1
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Zhang ZR, Liu MQ, Ji Y, Xiao D, Wang WF, Zhou XC, Wang LH, Li D, Zou H, Yang XP. Sotorasib inhibits ubiquitination degradation of TXNIP and suppresses glucose metabolism in KRASG12C mutant bladder cancer. Am J Cancer Res 2024; 14:5251-5268. [PMID: 39659927 PMCID: PMC11626273 DOI: 10.62347/xebr7848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system. Currently, treatment strategies for bladder cancer remain limited, highlighting the urgent need to explore novel therapeutic approaches. Sotorasib, the first successful small molecule drug targeting KRAS, has been approved for treating non-small cell lung cancer (NSCLC), but it has not yet been studied in bladder cancer. Additionally, glucose metabolism-related proteins, such as GLUT1, PKM2, and LDHA are highly expressed in most bladder cancer cell lines, promoting tumor progression. KRASG12D mutant cells exhibit enhanced glucose uptake and glycolysis. However, little is known about whether KRASG12C mutant cells exhibit enhanced glucose metabolism. Various techniques, including glucose and lactate analysis, Seahorse assay, western blot, qRT-PCR, and immunofluorescence, were used to investigate whether Sotorasib can inhibit glucose metabolism in bladder cancer cells. The results demonstrated that Sotorasib significantly inhibited glucose metabolism in KRASG12C mutant bladder cancer, both in vitro and in vivo, but not in wild-type bladder cancer. Furthermore, Sotorasib's inhibition of glucose metabolism was associated with suppressing the degradation of thioredoxin-interacting protein (TXNIP), a negative regulator of glucose metabolism. Additionally, Sotorasib increased TXNIP expression by regulating the RAS/RAF/ERK axis. This study uncovers the mechanism by which Sotorasib inhibits glucose metabolism in KRASG12C mutant bladder cancer cells and suggests a potential therapeutic benefit for the treatment of KRASG12C mutant bladder cancer.
Collapse
Affiliation(s)
- Zhi-Rong Zhang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Min-Qi Liu
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Yang Ji
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Wei-Fan Wang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Xiao-Chen Zhou
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Ling-Hui Wang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Hui Zou
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| | - Xiao-Ping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal UniversityChangsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Education, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha, Hunan, China
| |
Collapse
|
3
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2024:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
4
|
Wang J, Ren J, Tu X, Yuan H, Ye Z, Wang X, Cui J, Wang J, Tang Y, Han P, Bai Y. ARNTL2 facilitates bladder cancer progression through potentiating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Life Sci 2024; 355:122974. [PMID: 39147318 DOI: 10.1016/j.lfs.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Basic helix-loop-helix ARNT like 2 (ARNTL2) is a transcription factor that controls the circadian rhythm. Amounts of studies have demonstrated the carcinogenic function of ARNTL2 in human malignant tumors albeit the underlying mechanisms remain poorly understood. We aimed to study the significance of ARNTL2 in bladder cancer (BLCA). METHODS Immunohistochemical staining, immunoblotting and the database from TCGA were used to analyze the clinical relevance of ARNTL2, enolase 1 (ENO1) and solute carrier family 31 member 1 (SLC31A1) in BLCA. The function of ARNTL2 was explored by cell proliferation assay, apoptosis, colony formation and xenografted tumorigenesis. The molecular mechanisms of ARNTL2-driving BLCA development were investigated by RT-qPCR, immunoblotting and luciferase assays. Glycolysis was checked by measuring glucose consumption and lactate production. ENO1 activity was assessed by using indicated assay kit. RESULTS Overexpression of ARNTL2 facilitates the proliferation and tumorigenesis of BLCA cells through suppression of apoptosis and enhancement of glycolysis. Up-regulation of SLC31A1, ENO1, and enhancement of SLC31A1-mediated ENO1 activity were critical for ARNTL2-triggered glycolysis and malignant growth in BLCA cells. ARNTL2 was positively correlated with SLC31A1 and ENO1 in BLCA patients. High expression of ARNTL2, SLC31A1 or ENO1 predicted the poor prognosis of BLCA patients. Depletion of SLC31A1 and inhibition of glycolysis completely blunted the growth ability of BLCA cells. CONCLUSION In summary, ARNTL2 facilitates the progression of BLCA via activating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Inhibiting SLC31A1 and glycolysis may be an aspirational approach for the treatment of BLCA patients with overexpression of ARNTL2.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Ren
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Tu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhenyang Ye
