1
|
Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer 2024; 23:26. [PMID: 38291400 PMCID: PMC10826015 DOI: 10.1186/s12943-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea
| | - Gyeongjun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario, ON, M5S 3H6, Canada
| | - Amos C Lee
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Simpson JE, Muir MT, Lee M, Naughton C, Gilbert N, Pollard SM, Gammoh N. Autophagy supports PDGFRA-dependent brain tumor development by enhancing oncogenic signaling. Dev Cell 2024; 59:228-243.e7. [PMID: 38113891 DOI: 10.1016/j.devcel.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Autophagy is a conserved cellular degradation process. While autophagy-related proteins were shown to influence the signaling and trafficking of some receptor tyrosine kinases, the relevance of this during cancer development is unclear. Here, we identify a role for autophagy in regulating platelet-derived growth factor receptor alpha (PDGFRA) signaling and levels. We find that PDGFRA can be targeted for autophagic degradation through the activity of the autophagy cargo receptor p62. As a result, short-term autophagy inhibition leads to elevated levels of PDGFRA but an unexpected defect in PDGFA-mediated signaling due to perturbed receptor trafficking. Defective PDGFRA signaling led to its reduced levels during prolonged autophagy inhibition, suggesting a mechanism of adaptation. Importantly, PDGFA-driven gliomagenesis in mice was disrupted when autophagy was inhibited in a manner dependent on Pten status, thus highlighting a genotype-specific role for autophagy during tumorigenesis. In summary, our data provide a mechanism by which cells require autophagy to drive tumor formation.
Collapse
Affiliation(s)
- Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
3
|
Batra H, Ding Q, Pandurengan R, Ibarguen H, Rabassedas NB, Sahin A, Wistuba I, Parra ER, Raso MG. Exploration of cancer associated fibroblasts phenotypes in the tumor microenvironment of classical and pleomorphic Invasive Lobular Carcinoma. Front Oncol 2023; 13:1281650. [PMID: 38192631 PMCID: PMC10772146 DOI: 10.3389/fonc.2023.1281650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
As the second most common subtype of breast carcinoma, Invasive Lobular Carcinoma (ILC) microenvironment features have not been thoroughly explored. ILC has different histological subtypes and elucidating differences in their microenvironments could lead to a comprehensive development of cancer therapies. We designed a custom-made cancer associated fibroblast (CAFs) panel and used multiplex immunofluorescence to identify the differences in tumor microenvironment between Classic ILC and Pleomorphic ILC. Materials and methods Multiplex immunofluorescence were performed on formalin fixed paraffin embedded tissues using Opal-7 color kit. The antibodies used for phenotyping CAFs were Pan CK (AE1/AE3), CD45, A-SMA, FAP, S100, Thy-1 with optimized dilutions. The images were acquired and analyzed using Vectra 3.0 imaging system and InForm software respectively. Results We studied 19 different CAFs colocalized phenotypes in the tumor, stroma and overall tissue compartments between classic and pleomorphic ILC. Total A-SMA+, A-SMA+FAP+S100+ and A-SMA+S100+ CAFs demonstrated higher densities in classic ILC cases while FAP+S100+ and S-100+ CAFs were increased in the pleomorphic subtype samples. Conclusion Our study explores multiple CAFs phenotypes between classical and pleomorphic ILC. We showed that CAFs subset differ between Classic ILC and Pleomorphic ILC. A-SMA CAFs are more prevalent in the TME of classic ILCs whereas Pleomorphic ILCs are dominated by CAFs without A-SMA expression. This also iterates the importance of exploring this particular type of breast carcinoma in more detail, paving the way for meaningful translational research.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingqing Ding
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Renganayaki Pandurengan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heladio Ibarguen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota Rabassedas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aysegul Sahin
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Batra H, Mouabbi JA, Ding Q, Sahin AA, Raso MG. Lobular Carcinoma of the Breast: A Comprehensive Review with Translational Insights. Cancers (Basel) 2023; 15:5491. [PMID: 38001750 PMCID: PMC10670219 DOI: 10.3390/cancers15225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The second most common breast carcinoma, invasive lobular carcinoma, accounts for approximately 15% of tumors of breast origin. Its incidence has increased in recent times due in part to hormone replacement therapy and improvement in diagnostic modalities. Although believed to arise from the same cell type as their ductal counterpart, invasive lobular carcinomas (ILCs) are a distinct entity with different regulating genetic pathways, characteristic histologies, and different biology. The features most unique to lobular carcinomas include loss of E-Cadherin leading to discohesion and formation of a characteristic single file pattern on histology. Because most of these tumors exhibit estrogen receptor positivity and Her2 neu negativity, endocrine therapy has predominated to treat these tumors. However novel treatments like CDK4/6 inhibitors have shown importance and antibody drug conjugates may be instrumental considering newer categories of Her 2 Low breast tumors. In this narrative review, we explore multiple pathological aspects and translational features of this unique entity. In addition, due to advancement in technologies like spatial transcriptomics and other hi-plex technologies, we have tried to enlist upon the characteristics of the tumor microenvironment and the latest associated findings to better understand the new prospective therapeutic options in the current era of personalized treatment.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jason Aboudi Mouabbi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.D.); (A.A.S.)
