1
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. Cell Chem Biol 2023; 30:1680-1691.e6. [PMID: 37898120 PMCID: PMC10842177 DOI: 10.1016/j.chembiol.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jenni J B Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
2
|
Rich MH, Sharrock AV, Mulligan TS, Matthews F, Brown AS, Lee-Harwood HR, Williams EM, Copp JN, Little RF, Francis JJB, Horvat CN, Stevenson LJ, Owen JG, Saxena MT, Mumm JS, Ackerley DF. A metagenomic library cloning strategy that promotes high-level expression of captured genes to enable efficient functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534183. [PMID: 36993673 PMCID: PMC10055417 DOI: 10.1101/2023.03.24.534183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ~5-fold more effective than the canonical nitroreductase NfsB.
Collapse
Affiliation(s)
- Michelle H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hannah R Lee-Harwood
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Janine N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current addresses: Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada; Abcellera Biologics Inc, Vancouver BC V5Y 0A1, Canada
| | - Rory F Little
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jenni JB Francis
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Claire N Horvat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Current address: Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
3
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
4
|
Li H, Jintao F, Wang Z, Jia Y, Li P, Yao C, Qu Z. A Highly Selective Fluorescent Probe for the Detection of Nitroreductase Based on a Naphthalimide Scaffold. J Fluoresc 2022; 32:1825-1832. [PMID: 35727383 DOI: 10.1007/s10895-022-02974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
The development of fluorescent probes for nitroreductase (NTR) has received intense attention because of its biological significance and wide application. In this work, a novel fluorescent probe for the detection of NTR in aqueous solution was designed and synthesized on a 1,8-naphthalimide scaffold. In the presence of NTR and nicotinamide adenine dinucleotide (NADH) under physiological conditions, the probe was converted into a 4-hydroxy-1,8-naphthalimide derivative and exhibited a sharp fluorescence enhancement at 550 nm, with a high selectivity for NTR over various analytes. The detection limit for NTR was determined to be 9.8 ng/ml by this probe. Due to its low signal background, this probe showed > 70-fold fluorescence enhancement. Theoretical calculations revealed that the reason for the fluorescence quenching of this probe is the photoinduced electron transfer (PET) from both the nitrobenzene and morpholine groups to the naphthalimide fluorophore.
Collapse
Affiliation(s)
- Han Li
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Feng Jintao
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Zhen Wang
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Peng Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cuixia Yao
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China.
| | - Zongjin Qu
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China.
| |
Collapse
|
5
|
Liu T, Wang Y, Feng L, Tian X, Cui J, Yu Z, Wang C, Zhang B, James TD, Ma X. 2D Strategy for the Construction of an Enzyme-Activated NIR Fluorophore Suitable for the Visual Sensing and Profiling of Homologous Nitroreductases from Various Bacterial Species. ACS Sens 2021; 6:3348-3356. [PMID: 34469146 PMCID: PMC8477384 DOI: 10.1021/acssensors.1c01216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Nitroreductases (NTRs) mediate the reduction of nitroaromatic compounds to the corresponding nitrite, hydroxylamine, or amino derivatives. The activity of NTRs in bacteria facilitates the metabolic activation and antibacterial activity of 5-nitroimidazoles. Therefore, NTR activity correlates with the drug susceptibility and resistance of pathogenic bacteria. As such, it is important to develop a rapid and visual assay for the real-time sensing of bacterial NTRs for the evaluation and development of antibiotics. Herein, an activatable near-infrared fluorescent probe (HC-NO2) derived from a hemicyanine fluorophore was designed and developed based on two evaluation factors, including the calculated partition coefficient (Clog P) and fluorescence wavelength. Using HC-NO2 as the special substrate of NTRs, NTR activity can be assayed efficiently, and then, bacteria can be imaged based on the detection of NTRs. More importantly, a sensitive in-gel assay using HC-NO2 has been developed to selectively identify NTRs and sensitively determine NTR activity. Using the in-gel assay, NTRs from various bacterial species have been profiled visually from the "fluorescence fingerprints", which facilitates the rapid identification of NTRs from bacterial lysates. Thus, various homologous NTRs were identified from three metronidazole-susceptible bacterial species as well as seven unsusceptible species, which were confirmed by the whole-genome sequence. As such, the evaluation of NTRs from different bacterial species should help improve the rational usage of 5-nitroimidazole drugs as antibiotics.
Collapse
Affiliation(s)
- Tao Liu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Yifei Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Zhenlong Yu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Baojing Zhang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaochi Ma
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Draft Genome Sequences of Six Strains Isolated from the InSight Spacecraft and Associated Surfaces Using Oxford Nanopore- and Illumina-Based Sequencing. Microbiol Resour Announc 2020; 9:9/21/e01161-19. [PMID: 32439680 PMCID: PMC7242682 DOI: 10.1128/mra.01161-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing. Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing.
