1
|
Huynh TN, Fikse EN, Havrda MC, Chang CCY, Chang TY. Inhibiting the cholesterol storage enzyme ACAT1/SOAT1 in aging Apolipoprotein E4 mice alter their brains inflammatory profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620063. [PMID: 39484620 PMCID: PMC11527143 DOI: 10.1101/2024.10.24.620063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging and Apolipoprotein E4 (APOE4) are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to APOE3, APOE4 disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate APOE4 dependent phenotypes. Toll-like receptor 4 (TLR4) is a key player in inflammation, its regulation is associated with cholesterol content of lipid rafts in cell membranes. We previously demonstrated that in normal microglia expressing APOE3, inhibiting the cholesterol storage enzyme acylCoA:cholesterol acyltransferase 1 (ACAT1/SOAT1) reduces CEs, dampened neuroinflammation via modulating the fate of TLR4. We also showed that treating myelin debris-loaded normal microglia with ACAT inhibitor F12511 reduced cellular CEs and activated ABC transporter 1 (ABCA1) for cholesterol efflux. In this study, we found that treating primary microglia expressing APOE4 with F12511 also reduces CEs, activated ABCA1, and dampened LPS dependent NFkB activation. In vivo, a two-week injections of nanoparticle F12511, which consists of DSPE-PEG 2000 , phosphatidylcholine, and F12511, to aged female APOE4 mice reduced TLR4 protein content and decreased proinflammatory cytokines including IL-1β in APOE4 mice brains. Overall, our work suggests nanoparticle F12511 is a novel agent to ameliorate LOAD.
Collapse
|
2
|
Barta BP, Onhausz B, Egyed-Kolumbán A, AL Doghmi A, Balázs J, Szalai Z, Ferencz Á, Hermesz E, Bagyánszki M, Bódi N. Intestinal Region-Dependent Impact of NFκB-Nrf Crosstalk in Myenteric Neurons and Adjacent Muscle Cells in Type 1 Diabetic Rats. Biomedicines 2024; 12:2347. [PMID: 39457659 PMCID: PMC11504535 DOI: 10.3390/biomedicines12102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Type 1 diabetes affects cytokines as potential inducers of NFκB signalling involved in inflammation and neuronal survival. Our goal was to assess the expression of NFκB p65 and its negative regulator, Nrf2, in myenteric neurons and adjacent smooth muscle of different gut segments after chronic hyperglycaemia and immediate insulin treatment. METHODS After ten weeks of hyperglycaemia, intestinal samples of control, streptozotocin-induced diabetic and insulin-treated diabetic rats were prepared for fluorescent immunohistochemistry, immunogold electron microscopy, ELISA and qPCR. RESULTS In the diabetic rats, the proportion of NFκB p65-immunoreactive myenteric neurons decreased significantly in the duodenum and increased in the ileum. The density of NFκB p65-labelling gold particles increased in the ileal but remained unchanged in the duodenal ganglia. Meanwhile, both total and nuclear Nrf2 density increased in the myenteric neurons of the diabetic duodenum. In smooth muscle, NFκB p65 and Nrf2 density increased in the small intestine of diabetic rats. While on the mRNA level, NFκB p65 and Nrf2 were induced, on the protein level, NFκB p65 increased and Nrf2 decreased in muscle/myenteric plexus homogenates. Insulin treatment had protective effects. CONCLUSIONS Our findings reveal a segment-specific NFκB and Nrf expression in myenteric neurons and ganglionic muscular environments, which may contribute to regional neuronal survival and motility disturbances in diabetes.
Collapse
Affiliation(s)
- Bence Pál Barta
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Benita Onhausz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Abigél Egyed-Kolumbán
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Afnan AL Doghmi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - János Balázs
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Á.F.); (E.H.)
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Á.F.); (E.H.)
