1
|
Haag A, Němec V, Janovská P, Bartošíková J, Adhikari B, Müller J, Schwalm MP, Čada Š, Ohmayer U, Daub H, Kim Y, Born F, Wolf E, Bryja V, Knapp S. Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε. J Med Chem 2024. [PMID: 39729064 DOI: 10.1021/acs.jmedchem.4c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules. Here, we used a PROTAC (Proteolysis TArgeting Chimeras) approach to develop a highly selective degrader AH078 (37) targeting CK1δ and CK1ε with excellent selectivity over the highly related CK1α isoform. The developed PROTAC, AH078 (37) selectively degraded CK1δ and CK1ε with a DC50 of 200 nM. Characterization of AH078 (37) revealed a VHL and Ubiquitin-dependent degradation mechanism. Thus, AH078 (37) represents a versatile chemical tool to study CK1δ and CK1ε function in cellular systems.
Collapse
Affiliation(s)
- Adrian Haag
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Václav Němec
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Bartošíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Bikash Adhikari
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Juliane Müller
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Uli Ohmayer
- NEOsphere Biotechnologies GmbH, Fraunhoferstr. 1, 82152 Martinsried, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Fraunhoferstr. 1, 82152 Martinsried, Germany
| | - Yeojin Kim
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Florian Born
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German translational cancer network (DKTK) site Frankfurt Mainz, 60590 Heidelberg, Germany
| |
Collapse
|
2
|
Lishman-Walker E, Coffey K. Casein Kinase 1α-A Target for Prostate Cancer Therapy? Cancers (Basel) 2024; 16:2436. [PMID: 39001502 PMCID: PMC11240421 DOI: 10.3390/cancers16132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for indirectly targeting the AR are sought. AR crosstalk with other signalling pathways, including several protein kinase signalling cascades, has been identified as a potential route to combat therapy resistance. The casein kinase 1 (CK1) family of protein kinases phosphorylate a multitude of substrates, allowing them to regulate a diverse range of pathways from the cell cycle to DNA damage repair. As well as its role in several signalling pathways that are de-regulated in PCa, mutational data suggest its potential to promote prostate carcinogenesis. CK1α is one isoform predicted to regulate AR activity via phosphorylation and has been implicated in the progression of several other cancer types. In this review, we explore how the normal biological function of CK1 is de-regulated in cancer, the impact on signalling pathways and how this contributes towards prostate tumourigenesis, with a particular focus on the CK1α isoform as a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
3
|
Tang S, Wang Y, Luo R, Fang R, Liu Y, Xiang H, Ran P, Tong Y, Sun M, Tan S, Huang W, Huang J, Lv J, Xu N, Yao Z, Zhang Q, Xu Z, Yue X, Yu Z, Akesu S, Ding Y, Xu C, Lu W, Zhou Y, Hou Y, Ding C. Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma. Nat Commun 2024; 15:1381. [PMID: 38360860 PMCID: PMC10869728 DOI: 10.1038/s41467-024-45306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma.
Collapse
Affiliation(s)
- Shaoshuai Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rundong Fang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Lv
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ziyan Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xuetong Yue
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujie Akesu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqin Ding
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Arseni C, Samiotaki M, Panayotou G, Simos G, Mylonis I. Combinatorial regulation by ERK1/2 and CK1δ protein kinases leads to HIF-1α association with microtubules and facilitates its symmetrical distribution during mitosis. Cell Mol Life Sci 2024; 81:72. [PMID: 38300329 PMCID: PMC10834586 DOI: 10.1007/s00018-024-05120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is the key transcriptional mediator of the cellular response to hypoxia and is also involved in cancer progression. Regulation of its oxygen-sensitive HIF-1α subunit involves post-translational modifications that control its stability, subcellular localization, and activity. We have previously reported that phosphorylation of the HIF-1α C-terminal domain by ERK1/2 promotes HIF-1α nuclear accumulation and stimulates HIF-1 activity while lack of this modification triggers HIF-1α nuclear export and its association with mitochondria. On the other hand, modification of the N-terminal domain of HIF-1α by CK1δ impairs HIF-1 activity by obstructing the formation of a HIF-1α/ARNT heterodimer. Investigation of these two antagonistic events by expressing double phospho-site mutants in HIF1A-/- cells under hypoxia revealed independent and additive phosphorylation effects that can create a gradient of HIF-1α subcellular localization and transcriptional activity. Furthermore, modification by CK1δ caused mitochondrial release of the non-nuclear HIF-1α form and binding to microtubules via its N-terminal domain. In agreement, endogenous HIF-1α could be shown to co-localize with mitotic spindle microtubules and interact with tubulin, both of which were inhibited by CK1δ silencing or inhibition. Moreover, CK1δ expression was necessary for equal partitioning of mother cell-produced HIF-1α to the daughter cell nuclei at the end of mitosis. Overall, our results suggest that phosphorylation by CK1δ stimulates the association of non-nuclear HIF-1α with microtubules, which may serve as a means to establish a symmetric distribution of HIF-1α during cell division under low oxygen conditions.
