1
|
Nguyen JP, Woerner LC, Johnson DE, Grandis JR. Future investigative directions for novel therapeutic targets in head and neck cancer. Expert Rev Anticancer Ther 2024; 24:1067-1084. [PMID: 39412140 PMCID: PMC11514385 DOI: 10.1080/14737140.2024.2417038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
AREAS COVERED Here we describe novel agents, their mechanism(s) of action, preclinical results, and ongoing clinical trials in HNSCC. EXPERT OPINION Established therapeutic targets in HNSCC include EGFR (cetuximab) and PD-1 (pembrolizumab and nivolumab). Despite the detection of many other possible targets in HNSCC cell lines and patient tumors, no other therapies have successfully advanced to date. Identification of predictive biomarkers may guide the use of targeted agents and combination therapies. Clinical trials supported by strong preclinical data in relevant models are more likely to advance treatment options.
Collapse
Affiliation(s)
- Jacqueline P. Nguyen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Liam C. Woerner
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Daniel E. Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| |
Collapse
|
2
|
Qasem HM, Odat RM, Alshwayyat S, Yasin JA, Younis OM, Hussein AM, Jain H, Abdelraheem M, Quwaider B, Nguyen D. Clinicopathological and prognostic significance of indoleamine 2,3-dioxygenase (IDO) expression in head and neck squamous cell carcinoma: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102130. [PMID: 39481481 DOI: 10.1016/j.jormas.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising antitumor target and predictive biomarker in a variety of cancers. Hence, we performed this meta-analysis to evaluate the clinicopathological and prognostic significance of IDO1 in head and neck squamous cell carcinoma (HNSCC). METHODS We searched PubMed, Embase, Web of Science and Scopus databases from inception to May 2024, to identify studies measuring the clinicopathological and prognostic significance of IDO1 in HNSCC. The role of IDO1 in HNSCC was evaluated by pooled hazard ratios (HR), odd ratios (OR) and 95% confidence intervals (CI). The meta-analysis was performed using the meta package in R. Omics analyses on IDO1 were also performed. RESULTS Ten studies (1,119 participants) were included in the review. The analysis showed an insignificant relationship between IDO1 expression and poor overall survival, and progression free survival as indicated by the pooled HR (HR: 1.65, 95% CI: 0.68-4.02), (HR: 1.73, 95% CI: 0.63-4.77), respectively. Additionally, elevated expression of IDO1 was significantly associated with tumor T stage (OR: 1.44, 95% CI: 1.06-1.94). However, it was insignificantly correlated with positive lymph node metastasis (N status) (OR: 1.11; 95% CI: 0.82-1.50) and tumor-node-metastasis (TNM) stage (OR: 1.14; 95% CI: 0.79-1.64). CONCLUSION While higher IDO1 expression is associated with the risk of advanced tumor stage in HNSCC, its impact on overall and progression-free survival remains inconclusive. Further research is needed to elucidate its prognostic significance and therapeutic potential.
Collapse
Affiliation(s)
- Hanan M Qasem
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ramez M Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sakhr Alshwayyat
- Research Associate, King Hussein Cancer Center, Amman, Jordan; Internship, Princess Basma Teaching Hospital, Irbid, Jordan
| | - Jehad A Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Osama M Younis
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Bishr Quwaider
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Dang Nguyen
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
5
|
García-Guerrero CA, Fuentes P, Araya MJ, Djouad F, Luz-Crawford P, Vega-Letter AM, Altamirano C. How to enhance MSCs therapeutic properties? An insight on potentiation methods. Stem Cell Res Ther 2024; 15:331. [PMID: 39334487 PMCID: PMC11438163 DOI: 10.1186/s13287-024-03935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have emerged as a promising tool in the field of regenerative medicine due to their unique therapeutic properties as they can differentiate into multiple cell types and exert paracrine effects. However, despite encouraging results obtained in preclinical studies, clinical trials have not achieved the same levels of efficacy. To improve the therapeutic properties of MSCs, several strategies have been explored. Therefore, in this review, the therapeutic properties of MSCs will be analyzed, and an update and overview of the most prominent approaches used to enhance their therapeutic capabilities will be provided. These approaches include using drugs, molecules, strategies based on biomaterials, and modification parameters in culture. The strategy described shows several common factors among those affected by these strategies that lead to an enhancement of the MSCs therapeutic properties such as the activation of the PI3K/AKT pathway and the increased expression of Heat Shock Proteins and Hypoxia-Inducible Factor. The combined effect of these elements shift MSCs towards a glycolytic state, suggesting this shift is essential for their enhancement.