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (B.P.B.); (B.O.); (A.E.-K.); (A.A.D.); (J.B.); (Z.S.); (M.B.)
| |
Collapse
|
3
|
Colombo F, Guzzeloni V, Kizilirmak C, Brambilla F, Garcia-Manteiga JM, Tascini AS, Moalli F, Mercalli F, Ponzoni M, Mezzapelle R, Ferrarini M, Ferrero E, Visone R, Rasponi M, Bianchi ME, Zambrano S, Agresti A. In vitro models of the crosstalk between multiple myeloma and stromal cells recapitulate the mild NF-κB activation observed in vivo. Cell Death Dis 2024; 15:731. [PMID: 39370432 PMCID: PMC11456592 DOI: 10.1038/s41419-024-07038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
Multiple myeloma (MM) is linked to chronic NF-κB activity in myeloma cells, but this activity is generally considered a cell-autonomous property of the cancer cells. The precise extent of NF-κB activation and the contributions of the physical microenvironment and of cell-to-cell communications remain largely unknown. By quantitative immunofluorescence, we found that NF-κB is mildly and heterogeneously activated in a fraction of MM cells in human BMs, while only a minority of MM cells shows a strong activation. To gain quantitative insights on NF-κB activation in living MM cells, we combined advanced live imaging of endogenous p65 Venus-knocked-in in MM.1S and HS-5 cell lines to model MM and mesenchymal stromal cells (MSCs), cell co-cultures, microfluidics and custom microbioreactors to mimic the 3D-interactions within the bone marrow (BM) microenvironment. We found that i) reciprocal MM-MSC paracrine crosstalk and cell-to-scaffold interactions shape the inflammatory response in the BM; ii) the pro-inflammatory cytokine IL-1β, abundant in MM patients' plasma, activates MSCs, whose paracrine signals are responsible for strong NF-κB activation in a minority of MM cells; iii) IL-1β, but not TNF-α, activates NF-κB in vivo in BM-engrafted MM cells, while its receptor inhibitor Anakinra reduces the global NF-κB activation. We propose that NF-κB activation in the BM of MM patients is mild, restricted to a minority of cells and modulated by the interplay of restraining physical microenvironmental cues and activating IL-1β-dependent stroma-to-MM crosstalk.
Collapse
Affiliation(s)
- Federica Colombo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Virginia Guzzeloni
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Cise Kizilirmak
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anna Sofia Tascini
- Universita' Vita-Salute San Raffaele, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Samuel Zambrano
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Universita' Vita-Salute San Raffaele, Milan, Italy.
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
4
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. A Boolean model explains phenotypic plasticity changes underlying hepatic cancer stem cells emergence. NPJ Syst Biol Appl 2024; 10:99. [PMID: 39223160 PMCID: PMC11369243 DOI: 10.1038/s41540-024-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.
Collapse
Affiliation(s)
- Alexis Hernández-Magaña
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | | | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
5
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
6
|
Elkhamary A, Gerner I, Bileck A, Oreff GL, Gerner C, Jenner F. Comparative proteomic profiling of the ovine and human PBMC inflammatory response. Sci Rep 2024; 14:14939. [PMID: 38942936 PMCID: PMC11213919 DOI: 10.1038/s41598-024-66059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the cellular and molecular mechanisms of inflammation requires robust animal models. Sheep are commonly used in immune-related studies, yet the validity of sheep as animal models for immune and inflammatory diseases remains to be established. This cross-species comparative study analyzed the in vitro inflammatory response of ovine (oPBMCs) and human PBMCs (hPBMCs) using mass spectrometry, profiling the proteome of the secretome and whole cell lysate. Of the entire cell lysate proteome (oPBMCs: 4217, hPBMCs: 4574 proteins) 47.8% and in the secretome proteome (oPBMCs: 1913, hPBMCs: 1375 proteins) 32.8% were orthologous between species, among them 32 orthologous CD antigens, indicating the presence of six immune cell subsets. Following inflammatory stimulation, 71 proteins in oPBMCs and 176 in hPBMCs showed differential abundance, with only 7 overlapping. Network and Gene Ontology analyses identified 16 shared inflammatory-related terms and 17 canonical pathways with similar activation/inhibition patterns in both species, demonstrating significant conservation in specific immune and inflammatory responses. However, ovine PMBCs also contained a unique WC1+γδ T-cell subset, not detected in hPBMCs. Furthermore, differences in the activation/inhibition trends of seven canonical pathways and the sets of DAPs between sheep and humans, emphasize the need to consider interspecies differences in translational studies and inflammation research.