Collapse
Affiliation(s)
- Christina Arseni
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece
| | - Martina Samiotaki
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Panayotou
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
5
|
Ariaei A, Ramezani F. The promising impact of Bemcentinib and Repotrectinib on sleep impairment in Alzheimer's disease. J Biomol Struct Dyn 2023; 42:13538-13554. [PMID: 37909502 DOI: 10.1080/07391102.2023.2276876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, demands effective medication to alleviate symptoms. This study focused on sleep impairment as an overt clinical symptom and tauopathy as a prominent molecular symptom of this disease. Multiple compounds from three biomolecule libraries (719 compounds; ChemDiv:366 - ChEMBL:180 - PubChem:173) were evaluated for potential binding affinity and safety using AutoDock Vina and pkCSM, respectively, resulting in the selection of four candidate compounds (Lestaurtinib, Repotrectinib, Bemcentinib, and Zotiraciclib). Due to the similarity of Repotrectinib and Bemcentinib binding sites to ATP, 300 ns Martini 3 coarse-grained molecular dynamics (MD) was performed on these two molecules and ATP by NAMD. The stability of tau protein in the presence of drugs was assessed using a 200 ns Martini 3 MD simulation. Binding site analysis discloses Bemcentinib and Repotrectinib as two inhibitors occupying most amino acids in binding with ATP. The RMSD and RMS average correlation results revealed protein containing Bemcentinib and Repotrectinib to have a more stable state compared to ATP in the first 220 ns simulation. There was only a single detachment of Bemcentinib, while Repotrictinib detached twice at the end of the simulation. Eventually, adding Bemcentinib and Repotrectinib to the enzyme-tau complex significantly increased the number of tau detachments during the 200 ns simulation. We report Bemcentinib and Repotrectinib, formerly prescribed for cancer, as potential inhibitors of the CK1 δ. Besides their high binding affinity compared to ATP, they can inhibit all ATP-binding sites and alter the tau binding stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Meier L, Gahr BM, Roth A, Gihring A, Kirschner S, Woitaske-Proske C, Baier J, Peifer C, Just S, Knippschild U. Zebrafish as model system for the biological characterization of CK1 inhibitors. Front Pharmacol 2023; 14:1245246. [PMID: 37753113 PMCID: PMC10518421 DOI: 10.3389/fphar.2023.1245246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction: The CK1 family is involved in a variety of physiological processes by regulating different signaling pathways, including the Wnt/β-catenin, the Hedgehog and the p53 signaling pathways. Mutations or dysregulation of kinases in general and of CK1 in particular are known to promote the development of cancer, neurodegenerative diseases and inflammation. There is increasing evidence that CK1 isoform specific small molecule inhibitors, including CK1δ- and CK1ε-specific inhibitors of Wnt production (IWP)-based small molecules with structural similarity to benzimidazole compounds, have promising therapeutic potential. Methods: In this study, we investigated the suitability of the zebrafish model system for the evaluation of such CK1 inhibitors. To this end, the kinetic parameters of human CK1 isoforms were compared with those of zebrafish orthologues. Furthermore, the effects of selective CK1δ inhibition during zebrafish embryonic development were analyzed in vivo. Results: The results revealed that zebrafish CK1δA and CK1δB were inhibited as effectively as human CK1δ by compounds G2-2 with IC50 values of 345 and 270 nM for CK1δA and CK1δB versus 503 nM for human CK1δ and G2-3 exhibiting IC50 values of 514 and 561 nM for zebrafish CK1δA and B, and 562 nM for human CK1δ. Furthermore, the effects of selective CK1δ inhibition on zebrafish embryonic development in vivo revealed phenotypic abnormalities indicative of downregulation of CK1δ. Treatment of zebrafish embryos with selected inhibitors resulted in marked phenotypic changes including blood stasis, heart failure, and tail malformations. Conclusion: The results suggest that the zebrafish is a suitable in vivo assay model system for initial studies of the biological relevance of CK1δ inhibition.
Collapse
Affiliation(s)
- Laura Meier
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Bernd Martin Gahr
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Aileen Roth
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Adrian Gihring
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Stefan Kirschner
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Joana Baier
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Uwe Knippschild
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
7
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
8
|
Ritter A, Kreis NN. Microtubule Dynamics and Cancer. Cancers (Basel) 2022; 14:cancers14184368. [PMID: 36139529 PMCID: PMC9497089 DOI: 10.3390/cancers14184368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022] Open
|