Collapse
|
8
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
9
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
10
|
Kim GS, Hwang KA, Choi KC. A promising therapeutic strategy for metastatic gestational trophoblastic disease: Engineered anticancer gene-expressing stem cells to selectively target choriocarcinoma. Oncol Lett 2019; 17:2576-2582. [PMID: 30867726 DOI: 10.3892/ol.2019.9911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Gestational trophoblastic disease (GTD) is an unusual disease occurring in pregnancy that originates from abnormal trophoblastic cells and comprises a group of diseases with different properties of invasion, metastasis and recurrence. The GTD group includes hydatidiform moles and gestational trophoblastic neoplasms (GTNs), with GTNs being divided into invasive moles, choriocarcinoma, placental site trophoblastic tumors and epithelioid trophoblastic tumors. The present review focuses on current effective treatments for GTD, including conventional and novel promising direct enzyme prodrug therapies (DEPTs). Conventional therapies, such as chemotherapy and hysterectomy, are currently used in a clinical setting; however, the use of diverse DEPTs, including antibody-DEPT and gene-DEPT is also being attempted to cure GTNs. In addition, gene delivery tools using genetically engineered neural stem cells (NSCs) are presently being examined for the treatment of GTNs. The tumor-tropism of NSCs by chemoattractant factors is a unique characteristic of these cells and can serve as a vehicle to deliver anticancer agents. Previous studies have demonstrated that injection with NSC-expressing suicide genes into xenograft animal models has a significant inhibitory effect on tumor growth. Stem cells can be genetically engineered to express anticancer genes, which migrate to the metastatic sites and selectively target cancer cells, and are considered to effectively target metastatic GTNs. However, the safety issue of stem cell therapy, such as tumorigenesis, remains a challenge. Novel therapies comprising a combination of conventional and novel promising treatments are anticipated to be definitive treatments for metastasized and/or recurrent patients with GTNs.
Collapse
Affiliation(s)
- Gyu-Sik Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, North Chungcheong 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, North Chungcheong 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, North Chungcheong 28644, Republic of Korea
| |
Collapse
|
11
|
Drees SL, Ernst S, Belviso BD, Jagmann N, Hennecke U, Fetzner S. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa. J Biol Chem 2018; 293:9345-9357. [PMID: 29669807 DOI: 10.1074/jbc.ra117.000789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/06/2018] [Indexed: 01/05/2023] Open
Abstract
Alkyl hydroxyquinoline N-oxides (AQNOs) are antibiotic compounds produced by the opportunistic bacterial pathogen Pseudomonas aeruginosa They are products of the alkyl quinolone (AQ) biosynthetic pathway, which also generates the quorum-sensing molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS). Although the enzymatic synthesis of HHQ and PQS had been elucidated, the route by which AQNOs are synthesized remained elusive. Here, we report on PqsL, the key enzyme for AQNO production, which structurally resembles class A flavoprotein monooxygenases such as p-hydroxybenzoate 3-hydroxylase (pHBH) and 3-hydroxybenzoate 6-hydroxylase. However, we found that unlike related enzymes, PqsL hydroxylates a primary aromatic amine group, and it does not use NAD(P)H as cosubstrate, but unexpectedly required reduced flavin as electron donor. We also observed that PqsL is active toward 2-aminobenzoylacetate (2-ABA), the central intermediate of the AQ pathway, and forms the unstable compound 2-hydroxylaminobenzoylacetate, which was preferred over 2-ABA as substrate of the downstream enzyme PqsBC. In vitro reconstitution of the PqsL/PqsBC reaction was feasible by using the FAD reductase HpaC, and we noted that the AQ:AQNO ratio is increased in an hpaC-deletion mutant of P. aeruginosa PAO1 compared with the ratio in the WT strain. A structural comparison with pHBH, the model enzyme of class A flavoprotein monooxygenases, revealed that structural features associated with NAD(P)H binding are missing in PqsL. Our study completes the AQNO biosynthetic pathway in P. aeruginosa, indicating that PqsL produces the unstable product 2-hydroxylaminobenzoylacetate from 2-ABA and depends on free reduced flavin as electron donor instead of NAD(P)H.