Collapse
Affiliation(s)
- A Elkhamary
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Department for Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - I Gerner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - G L Oreff
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
| | - C Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - F Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
7
|
Perucca P, Bassi E, Vetro M, Tricarico A, Prosperi E, Stivala LA, Cazzalini O. Epithelial-to-mesenchymal transition and NF-kB pathways are promoted by a mutant form of DDB2, unable to bind PCNA, in UV-damaged human cells. BMC Cancer 2024; 24:616. [PMID: 38773406 PMCID: PMC11110260 DOI: 10.1186/s12885-024-12368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND DNA-Damaged Binding protein 2 (DDB2) is a protein involved in the early step of Nucleotide Excision Repair. Recently, it has been reported that DDB2 is involved in epithelial-to-mesenchymal transition (EMT), key process in tumour invasiveness and metastasis formation. However, its role is not completely known. METHODS Boyden chamber and cell adhesion assays, and ICELLigence analysis were performed to detect HEK293 adhesion and invasion. Western blotting and gelatine zymography techniques were employed to assess the EMT protein levels and MMP enzymatic activity. Immunofluorescence analysis and pull-down assays facilitated the detection of NF-kB sub-cellular localization and interaction. RESULTS We have previously demonstrated that the loss of DDB2-PCNA binding favours genome instability, and increases cell proliferation and motility. Here, we have investigated the phenotypic and molecular EMT-like changes after UV DNA damage, in HEK293 clones stably expressing DDB2Wt protein or a mutant form unable to interact with PCNA (DDB2PCNA-), as well as in HeLa cells transiently expressing the same DDB2 constructs. Cells expressing DDB2PCNA- showed morphological modifications along with a reduced expression of E-cadherin, an increased activity of MMP-9 and an improved ability to migrate, in concomitance with a significant upregulation of EMT-associated Transcription Factors (TFs), whose expression has been reported to favour tumour invasion. We observed a higher expression of c-Myc oncogene, NF-kB, both regulating cell proliferation and metastatic process, as well as ZEB1, a TF significantly associated with tumorigenic potential and cell migratory ability. Interestingly, a novel interaction of DDB2 with NF-kB was detected and found to be increased in cells expressing the DDB2PCNA-, suggesting a direct modulation of NF-kB by DDB2. CONCLUSION These results highlight the role of DDB2-PCNA interaction in counteracting EMT since DDB2PCNA- protein induces in HEK293 transformed cells a gain of function contributing to the acquisition of a more aggressive phenotype.
Collapse
Affiliation(s)
- Paola Perucca
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Elisabetta Bassi
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Martina Vetro
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Anna Tricarico
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
8
|
Bacher S, Schmitz ML. Open questions in the NF-κB field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119469. [PMID: 37951506 DOI: 10.1016/j.bbamcr.2023.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 11/14/2023]
Abstract
A variety of stress signals leads to activation of the inducible transcription factor NF-κB, one of the master regulators of the innate immune response. Despite a wealth of information available on the NF-κB core components and its control by different activation pathways and negative feedback loops, several levels of complexity hamper our understanding of the system. This has also contributed to the limited success of NF-κB inhibitors in the clinic and explains some of their unexpected effects. Here we consider the molecular and cellular events generating this complexity at all levels and point to a number of unresolved questions in the field. We also discuss potential future experimental and computational strategies to provide a deeper understanding of NF-κB and its coregulatory signaling networks.
