Department of Chemistry, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
| | - Rohit Mahar
- Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Getachew D. Belew
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Alejandra Torres
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Cristina Barosa
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Fernando Cabral
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Ivan Viegas
- Center for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| | | | - Vera M. Mendes
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Bruno Manadas
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - John G. Jones
- CNC ‐ Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Staklinski SJ, Chang MC, Yu F, Collins Ruff K, Franz DN, Qian Z, Bloom LB, Merritt ME, McKenna R, Kilberg MS. Cellular and molecular characterization of two novel asparagine synthetase gene mutations linked to asparagine synthetase deficiency. J Biol Chem 2022; 298:102385. [PMID: 35985424 PMCID: PMC9478401 DOI: 10.1016/j.jbc.2022.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.
Collapse
Affiliation(s)
- Stephen J Staklinski
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mario C Chang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kathleen Collins Ruff
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David N Franz
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
6
|
Chang MC, Mahar R, McLeod MA, Giacalone AG, Huang X, Boothman DA, Merritt ME. Synergistic Effect of β-Lapachone and Aminooxyacetic Acid on Central Metabolism in Breast Cancer. Nutrients 2022; 14:3020. [PMID: 35893874 PMCID: PMC9331106 DOI: 10.3390/nu14153020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
The compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD+-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD+/ATP depletion. Here, we report a novel combination strategy with aminooxyacetic acid (AOA), an aspartate aminotransferase inhibitor that blocks the malate-aspartate shuttle (MAS) and synergistically enhances the efficacy of β-lapachone metabolic perturbation in NQO1+ breast cancer. We evaluated metabolic turnover in MDA-MB-231 NQO1+, MDA-MB-231 NQO1-, MDA-MB-468, and T47D cancer cells by measuring the isotopic labeling of metabolites from a [U-13C]glucose tracer. We show that β-lapachone treatment significantly hampers lactate secretion by ~85% in NQO1+ cells. Our data demonstrate that combinatorial treatment decreases citrate, glutamate, and succinate enrichment by ~14%, ~50%, and ~65%, respectively. Differences in citrate, glutamate, and succinate fractional enrichments indicate synergistic effects on central metabolism based on the coefficient of drug interaction. Metabolic modeling suggests that increased glutamine anaplerosis is protective in the case of MAS inhibition.
Collapse
Affiliation(s)
- Mario C. Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Marc A. McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Anthony G. Giacalone
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - David A. Boothman
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.C.C.); (R.M.); (M.A.M.); (A.G.G.)
| |
Collapse
|
7
|
Qadir MI, Iqbal MS, Khan R. β-lapachone: A Promising Anticancer Agent with a Unique NQO1 Specific Apoptosis in Pancreatic Cancer. Curr Cancer Drug Targets 2022; 22:537-540. [PMID: 35490325 DOI: 10.2174/1568009622666220427121127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Cancer, one of the major health problems all over the world, requires more competent drugs for clinical use. One recent possible chemotherapeutic drug under research is β-lapachone. β- lapachone (1,2-naphthoquinone) has promising activity against those tumors showing raised levels of Nicotinamide di-phosphate Quinone Oxidoreductases-1 (NQO1). NQO1 is found to be up-regulated in pancreatic tumor cells, and thus β-lapachone could generate cytotoxicity in various cancers like pancreatic tumors. β-lapachone harborage independent growth and clonogenic cell survival in agar. The cell-killing effects of β-lapachone can be stopped by using dicumarol, an inhibitor of NAD(P)H Quinone Oxidoreductases-1. In previously established pancreatic cancer xenografts in mice, β- lapachone inhibited the tumor growth when given orally rather than when combined with cyclodextrin to improve its bioavailability.
Collapse
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rimsha Khan
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|