Collapse
Affiliation(s)
| | - Simon Ernst
- From the Institute for Molecular Microbiology and Biotechnology and
| | - Benny Danilo Belviso
- the Institute of Crystallography, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Nina Jagmann
- From the Institute for Molecular Microbiology and Biotechnology and
| | - Ulrich Hennecke
- Organic Chemistry Institute, University of Münster, D-48149 Münster, Germany and
| | - Susanne Fetzner
- From the Institute for Molecular Microbiology and Biotechnology and
| |
Collapse
|
12
|
Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, Falk C, Erhardt M, Weiss S. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology 2017; 7:e1382791. [PMID: 29308303 PMCID: PMC5749626 DOI: 10.1080/2162402x.2017.1382791] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Ulrike Heise
- Mouse-Pathology Service Unit, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | | | - Christine Falk
- Institute of Transplant Immunology, Medical School Hannover, Hannover, Hessia, Germany
| | - Marc Erhardt
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Lower Saxony, Germany
| |
Collapse
|
13
|
Zhang X, Li X, You Q, Zhang X. Prodrug strategy for cancer cell-specific targeting: A recent overview. Eur J Med Chem 2017; 139:542-563. [DOI: 10.1016/j.ejmech.2017.08.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023]
|
14
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
15
|
Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol 2017; 233:3831-3845. [DOI: 10.1002/jcp.26094] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rana Moradian Tehrani
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Javad Verdi
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
- Department of Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Mahdi Noureddini
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Rasoul Salehi
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular SciencesSchool of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Meysam Mosalaei
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Miganosh Simonian
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Behrang Alani
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Moosa Rahimi Ghiasi
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Mahmoud Reza Jaafari
- School of PharmacyNanotechnology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hamed Reza Mirzaei
- Department of Clinical Laboratory SciencesSchool of Allied Medical SciencesKashan University of Medical SciencesKashanIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
16
|
Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H. Mol Biotechnol 2017; 58:428-40. [PMID: 27138989 DOI: 10.1007/s12033-016-9942-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A NADPH-dependent and FMN-containing nitroreductase (Gox0834) from Gluconobacter oxydans was cloned and heterogeneously expressed in Escherichia coli. The purified enzyme existed as a dimer with an apparent molecular mass of about 31.4 kDa. The enzyme displayed broad substrate specificity and reduced a variety of mononitrated, polynitrated, and polycyclic nitroaromatic compounds to the corresponding amino products. The highest activity was observed for the reduction of CB1954 (5-(1-aziridinyl)-2,4-dinitrobenzamide). The enzyme kinetics analysis showed that Gox0834 had relatively low K m (54 ± 11 μM) but high k cat/K m value (0.020 s(-1)/μM) for CB1954 when compared with known nitroreductases. Nitrobenzene and 2,4,6-trinitrotoluene (TNT) were preferred substrates for this enzyme with specific activity of 11.0 and 8.9 μmol/min/mg, respectively. Gox0834 exhibited a broad temperature optimum of 40-60 °C for the reduction of CB1954 with a pH optimum between 7.5 and 8.5. The purified enzyme was very stable below 37 °C over a broad pH range of 6.0-10.0. These characteristics suggest that the nitroreductase Gox0834 may be a possible candidate for catalyzing prodrug activation, bioremediation, or biocatalytic processes.
Collapse
|
17
|
Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99:113-128. [PMID: 26004498 DOI: 10.1016/j.addr.2015.05.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/19/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated.
Collapse
|
18
|
Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol 2016; 2016:8451728. [PMID: 27051423 PMCID: PMC4802035 DOI: 10.1155/2016/8451728] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
The rising incidence of cancer cases worldwide generates an urgent need of novel treatment options. Applying bacteria may represent a valuable therapeutic variant that is intensively investigated nowadays. Interestingly, the idea to apply bacteria wittingly or unwittingly dates back to ancient times and was revived in the 19th century mainly by the pioneer William Coley. This review summarizes and compares the results of the past 150 years in bacteria mediated tumor therapy from preclinical to clinical studies. Lessons we have learned from the past provide a solid foundation on which to base future efforts. In this regard, several perspectives are discussed by which bacteria in addition to their intrinsic antitumor effect can be used as vector systems that shuttle therapeutic compounds into the tumor. Strategic solutions like these provide a sound and more apt exploitation of bacteria that may overcome limitations of conventional therapies.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
19
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
20
|
Wong RHF, Kwong T, Yau KH, Au-Yeung HY. Real time detection of live microbes using a highly sensitive bioluminescent nitroreductase probe. Chem Commun (Camb) 2015; 51:4440-2. [PMID: 25680085 DOI: 10.1039/c4cc10345a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly sensitive and selective nitroreductase probe, showing a rapid and strong bioluminescence enhancement (>100-fold in 5 minutes), and its initial application in the real time detection of both Gram positive and Gram negative live bacteria and monitoring of their growth has been reported.