Collapse
Affiliation(s)
- Susanne Bacher
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
9
|
Park JY, Kim HD, Abekura F, Cho SH, Kim CH. A novel Mycobacterium Tuberculosis antigen, MTB48 enhances inflammatory response in LPS-induced RAW264.7 macrophage immune cells. Mol Immunol 2024; 166:50-57. [PMID: 38237322 DOI: 10.1016/j.molimm.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/12/2024]
Abstract
Mtb (Mycobacterium tuberculosis) is a pathogenic bacterium that causes tuberculosis infection (TB). Mtb-secreted proteins have recently been investigated as virulence factors, as well as therapeutic and vaccine possibilities. The early-secreted antigen target MTB48 is one of these proteins that has been explored as a cocktail antigen in the serodiagnosis of active tuberculosis. However, there exists no information about the function or control of MTB48's inflammatory activity in macrophages at the site of inflammation. As a result, the goal of this research was to figure out what processes are involved in MTB48's function. MTB48 stimulated inflammation in LPS induced macrophages at both the protein and mRNA levels, which was interesting. MTB48 aided LPS induced IB phosphorylation and NF-κB translocation. MTB48 also led to the phosphorylation of MAPK signaling protein. These findings imply that MTB48 can enhance inflammatory activity via NF-κB and MAPK signaling by upregulating COX-2, iNOS, NO and PGE2. Many tuberculosis antigens have been tested for the development of rapid serological diagnosis. The results of this study suggest that MTB48 is a very high conservative antigen and is a major factor causing inflammatory reactions, suggesting that it can help control and diagnose tuberculosis.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Biological Science, SungKyunkwan University, Suwon 16419, Republic of Korea; Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hee-Do Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Fukushi Abekura
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Cheorl-Ho Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Häussler S, Ghaffari MH, Seibt K, Sadri H, Alaedin M, Huber K, Frahm J, Dänicke S, Sauerwein H. Blood and liver telomere length, mitochondrial DNA copy number, and hepatic gene expression of mitochondrial dynamics in mid-lactation cows supplemented with l-carnitine under systemic inflammation. J Dairy Sci 2023; 106:9822-9842. [PMID: 37641324 DOI: 10.3168/jds.2023-23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).
Collapse
Affiliation(s)
- S Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - K Seibt
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - M Alaedin
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - K Huber
- Institute of Animal Science, Functional Anatomy of Livestock, University of Hohenheim, 70599 Stuttgart, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
11
|
Chun J, Mah SY, Kim YS. Anti-Inflammatory Effect of Ebractenoid F, a Major Active Compound of Euphorbia ebracteolata Hayata, through Inhibition of Nuclear Factor-κB Activation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2845. [PMID: 37570999 PMCID: PMC10421244 DOI: 10.3390/plants12152845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most active anti-inflammatory compound from the roots of E. ebracteolata Hayata, using bioassay-guided fractionation and a combinative method of high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). Then, we investigated its anti-inflammatory mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ebractenoid F was identified as the most potent bioactive compound of E. ebracteolata Hayata. Ebractenoid F significantly decreased nitric oxide (NO) production and nuclear factor-κB (NF-κB) activation induced by LPS in RAW 264.7 macrophages. Moreover, ebractenoid F decreased the degradation of inhibitory κB-α, the nuclear translocation of the p65 and p50 subunits of NF-κB, and the expression of NF-κB downstream genes. Furthermore, ebractenoid F inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK), in LPS-stimulated RAW 264.7 cells. In conclusion, ebractenoid F exerts the most potent anti-inflammatory effect by suppressing NF-κB-mediated NO production in LPS-stimulated RAW 264.7 cells. Ebractenoid F may be a useful therapeutic compound for the prevention or treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang Yeon Mah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Priester J, Meier-Soelch J, Weiser H, Heylmann D, Weber A, Linne U, Kracht M. Metabolic labeling and LC-MS/MS-based identification of interleukin-1α-induced secreted proteomes from epithelial cells in the presence or absence of serum. STAR Protoc 2023; 4:102195. [PMID: 37004159 PMCID: PMC10090805 DOI: 10.1016/j.xpro.2023.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
The unbiased identification of cytokine-induced, secreted proteins from cells cultured in serum-containing medium is challenging. Here, we describe an experimental and bioinformatics workflow to label interleukin-1α-regulated proteins in living cells with the methionine analogue L-homopropargylglycine. We detail their purification and identification by means of CLICK-chemistry-based biotinylation followed by nanoHPLC-MS/MS. A side-by-side comparison of enriched proteins and their ontologies to serum-free conditions demonstrates the sensitivity and specificity of this approach to study the inducible secreted proteomes of epithelial cells.