Collapse
Affiliation(s)
- Cynthia Aylín García-Guerrero
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María Jesús Araya
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de La Santé Et de La Recherche Médicale, Montpellier, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudia Altamirano
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile.
| |
Collapse
|
6
|
Chen X, Jiang T, Li Y, Zhang Y, Chen J, Zhao X, Yang H. Carrageenan-ferrocene-eicosapentaenoic acid composite hydrogel induce ferroptosis and apoptosis for anti-tumor recurrence and metastasis. Int J Biol Macromol 2024; 276:133942. [PMID: 39025181 DOI: 10.1016/j.ijbiomac.2024.133942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The immune-suppressive microenvironment of solid tumors is a key factor limiting the effectiveness of immunotherapy, which seriously threatens human life and health. Ferroptosis and apoptosis are key cell-death pathways implicated in cancers, which can synergistically activate tumor immune responses. Here, we developed a multifunctional composite hydrogel (CE-Fc-Gel) based on the self-assembly of poloxamer 407, cystamine-linked ιota-carrageenan (CA)-eicosapentaenoic acid (EPA), and ferrocene (Fc). CE-Fc-Gel improved targeting in tumor microenvironment due to its disulfide bonds. Moreover, CE-Fc-Gel promoted lipid peroxidation, enhanced reactive oxygen species (ROS) production, and decreased glutathione peroxidase 4 (GPX4), inducing ferroptosis by the synergistic effect of Fc and EPA. CE-Fc-Gel induced apoptosis and immunogenic cell death (ICD), thereby promoting dendritic cells (DCs) maturation and T cell infiltration. As a result, CE-Fc-Gel significantly inhibited primary and metastatic tumors in vivo. Our findings provide a novel strategy for enhancing tumor immunotherapy by combining apoptosis, ferroptosis, and ICD.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yantao Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yifei Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianqi Chen
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Hai Yang
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China.
| |
Collapse
|
7
|
Burdzinska A, Szopa IM, Majchrzak-Kuligowska K, Roszczyk A, Zielniok K, Zep P, Dąbrowski FA, Bhale T, Galanty M, Paczek L. The Comparison of Immunomodulatory Properties of Canine and Human Wharton Jelly-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:8926. [PMID: 39201612 PMCID: PMC11354339 DOI: 10.3390/ijms25168926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFβ at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFβ in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha Str. 1B, 02-097 Warsaw, Poland;
| | - Paweł Zep
- Veterinary Clinic “ochWET”, Pruszkowska Str. 19/21, 02-119 Warsaw, Poland
| | - Filip Andrzej Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Education CMKP, Marymoncka Str. 99/103, 00-416 Warsaw, Poland;
| | - Tanushree Bhale
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Marek Galanty
- Department of Small Animal Diseases and Clinic, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Leszek Paczek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| |
Collapse
|
8
|
Wiśnicki K, Donizy P, Kuriata-Kordek M, Uchmanowicz I, Zachciał J, Hałoń A, Janczak D, Banasik M. Interstitial Foci Expression of Indoleamine 2,3-Dioxygenase 1: A Potential Biomarker for Kidney Transplant Rejection. J Clin Med 2024; 13:4265. [PMID: 39064305 PMCID: PMC11277928 DOI: 10.3390/jcm13144265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Kidney transplantation is the best therapy for patients with end-stage renal disease, but the risk of rejection complicates it. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme involved in immune response modulation, has been suggested to play a role in transplant immunological injury. The aim of the study was to explore the expression of IDO1 in the interstitial foci of transplanted kidneys and its potential association with rejection episodes. (2) Methods: This retrospective study analysed kidney transplant biopsies from 121 patients, focusing on IDO1 expression in interstitial foci. Immunohistochemistry was used to detect IDO1, and patients were categorised based on IDO1 presence (IDO1-IF positive or negative). The incidence of rejection was compared between these groups. (3) Results: Patients with IDO1 expression in interstitial foci (IDO1-IF(+)) exhibited higher incidences of rejection 46/80 (57.5%) vs. 10/41 (24.34%) patients compared to IDO1-IF(-) patients, which was statistically significant with p = 0.0005. The analysis of antibody-mediated rejection showed that IDO1-IF(+) patients developed AMR at 12/80 (15%), while only 1 IDO1-IF(-) negative patient did (2,44%), with p = 0.035. T-cell-mediated rejection was also more common in IDO1-IF(+) patients 43/80 (53.75%) than in IDO1-IF(-) patients 7/41 (17.07%), with p = 0.0001. (4) Conclusions: IDO1 expression in interstitial foci of renal transplant biopsies is associated with a higher incidence of rejection, suggesting that IDO1 could serve as a potential biomarker for transplant rejection. These findings highlight the importance of IDO1 in immune regulation and its potential utility in improving the management of kidney transplant recipients.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Izabella Uchmanowicz
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Justyna Zachciał
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
9
|
Huai M, Wang Y, Li J, Pan J, Sun F, Zhang F, Zhang Y, Xu L. Intelligent nanovesicle for remodeling tumor microenvironment and circulating tumor chemoimmunotherapy amplification. J Nanobiotechnology 2024; 22:257. [PMID: 38755645 PMCID: PMC11097415 DOI: 10.1186/s12951-024-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yingjie Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Junhao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Jiaxing Pan
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Fang Sun
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Feiyu Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yi Zhang
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Leiming Xu
- Department of Gastroenterology Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
10
|
Lizcano-Meneses S, Hernández-Pando R, García-Aguirre I, Bonilla-Delgado J, Alvarado-Castro VM, Cisneros B, Gariglio P, Cortés-Malagón EM. Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer. Biomedicines 2023; 11:2280. [PMID: 37626777 PMCID: PMC10452145 DOI: 10.3390/biomedicines11082280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer.