- Department of Urology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Cui
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Deng J, Cheng Y, Li H, He X, Yu S, Ma J, Li X, Chen J, Xiao H, Guan H, Li Y. PFKFB3 facilitates cell proliferation and migration in anaplastic thyroid carcinoma via the WNT/β-catenin signaling pathway. Endocrine 2024; 85:737-750. [PMID: 38378893 DOI: 10.1007/s12020-024-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Despite the involvement of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3) in the proliferation and metastasis of diverse tumor types, its biological functions and related molecular mechanisms in anaplastic thyroid carcinoma (ATC) remain largely unclear. METHODS Datasets from the Gene Expression Omnibus, the Cancer Genome Atlas and immunohistochemistry (IHC) analyses were employed to measure the expression level of PFKFB3 in ATC. A series of assays were performed to analyze the role of PFKFB3 and its inhibitor KAN0438757 in ATC cell proliferation and migration. Furthermore, Western blotting (WB), IHC and luciferase reporter assay were conducted to investigate the potential mechanisms underlying the involvement of PFKFB3 and KAN0438757 in ATC. Additionally, we established a subcutaneous xenograft tumor model in nude mice to evaluate the in vivo tumor growth. RESULTS PFKFB3 exhibited a significant increase in its expression level in ATC tissues. The overexpression of PFKFB3 resulted in the stimulation of ATC cell proliferation and migration. Furthermore, this overexpression was associated with the elevated expression levels of p-AKT (ser473), p-GSK3α/β (ser21/9), nuclear β-catenin, fibronectin1 (FN1), matrix metallopeptidase 9 (MMP-9) and cyclin D1. It also promoted the nuclear translocation of β-catenin and the transcription of downstream molecules. Conversely, contrasting results were observed with the downregulation or KAN0438757-mediated inhibition of PFKFB3 in ATC cells. The selective AKT inhibitor MK2206 was noted to reverse the increased expression of p-AKT (ser473) and p-GSK3α/β (ser21/9) induced by PFKFB3 overexpression. The level of lactate was increased in PFKFB3-overexpressing ATC cells, while the presence of KAN0438757 inhibited lactate production. Moreover, the simultaneous use of PFKFB3 downregulation and KAN0438757 was found to suppress subcutaneous tumor growth in vivo. CONCLUSION PFKFB3 can enhance ATC cell proliferation and migration via the WNT/β-catenin signaling pathway and plays a crucial role in the regulation of aerobic glycolysis in ATC cells.
Collapse
Affiliation(s)
- Jinmei Deng
- Internal Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Shuang Yu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Jiajing Ma
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xuhui Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Jie Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
7
|
Afonso J, Barbosa-Matos C, Silvestre R, Pereira-Vieira J, Gonçalves SM, Mendes-Alves C, Parpot P, Pinto J, Carapito Â, Guedes de Pinho P, Santos L, Longatto-Filho A, Baltazar F. Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect. Cancers (Basel) 2024; 16:1418. [PMID: 38611096 PMCID: PMC11010907 DOI: 10.3390/cancers16071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Samuel Martins Gonçalves
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Camille Mendes-Alves
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
| | - Pier Parpot
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Carapito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Li F, Zhang H, Huang Y, Li D, Zheng Z, Xie K, Cao C, Wang Q, Zhao X, Huang Z, Chen S, Chen H, Fan Q, Deng F, Hou L, Deng X, Tan W. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat 2024; 73:101059. [PMID: 38295753 DOI: 10.1016/j.drup.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Patients with bladder cancer (BCa) frequently acquires resistance to platinum-based chemotherapy, particularly cisplatin. This study centered on the mechanism of cisplatin resistance in BCa and highlighted the pivotal role of lactylation in driving this phenomenon. Utilizing single-cell RNA sequencing, we delineated the single-cell landscape of Bca, pinpointing a distinctive subset of BCa cells that exhibit marked resistance to cisplatin with association with glycolysis metabolism. Notably, we observed that H3 lysine 18 lactylation (H3K18la) plays a crucial role in activating the transcription of target genes by enriching in their promoter regions. Targeted inhibition of H3K18la effectively restored cisplatin sensitivity in these cisplatin-resistant epithelial cells. Furthermore, H3K18la-driven key transcription factors YBX1 and YY1 promote cisplatin resistance in BCa. These findings enhance our understanding of the mechanisms underlying cisplatin resistance, offering valuable insights for identifying novel intervention targets to overcome drug resistance in Bca.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kunfeng Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shijun Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Haiyong Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong R619, 3 Sassoon Road, Pokfulam, Hong Kong, SAR China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Lina Hou