Collapse
Affiliation(s)
- Jasmin Priester
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany
| | - Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany
| | - Hendrik Weiser
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, 35032 Marburg, Germany.
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
13
|
Mussbacher M, Derler M, Basílio J, Schmid JA. NF-κB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells. Front Immunol 2023; 14:1134661. [PMID: 36911661 PMCID: PMC9995663 DOI: 10.3389/fimmu.2023.1134661] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a dimeric transcription factor constituted by two of five protein family members. It plays an essential role in inflammation and immunity by regulating the expression of numerous chemokines, cytokines, transcription factors, and regulatory proteins. Since NF-κB is expressed in almost all human cells, it is important to understand its cell type-, tissue-, and stimulus-specific roles as well as its temporal dynamics and disease-specific context. Although NF-κB was discovered more than 35 years ago, many questions are still unanswered, and with the availability of novel technologies such as single-cell sequencing and cell fate-mapping, new fascinating questions arose. In this review, we will summarize current findings on the role of NF-κB in monocytes and macrophages. These innate immune cells show high plasticity and dynamically adjust their effector functions against invading pathogens and environmental cues. Their versatile functions can range from antimicrobial defense and antitumor immune responses to foam cell formation and wound healing. NF-κB is crucial for their activation and balances their phenotypes by finely coordinating transcriptional and epigenomic programs. Thereby, NF-κB is critically involved in inflammasome activation, cytokine release, and cell survival. Macrophage-specific NF-κB activation has far-reaching implications in the development and progression of numerous inflammatory diseases. Moreover, recent findings highlighted the temporal dynamics of myeloid NF-κB activation and underlined the complexity of this inflammatory master regulator. This review will provide an overview of the complex roles of NF-κB in macrophage signal transduction, polarization, inflammasome activation, and cell survival.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- INESC ID–Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Liu Y, Ge X, Li C, Xue T. Derivation and characterization of new cell line from intestine of turbot (Scophthalmus maximus). In Vitro Cell Dev Biol Anim 2023; 59:153-162. [PMID: 36809593 PMCID: PMC10073165 DOI: 10.1007/s11626-022-00746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 02/23/2023]
Abstract
A continuous intestine cell line from turbot (Scophthalmus maximus) designated as SMI was established utilizing the tissue explant technique. Primary SMI cell was cultured at 24 °C in a medium with 20% fetal bovine serum (FBS), then subcultured in 10% FBS after 10 passages. Impacts of medium or temperature on the growth of SMI were examined and the results indicated it grew well in DMEM supplemented with 10% FBS at 24 °C. The SMI cell line was subcultured more than 60 times. Karyotyping, chromosome number, and ribosomal RNA genotyping analysis revealed that SMI had a modal diploid chromosome number of 44 and originated from turbot. After being transfected with pEGFP-N1 and FAM-siRNA, a large number of green fluorescence signals were observed in SMI, indicating that SMI could be used as an ideal platform to explore gene function in vitro. In addition, the expression of epithelium-associated genes such as itga6, itgb4, gja1, claudin1, zo-1, and E-cadherin in SMI suggested the SMI had some characteristics of epidermal cells. The upregulation of immune-associated genes such as TNF-β, NF-κB, and IL-1β in SMI after stimulation with pathogen-associated molecular patterns suggested the SMI might exhibit immune functions similar to the intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Efficacy of Clinically Used PARP Inhibitors in a Murine Model of Acute Lung Injury. Cells 2022; 11:cells11233789. [PMID: 36497049 PMCID: PMC9738530 DOI: 10.3390/cells11233789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), as a potential target for the experimental therapy of acute lung injury (ALI), was identified over 20 years ago. However, clinical translation of this concept was not possible due to the lack of clinically useful PARP inhibitors. With the clinical introduction of several novel, ultrapotent PARP inhibitors, the concept of PARP inhibitor repurposing has re-emerged. Here, we evaluated the effect of 5 