Collapse
Affiliation(s)
- Solangy Lizcano-Meneses
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Rogelio Hernández-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Ciudad de México, Mexico City 14380, Mexico
| | - José Bonilla-Delgado
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Toluca 50110, Mexico
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.L.-M.)
| | - Enoc Mariano Cortés-Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| |
Collapse
|
11
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
12
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Pabst L, Lopes S, Bertrand B, Creusot Q, Kotovskaya M, Pencreach E, Beau-Faller M, Mascaux C. Prognostic and Predictive Biomarkers in the Era of Immunotherapy for Lung Cancer. Int J Mol Sci 2023; 24:ijms24087577. [PMID: 37108738 PMCID: PMC10145126 DOI: 10.3390/ijms24087577] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic algorithm of lung cancer has recently been revolutionized by the emergence of immune checkpoint inhibitors. However, an objective and durable response rate remains low with those recent therapies and some patients even experience severe adverse events. Prognostic and predictive biomarkers are therefore needed in order to select patients who will respond. Nowadays, the only validated biomarker is the PD-L1 expression, but its predictive value remains imperfect, and it does not offer any certainty of a sustained response to treatment. With recent progresses in molecular biology, genome sequencing techniques, and the understanding of the immune microenvironment of the tumor and its host, new molecular features have been highlighted. There are evidence in favor of the positive predictive value of the tumor mutational burden, as an example. From the expression of molecular interactions within tumor cells to biomarkers circulating in peripheral blood, many markers have been identified as associated with the response to immunotherapy. In this review, we would like to summarize the latest knowledge about predictive and prognostic biomarkers of immune checkpoint inhibitors efficacy in order to go further in the field of precision immuno-oncology.
Collapse
Affiliation(s)
- Lucile Pabst
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Sébastien Lopes
- Pharmacy Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Basil Bertrand
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Quentin Creusot
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Maria Kotovskaya
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Erwan Pencreach
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Michèle Beau-Faller
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Céline Mascaux
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| |
Collapse
|
14
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
15
|
Farooq A, Zulfiqar B, Asghar K. Indoleamine 2,3-Dioxygenase: A Novel Immunotherapeutic Target for Osteosarcoma. JOURNAL OF CANCER & ALLIED SPECIALTIES 2023; 9:501. [PMID: 37197000 PMCID: PMC10187603 DOI: 10.37029/jcas.v9i1.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 05/19/2023]
Abstract
Introduction Tumour-emitted molecules induce immunosuppression in the tumour microenvironment. An immunosuppressive enzyme, indoleamine 2,3-dioxygenase (IDO/IDO1), facilitates immune escape in several malignant tumours, including osteosarcoma. Upregulation of IDO establishes a tolerogenic environment in the tumour and the tumour-draining lymph nodes. IDO-induced downregulation of effector T-cells and upregulation of local regulatory T-cells creates immunosuppression and promotes metastasis. Observations Osteosarcoma is the most common bone tumour characterised by immature bone formation by the tumour cells. Almost 20% of osteosarcoma patients present with pulmonary metastasis at the time of diagnosis. The improvement in therapeutic modalities for osteosarcoma has been in a stagnant phase for two decades. Therefore, the development of novel immunotherapeutic targets for osteosarcoma is emergent. High IDO expression is associated with metastasis and poor prognosis in osteosarcoma patients. Conclusion and Relevance At present, only a few studies are available describing IDO's role in osteosarcoma. This review describes the prospects of IDO not only as a prognostic marker but also as an immunotherapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
- Correspondence: Kashif Asghar, 7A Block R-3 M.A. Johar Town, Lahore, Pakistan. E-mail:
| |
Collapse
|
16
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|