Collapse
Affiliation(s)
- Roger H F Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | | | | | | |
Collapse
|
21
|
Wang H, Zhou XL, Long W, Liu JJ, Fan FY. A Fusion Protein of RGD4C and β-Lactamase Has a Favorable Targeting Effect in Its Use in Antibody Directed Enzyme Prodrug Therapy. Int J Mol Sci 2015; 16:9625-34. [PMID: 25927583 PMCID: PMC4463609 DOI: 10.3390/ijms16059625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/17/2023] Open
Abstract
Antibody directed enzyme prodrug therapy (ADEPT) utilizing β-lactamase is a promising treatment strategy to enhance the therapeutic effect and safety of cytotoxic agents. In this method, a conjugate (antibody-β-lactamase fusion protein) is employed to precisely activate nontoxic cephalosporin prodrugs at the tumor site. A major obstacle to the clinical translation of this method, however, is the low catalytic activity and high immunogenicity of the wild-type enzymes. To overcome this challenge, we fused a cyclic decapeptide (RGD4C) targeting to the integrin with a β-lactamase variant with reduced immunogenicity which retains acceptable catalytic activity for prodrug hydrolysis. Here, we made a further investigation on its targeting effect and pharmacokinetic properties, the results demonstrated that the fusion protein retains a targeting effect on integrin positive cells and has acceptable pharmacokinetic characteristics, which benefits its use in ADEPT.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Lab of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Xiao-Liang Zhou
- Tianjin Key Lab of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Lab of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jin-Jian Liu
- Tianjin Key Lab of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Fei-Yue Fan
- Tianjin Key Lab of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
22
|
Nouri FS, Wang X, Hatefi A. Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J Control Release 2015; 200:179-87. [PMID: 25575867 DOI: 10.1016/j.jconrel.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 12/27/2022]
Abstract
Over the past decade, various enzyme/prodrug systems such as thymidine kinase/ganciclovir (TK/GCV), yeast cytosine deaminase/5-fluorocytosine (yCD/5-FC) and nitroreductase/CB1954 (NTR/CB1954) have been used for stem cell mediated suicide gene therapy of cancer. Yet, no study has been conducted to compare and demonstrate the advantages and disadvantages of using one system over another. Knowing that each enzyme/prodrug system has its own strengths and weaknesses, we utilized mesenchymal stem cells (MSCs) as a medium to perform for the first time a comparative study that illustrated the impact of subtle differences among these systems on the therapeutic outcome. For therapeutic purposes, we first genetically modified MSCs to stably express a panel of four suicide genes including TK (TK007 and TK(SR39) mutants), yeast cytosine deaminase:uracil phosphoribosyltransferase (yCD:UPRT) and nitroreductase (NTR). Then, we evaluated the anticancer efficacies of the genetically engineered MSCs in vitro and in vivo by using SKOV3 cell line which is sensitive to all four enzyme/prodrug systems. In addition, all MSCs were engineered to stably express luciferase gene making them suitable for quantitative imaging and dose-response relationship studies in animals. Considering the limitations imposed by the prodrugs' bystander effects, our findings show that yCD:UPRT/5-FC is the most effective enzyme/prodrug system among the ones tested. Our findings also demonstrate that theranostic MSCs are a reliable medium for the side-by-side evaluation and screening of the enzyme/prodrug systems at the preclinical level. The results of this study could help scientists who utilize cell-based, non-viral or viral vectors for suicide gene therapy of cancer make more informed decisions when choosing enzyme/prodrug systems.
Collapse
Affiliation(s)
- Faranak Salman Nouri
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xing Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
23
|
Copp JN, Williams EM, Rich MH, Patterson AV, Smaill JB, Ackerley DF. Toward a high-throughput screening platform for directed evolution of enzymes that activate genotoxic prodrugs. Protein Eng Des Sel 2014; 27:399-403. [PMID: 24996412 DOI: 10.1093/protein/gzu025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Engineering of enzymes to more efficiently activate genotoxic prodrugs holds great potential for improving anticancer gene or antibody therapies. We report the development of a new, GFP-based, high-throughput screening platform to enable engineering of prodrug-activating enzymes by directed evolution. By fusing an inducible SOS promoter to an engineered GFP reporter gene, we were able to measure levels of DNA damage in intact Escherichia coli and separate cell populations by fluorescence activating cell sorting (FACS). In two FACS iterations, we were able to achieve a 90,000-fold enrichment of a functional prodrug-activating nitroreductase from a null library background.
Collapse
Affiliation(s)
- J N Copp
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand Present address: Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - E M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - M H Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - A V Patterson
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - J B Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - D F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|