clinical-stage PARP inhibitors in oxidatively stressed cultured human epithelial cells and monocytes in vitro and demonstrated that all inhibitors (1-30 µM) provide a comparable degree of cytoprotection. Subsequent in vivo studies using a murine model of ALI compared the efficacy of olaparib and rucaparib. Both inhibitors (1-10 mg/kg) provided beneficial effects against lung extravasation and pro-inflammatory mediator production-both in pre- and post-treatment paradigms. The underlying mechanisms include protection against cell dysfunction/necrosis, inhibition of NF-kB and caspase 3 activation, suppression of the NLRP3 inflammasome, and the modulation of pro-inflammatory mediators. Importantly, the efficacy of PARP inhibitors was demonstrated without any potentiation of DNA damage, at least as assessed by the TUNEL method. These results support the concept that clinically approved PARP inhibitors may be repurposable for the experimental therapy of ALI.
Collapse
|
16
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
17
|
Mansouri S, Heylmann D, Stiewe T, Kracht M, Savai R. Cancer genome and tumor microenvironment: Reciprocal crosstalk shapes lung cancer plasticity. eLife 2022; 11:79895. [PMID: 36074553 PMCID: PMC9457687 DOI: 10.7554/elife.79895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer classification and treatment has been revolutionized by improving our understanding of driver mutations and the introduction of tumor microenvironment (TME)-associated immune checkpoint inhibitors. Despite the significant improvement of lung cancer patient survival in response to either oncogene-targeted therapy or anticancer immunotherapy, many patients show initial or acquired resistance to these new therapies. Recent advances in genome sequencing reveal that specific driver mutations favor the development of an immunosuppressive TME phenotype, which may result in unfavorable outcomes in lung cancer patients receiving immunotherapies. Clinical studies with follow-up after immunotherapy, assessing oncogenic driver mutations and the TME immune profile, not only reveal the underlying potential molecular mechanisms in the resistant lung cancer patients but also hold the key to better treatment choices and the future of personalized medicine. In this review, we discuss the crosstalk between cancer cell genomic features and the TME to reveal the impact of genetic alterations on the TME phenotype. We also provide insights into the regulatory role of cellular TME components in defining the genetic landscape of cancer cells during tumor development.
Collapse
Affiliation(s)
- Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Institute of Molecular Oncology, Marburg, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
18
|
Saelee C, Hanthamrongwit J, Soe PT, Khaenam P, Inthasin N, Ekpo P, Chootong P, Leepiyasakulchai C. Toll-like receptor-mediated innate immune responses by recognition of the recombinant dormancy-associated Mycobacterium tuberculosis proteins Rv2659c and Rv1738. PLoS One 2022; 17:e0273517. [PMID: 36048884 PMCID: PMC9436120 DOI: 10.1371/journal.pone.0273517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) poses a major threat to the global public health. Importantly, latent tuberculosis infection (LTBI) still impedes the elimination of TB incidence since it has a substantial risk to develop active disease. A multi-stage subunit vaccine comprising active and latency antigens of Mtb has been raised as the promising vaccine to trigger immune protection against all stages of TB. Therefore, the discovery of new antigens that could trigger broad immune response is essential. While current development of TB vaccine mainly focuses on protective immunity mediated by adaptive immune response, the knowledge on triggering the innate immune response by antigens is still limited. We showed that recombinant dormancy-associated Mtb proteins Rv2659c and Rv1738 were recognized by human innate immune recognition molecules, Toll-like receptors (TLRs) 2 and 4 by using HEK-Blue™ hTLR2/hTLR4 systems. We further demonstrated that these two proteins activated phosphorylated NF-κB p65 (Ser536) in the human CD14+ blood cells. We also investigated that these two proteins significantly induced level of pro- and anti-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-α) which were mediated through TLR2 and TLR4 pathways in human peripheral blood mononuclear cells (hPBMCs). These findings suggest that proteins Rv2659c and Rv1738 stimulated innate immune response targeting TLR2 and TLR4 to produce inflammatory cytokines, and their benefits would be valuable for the development of an effective prophylactic tuberculosis vaccine.
