1
|
Dang Q. LncRNA DARS-AS1 in human cancers: A comprehensive review of its potency as a biomarker and therapeutic target. Gene 2024; 923:148566. [PMID: 38762015 DOI: 10.1016/j.gene.2024.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Long non-coding RNAs have emerged as important players in cancer biology. Increasing evidence has uncovered their potency in improving cancer management as they can be used as a credible prognostic and diagnostic biomarker. Recently, DARS-AS1 has gained significant attention for its involvement in facilitating tumor progression. So far, numerous research has been reported its upregulation in different malignancies of human body systems and revealed its association with cancer hallmarks as well as clinicopathological characteristics. Importantly, targeting DARS-AS1 holds promise in cancer therapy. In the current study, we provide an in-depth analysis of its expression status and explore the underlying mechanisms through which DARS-AS1 contributes to tumor initiation, growth, invasion, and metastasis. Additionally, we examine the correlation between DARS-AS1 expression and clinicopathological features of cancer patients, shedding light on its potential as a cancer biomarker. Furthermore, we discuss the therapeutic potential of targeting DARS-AS1 in cancer treatment, highlighting emerging strategies, such as RNA interference and small molecule inhibitors. Boosting the understanding of its functional role can open new avenues for precision medicine, thus resulting in better outcomes for cancer patients.
Collapse
Affiliation(s)
- Qiucai Dang
- Zhumadian Preschool Education College, Zhumadian, Henan Province 463000, China.
| |
Collapse
|
2
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Ivanina Foureau AV, Foureau DM, McHale CC, Guo F, Farhangfar CJ, Mileham KF. Phosphodiesterase Inhibition to Sensitize Non-Small-Cell Lung Cancer to Pemetrexed: A Double-Edged Strategy. Cancers (Basel) 2024; 16:2475. [PMID: 39001537 PMCID: PMC11240499 DOI: 10.3390/cancers16132475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Phosphosidesterases (PDEs) are key regulators of cyclic nucleotide signaling, controlling many hallmarks of cancer and playing a role in resistance to chemotherapy in non-small-cell lung cancer (NSCLC). We evaluated the anti-tumor activity of the anti-folate agent pemetrexed (PMX), alone or combined with biochemical inhibitors of PDE5, 8, 9, or 10, against squamous and non-squamous NCSLC cells. Genomic alterations to PDE genes (PDEmut) or PDE biochemical inhibition (PDEi) can sensitize NSCLC to PMX in vitro (observed in 50% NSCLC evaluated). The synergistic activity of PDEi with PMX required microdosing of the anti-folate drug. As single agents, none of the PDEis evaluated have anti-tumor activity. PDE biochemical inhibitors, targeting either cAMP or cGMP signaling (or both), resulted in significant cross-modulation of downstream pathways. The use of PDEi may present a new strategy to overcome PMX resistance of PDEwt NSCLC tumors but comes with important caveats, including the use of subtherapeutic PMX doses.
Collapse
Affiliation(s)
- Anna V Ivanina Foureau
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - David M Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Cody C McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Fei Guo
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Carol J Farhangfar
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Kathryn F Mileham
- Thoracic Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| |
Collapse
|
4
|
Chiang JY, Wei ST, Chang HJ, Chen DC, Wang HL, Lei FJ, Wei KY, Huang YC, Wang CC, Hsieh CH. ABCC4 suppresses glioblastoma progression and recurrence by restraining cGMP-PKG signalling. Br J Cancer 2024; 130:1324-1336. [PMID: 38347095 PMCID: PMC11014854 DOI: 10.1038/s41416-024-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored. METHODS In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling. RESULTS Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts. CONCLUSION ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.