- Department of Healthy Management, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
9
|
Silva A, Félix A, Cerqueira M, Gonçalves CS, Sampaio-Marques B, Longatto-Filho A, Baltazar F, Afonso J. Effects of Lactate Transport Inhibition by AZD3965 in Muscle-Invasive Urothelial Bladder Cancer. Pharmaceutics 2023; 15:2688. [PMID: 38140029 PMCID: PMC10747642 DOI: 10.3390/pharmaceutics15122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models. However, it has not been tested in urothelial bladder cancer (UBC), a neoplasm where rates of recurrence, progression and platinum-based resistance are generally elevated. We used two muscle-invasive UBC cell lines to study AZD3965 activity regarding lactate production, UBC cells' viability and proliferation, cell cycle profile, and migration and invasion properties. An "in vivo" assay with the chick chorioallantoic membrane model was additionally performed, as well as the combination of the compound with cisplatin. AZD3965 demonstrated anticancer activity upon low levels of MCT4, while a general lack of sensitivity was observed under MCT4 high expression. Cell viability, proliferation and migration were reduced, cell cycle was arrested, and tumor growth "in vivo" was inhibited. The compound sensitized these MCT4-low-expressing cells to cisplatin. Thus, AZD3965 seems to display anticancer properties in UBC under a low MCT4-expression setting, but additional studies are necessary to confirm AZD3965 activity in this cancer model.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Félix
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, SP, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Ferreira D, Santos-Pereira C, Costa M, Afonso J, Yang S, Hensel J, McAndrews KM, Longatto-Filho A, Fernandes R, Melo JB, Baltazar F, Moreira JN, Kalluri R, Rodrigues LR. Exosomes modified with anti-MEK1 siRNA lead to an effective silencing of triple negative breast cancer cells. BIOMATERIALS ADVANCES 2023; 154:213643. [PMID: 37778291 DOI: 10.1016/j.bioadv.2023.213643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.
Collapse
Affiliation(s)
- Débora Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Cátia Santos-Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University, S. Paulo, Brazil
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy Service, IBMC/I3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA; School of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal.
| |
Collapse
|
11
|
Liu X, Li X, Kuang Q, Luo H. Screening of immunotherapy-related genes in bladder cancer based on GEO datasets. Front Oncol 2023; 13:1176637. [PMID: 37274283 PMCID: PMC10232963 DOI: 10.3389/fonc.2023.1176637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background As one of the most prevalent genitourinary cancers, bladder cancer (BLCA) is associated with high morbidity and mortality. Currently, limited indicators are available for early detection and diagnosis of bladder cancer, and there is a lack of specific biomarkers for evaluating the prognosis of BLCA patients. This study aims to identify critical genes that affect bladder cancer immunity to improve the diagnosis and prognosis of bladder cancer and to identify new biomarkers and targets for immunotherapy. Methods Two GEO datasets were used to screen differentially expressed genes (DEGs). The STRING database was used to construct a protein-protein interaction network of DEGs, and plug-in APP CytoHubba in Cytoscape was used to identify critical genes in the network. GO and KEGG analyses explored the functions and pathways of differential gene enrichment. We used GEPIA to validate the expression of differential genes, their impact on patient survival, and their relationship to clinicopathological parameters. Additionally, hub genes were verified using qRT-PCR and Western blotting. Immune infiltration analysis and multiple immunohistochemistry reveal the impact of Hub genes on the tumor microenvironment. Result We screened out 259 differential genes, and identified 10 key hub genes by the degree algorithm. Four genes (ACTA2, FLNA, TAGLN, and TPM1) were associated with overall or disease-free survival in BLCA patients and were significantly associated with clinical parameters. We experimentally confirmed that the mRNA and protein levels of these four genes were significantly decreased in bladder cancer cells. Immunoassays revealed that these four genes affect immune cell infiltration in the tumor microenvironment; they increased the polarization of M2 macrophages. Conclusion These four genes affect the tumor microenvironment of bladder cancer, provide a new direction for tumor immunotherapy, and have significant potential in the diagnosis and prognosis of bladder cancer.
Collapse
Affiliation(s)
- Xiaolong Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Hongbo Luo
- Department of Urology, The Second Hospital of Huangshi, Huangshi, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|