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Conover CA, Oxvig C. The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocr Rev 2023; 44:1012-1028. [PMID: 37267421 DOI: 10.1210/endrev/bnad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) was first identified in the early 1970s as a placental protein of unknown function, present at high concentrations in the circulation of pregnant women. In the mid-to-late 1990s, PAPP-A was discovered to be a metzincin metalloproteinase, expressed by many nonplacental cells, that regulates local insulin-like growth factor (IGF) activity through cleavage of high-affinity IGF binding proteins (IGFBPs), in particular IGFBP-4. With PAPP-A as a cell surface-associated enzyme, the reduced affinity of the cleavage fragments results in increased IGF available to bind and activate IGF receptors in the pericellular environment. This proteolytic regulation of IGF activity is important, since the IGFs promote proliferation, differentiation, migration, and survival in various normal and cancer cells. Thus, there has been a steady growth in investigation of PAPP-A structure and function outside of pregnancy. This review provides historical perspective on the discovery of PAPP-A and its structure and cellular function, highlights key studies of the first 50 years in PAPP-A research, and introduces new findings from recent years.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, Morellato A, Ala U, Taverna D, Turco E, Defilippi P. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol 2023; 13:1170264. [PMID: 37265795 PMCID: PMC10229846 DOI: 10.3389/fonc.2023.1170264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Pietro Arina
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center (MBC) “Guido Tarone”, Turin, Italy
| |
Collapse
|
7
|
Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun 2023; 14:183. [PMID: 36635273 PMCID: PMC9837080 DOI: 10.1038/s41467-023-35793-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.
Collapse
Affiliation(s)
- Julia M Houthuijzen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Roebi de Bruijn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Paulien Drenth
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamara Filipovic
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chiara S Brambillasca
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilia M Pulver
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank van Diepen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mirjam C Boelens
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S. The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer Discov 2023; 13:23-40. [PMID: 36620880 PMCID: PMC9833841 DOI: 10.1158/2159-8290.cd-22-0475] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer, the most common type of cancer affecting women, encompasses a collection of histologic (mainly ductal and lobular) and molecular subtypes exhibiting diverse clinical presentation, disease trajectories, treatment options, and outcomes. Immunotherapy has revolutionized treatment for some solid tumors but has shown limited promise for breast cancers. In this review, we summarize recent advances in our understanding of the complex interactions between tumor and immune cells in subtypes of breast cancer at the cellular and microenvironmental levels. We aim to provide a perspective on opportunities for future immunotherapy agents tailored to specific features of each subtype of breast cancer. SIGNIFICANCE Although there are currently over 200 ongoing clinical trials testing immunotherapeutics, such as immune-checkpoint blockade agents, these are largely restricted to the triple-negative and HER2+ subtypes and primarily focus on T cells. With the rapid expansion of new in vitro, in vivo, and clinical data, it is critical to identify and highlight the challenges and opportunities unique for each breast cancer subtype to drive the next generation of treatments that harness the immune system.
Collapse
Affiliation(s)
- Sayali S. Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neil M. Carleton
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Lucas
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Machlin JH, Shikanov A. Single-cell RNA-sequencing of retrieved human oocytes and eggs in clinical practice and for human ovarian cell atlasing. Mol Reprod Dev 2022; 89:597-607. [PMID: 36264989 PMCID: PMC9805491 DOI: 10.1002/mrd.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 01/18/2023]
Abstract
With the advancement of single-cell separation techniques and high-throughput sequencing platforms, single-cell RNA-sequencing (scRNA-seq) has emerged as a vital technology for understanding tissue and organ systems at cellular resolution. Through transcriptional analysis, it is possible to characterize unique or rare cell types, interpret their interactions, and reveal novel functional states or shifts in developmental stages. As such, this technology is uniquely suited for studying the cells within the human ovary. The ovary is a cellularly heterogeneous organ that houses follicles, the reproductive and endocrine unit that consists of an oocyte surrounded by hormone-producing support cells, as well as many other cell populations constituting stroma, vasculature, lymphatic, and immune components. Here we review studies that have utilized scRNA-seq technology to analyze cells from healthy human ovaries and discuss the single-cell isolation techniques used. We identified two overarching applications for scRNA-seq in the human ovary. The first applies this technology to investigate transcriptional differences in oocytes/eggs from patients undergoing in vitro fertilization treatments to ultimately improve clinical outcomes. The second utilizes scRNA-seq for the pursuit of creating a comprehensive single-cell atlas of the human ovary. The knowledge gained from these studies underscores the importance of scRNA-seq technologies in unlocking a new biological understanding of the human ovary.
Collapse
Affiliation(s)
- Jordan H. Machlin
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ariella Shikanov
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
11
|
Structure of the proteolytic enzyme PAPP-A with the endogenous inhibitor stanniocalcin-2 reveals its inhibitory mechanism. Nat Commun 2022; 13:6084. [PMID: 36257932 PMCID: PMC9579167 DOI: 10.1038/s41467-022-33698-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The metzincin metalloproteinase PAPP-A plays a key role in the regulation of insulin-like growth factor (IGF) signaling by specific cleavage of inhibitory IGF binding proteins (IGFBPs). Using single-particle cryo-electron microscopy (cryo-EM), we here report the structure of PAPP-A in complex with its endogenous inhibitor, stanniocalcin-2 (STC2), neither of which have been reported before. The highest resolution (3.1 Å) was obtained for the STC2 subunit and the N-terminal approximately 1000 residues of the PAPP-A subunit. The 500 kDa 2:2 PAPP-A·STC2 complex is a flexible multidomain ensemble with numerous interdomain contacts. In particular, a specific disulfide bond between the subunits of STC2 and PAPP-A prevents dissociation, and interactions between STC2 and a module located in the very C-terminal end of the PAPP-A subunit prevent binding of its main substrate, IGFBP-4. While devoid of activity towards IGFBP-4, the active site cleft of the catalytic domain is accessible in the inhibited PAPP-A·STC2 complex, as shown by its ability to hydrolyze a synthetic peptide derived from IGFBP-4. Relevant to multiple human pathologies, this unusual mechanism of proteolytic inhibition may support the development of specific pharmaceutical agents, by which IGF signaling can be indirectly modulated.
Collapse
|