Collapse
Affiliation(s)
- Jung-Ying Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Sung-Tai Wei
- Division of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Huan-Jui Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fu-Ju Lei
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Yu Wei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Mingdao High School, Taichung, Taiwan
| | - Yen-Chih Huang
- Department of Medical Imaging, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Le ML, Yang YY, Jiang MY, Han C, Guo ZR, Liu RD, Zhao ZJ, Zhou Q, Wen S, Wu Y. Discovery of novel selective phosphodiesterase‑1 inhibitors for the treatment of acute myelogenous leukemia. Bioorg Chem 2024; 144:107114. [PMID: 38224637 DOI: 10.1016/j.bioorg.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. PDE1 (Phosphodiesterase 1) is a subfamily of the PDE super-enzyme families that can hydrolyze the second messengers cAMP and cGMP simultaneously. Previous research has shown that suppressing the gene expression of PDE1 can trigger apoptosis of human leukemia cells. However, no selective PDE1 inhibitors have been used to explore whether PDE1 is a potential target for treating AML. Based on our previously reported PDE9/PDE1 dual inhibitor 11a, a series of novel pyrazolopyrimidinone derivatives were designed in this study. The lead compound 6c showed an IC50 of 7.5 nM against PDE1, excellent selectivity over other PDEs and good metabolic stability. In AML cells, compound 6c significantly inhibited the proliferation and induced apoptosis. Further experiments indicated that the apoptosis induced by 6c was through a mitochondria-dependent pathway by decreasing the ratio of Bcl-2/Bax and increasing the cleavage of caspase-3, 7, 9, and PARP. All these results suggested that PDE1 might be a novel target for AML.
Collapse
Affiliation(s)
- Mei-Ling Le
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Rong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheng-Jiong Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Aplin C, Cerione RA. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. J Biol Chem 2024; 300:105608. [PMID: 38159849 PMCID: PMC10838916 DOI: 10.1016/j.jbc.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEβ subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
7
|
Taheri M, Nicknam A, Bagan A, Eslami S, Rakhshan A, Ghafouri‐Fard S. Expression of cAMP and oxidative phosphorylation-related lncRNAs in non-functioning pituitary adenomas. J Cell Mol Med 2023; 27:4195-4201. [PMID: 37933082 PMCID: PMC10746940 DOI: 10.1111/jcmm.18011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are benign lesions in the pituitary gland with important morbidities. In this study, based on a bioinformatics analysis to identify the genes and pathways that display significant differences between tumour tissues of NFPA patients and normal pituitary tissues, we selected lncRNAs related to cAMP and oxidative phosphorylation pathways, namely DNAH17-AS1, LINC00706 and SLC25A5-AS1. Then, we aimed to investigate by means of RT-qPCR, the expression of these lncRNAs along with two other lncRNAs, namely CADM3-AS1 and MIR7-3HG in NFPA samples compared to that in healthy tissues adjacent to the tumours. Transcripts of DNAH17-AS1, LINC00706 and MIR7-3HG were lower in NFPA samples compared with controls (Expression ratios (95% CI) = 0.43 (0.23-0.78), 0.58 (0.35-0.96) and 0.58 (0.35-0.96); p-values = 0.009, 0.025 and 0.036, respectively). AUC values of ROC curves of DNAH17-AS1, LINC00706 and MIR7-3HG were 0.62, 0.61 and 0.62, respectively. Expression of CADM3-AS1 was associated with the gender of patients in a way that it was lower in female patients (p-value = 0.04). The level of SLC25A5-AS1 was lower in subjects with disease duration lower than 1 year (p-value = 0.048). We showed dysregulation of three lncRNAs in NFPA tissues and potentiates these lncRNAs as important regulators of pathogenic events in these tumours.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human GeneticsJena University HospitalJenaGermany
- Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Amir Nicknam
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Atena Bagan
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Solat Eslami
- Department of Medical Biotechnology, School of MedicineAlborz University of Medical SciencesKarajIran
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada‐e Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Soudeh Ghafouri‐Fard
- Men's Health and Reproductive Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Du L, Wilson BAP, Li N, Shah R, Dalilian M, Wang D, Smith EA, Wamiru A, Goncharova EI, Zhang P, O’Keefe BR. Discovery and Synthesis of a Naturally Derived Protein Kinase Inhibitor that Selectively Inhibits Distinct Classes of Serine/Threonine Kinases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2283-2293. [PMID: 37843072 PMCID: PMC10616853 DOI: 10.1021/acs.jnatprod.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 10/17/2023]
Abstract
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 μM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Collapse
Affiliation(s)
- Lin Du
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Development Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
Zhou J, Welinder C, Ekström P. The Phosphoproteome of the Rd1 Mouse Retina, a Model of Inherited Photoreceptor Degeneration, Changes after Protein Kinase G Inhibition. Int J Mol Sci 2023; 24:9836. [PMID: 37372984 DOI: 10.3390/ijms24129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a frequent cause of blindness among the working population in industrial countries due to the inheritable death of photoreceptors. Though gene therapy was recently approved for mutations in the RPE65 gene, there is in general no effective treatment presently. Previously, abnormally high levels of cGMP and overactivation of its dependent protein kinase (PKG) have been suggested as causative for the fatal effects on photoreceptors, making it meaningful to explore the cGMP-PKG downstream signaling for more pathological insights and novel therapeutic target development purposes. Here, we manipulated the cGMP-PKG system in degenerating retinas from the rd1 mouse model pharmacologically via adding a PKG inhibitory cGMP-analogue to organotypic retinal explant cultures. A combination of phosphorylated peptide enrichment and mass spectrometry was then applied to study the cGMP-PKG-dependent phosphoproteome. We identified a host of novel potential cGMP-PKG downstream substrates and related kinases using this approach and selected the RAF1 protein, which may act as both a substrate and a kinase, for further validation. This showed that the RAS/RAF1/MAPK/ERK pathway may be involved in retinal degeneration in a yet unclarified mechanism, thus deserving further investigation in the future.