Collapse
Affiliation(s)
- Chutiphon Saelee
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Jariya Hanthamrongwit
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Phyu Thwe Soe
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, University of Medical Technology, Mandalay, Myanmar
| | - Prasong Khaenam
- Faculty of Medical Technology, Center of Standardization and Product Validation, Mahidol University, Bangkok, Thailand
| | - Naharuthai Inthasin
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Pattama Ekpo
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Tserunyan V, Finley SD. Computational analysis of 4-1BB-induced NFκB signaling suggests improvements to CAR cell design. Cell Commun Signal 2022; 20:129. [PMID: 36028884 PMCID: PMC9413922 DOI: 10.1186/s12964-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-expressing cells are a powerful modality of adoptive cell therapy against cancer. The potency of signaling events initiated upon antigen binding depends on the costimulatory domain within the structure of the CAR. One such costimulatory domain is 4-1BB, which affects cellular response via the NFκB pathway. However, the quantitative aspects of 4-1BB-induced NFκB signaling are not fully understood. METHODS We developed an ordinary differential equation-based mathematical model representing canonical NFκB signaling activated by CD19scFv-4-1BB. After a global sensitivity analysis on model parameters, we ran Monte Carlo simulations of cell population-wide variability in NFκB signaling and quantified the mutual information between the extracellular signal and different levels of the NFκB signal transduction pathway. RESULTS In response to a wide range of antigen concentrations, the magnitude of the transient peak in NFκB nuclear concentration varies significantly, while the timing of this peak is relatively consistent. Global sensitivity analysis showed that the model is robust to variations in parameters, and thus, its quantitative predictions would remain applicable to a broad range of parameter values. The model predicts that overexpressing NEMO and disabling IKKβ deactivation can increase the mutual information between antigen levels and NFκB activation. CONCLUSIONS Our modeling predictions provide actionable insights to guide CAR development. Particularly, we propose specific manipulations to the NFκB signal transduction pathway that can fine-tune the response of CD19scFv-4-1BB cells to the antigen concentrations they are likely to encounter. Video Abstract.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Zhong C, Dong Y, Zhang Q, Yuan C, Duan S. Aberrant Expression of miR-1301 in Human Cancer. Front Oncol 2022; 11:789626. [PMID: 35070996 PMCID: PMC8767067 DOI: 10.3389/fonc.2021.789626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
miR-1301 is a newly discovered miRNA, which is abnormally expressed in 14 types of tumors. miR-1301 inhibits 23 target genes, forms a ceRNA network with 2 circRNAs and 8 lncRNAs, and participates in 6 signaling pathways, thereby affecting tumor cell proliferation, invasion, metastasis, apoptosis, angiogenesis, etc. Abnormal expression of miR-1301 is often associated with poor prognosis of cancer patients. In addition, miR-1301 is related to the anti-tumor effect of epirubicin on osteosarcoma and imatinib on chronic myeloid leukemia(CML) and can enhance the cisplatin sensitivity of ovarian cancer. This work systematically summarizes the abnormal expression and prognostic value of miR-1301 in a variety of cancers, depicts the miR-1301-related signaling pathways and ceRNA network, and provides potential clues for future miR-1301 research.
Collapse
Affiliation(s)
- Chenming Zhong
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yiyao Dong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Qiudan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Chunhui Yuan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China.,Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
| |
Collapse
|