Collapse
Affiliation(s)
- Jiaming Zhou
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Sahores A, González AR, Yaneff A, May M, Gómez N, Monczor F, Fernández N, Davio C, Shayo C. Ceefourin-1, a MRP4/ABCC4 inhibitor, induces apoptosis in AML cells enhanced by histamine. Biochim Biophys Acta Gen Subj 2023; 1867:130322. [PMID: 36773726 DOI: 10.1016/j.bbagen.2023.130322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.
Collapse
Affiliation(s)
- Ana Sahores
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Novel 9-Benzylaminoacridine Derivatives as Dual Inhibitors of Phosphodiesterase 5 and Topoisomerase II for the Treatment of Colon Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020840. [PMID: 36677898 PMCID: PMC9866191 DOI: 10.3390/molecules28020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
It has been shown that phosphodiesterase 5 (PDE5) inhibitors have anticancer effects in a variety of malignancies in both in vivo and in vitro experiments. The role of cGMP elevation in colorectal carcinoma (CRC) has been extensively studied. Additionally, DNA topoisomerase II (Topo II) inhibition is a well-established mechanism of action that mediates the effects of several approved anticancer drugs such as doxorubicin and mitoxantrone. Herein, we present 9-benzylaminoacridine derivatives as dual inhibitors of the PDE5 and Topo II enzymes. We synthesized 31 derivatives and evaluated them against PDE5, whereby 22 compounds showed micromolar or sub-micromolar inhibition. The anticancer activity of the compounds was evaluated with the NCI 60-cell line testing. Moreover, the effects of the compounds on HCT-116 colorectal carcinoma (CRC) were extensively studied, and potent compounds against HCT-116 cells were studied for their effects on Topo II, cell cycle progression, and apoptosis. In addition to exhibiting significant growth inhibition against HCT116 cells, compounds 11, 12, and 28 also exhibited the most superior Topo II inhibitory activity and low micromolar PDE5 inhibition and affected cell cycle progression. Knowing that compounds that combat cancer through multiple mechanisms are among the best candidates for effective therapy, we believe that the current class of compounds merits further optimization and investigation to unleash their full therapeutic potential.
Collapse
|
13
|
Bae J, Lee K, Park JS, Jung J, Tachibana H, Fujimura Y, Kumazoe M, Lim JS, Cho YC, Lee SJ, Park SJ. Phosphodiesterase 5 Inhibitor Potentiates Epigallocatechin 3-O-Gallate-Induced Apoptotic Cell Death via Activation of the cGMP Signaling Pathway in Caco-2 Cells. Curr Issues Mol Biol 2022; 44:6247-6256. [PMID: 36547087 PMCID: PMC9777077 DOI: 10.3390/cimb44120426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.
Collapse
Affiliation(s)
- Jaehoon Bae
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Jeonbuk, Republic of Korea
| | - Kwanwoo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Ji-Sun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Jeonbuk, Republic of Korea
| | - Jinseok Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Jeonbuk, Republic of Korea
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Jeonbuk, Republic of Korea
- Correspondence: (S.-J.L.); (S.-J.P.); Tel.: +82-(63)-570-5267 (S.-J.L.); +82-(63)-570-5240 (S.-J.P.)
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Jeonbuk, Republic of Korea
- Correspondence: (S.-J.L.); (S.-J.P.); Tel.: +82-(63)-570-5267 (S.-J.L.); +82-(63)-570-5240 (S.-J.P.)
| |
Collapse
|
14
|
Mukherjee P, Bagchi A, Banerjee A, Roy H, Bhattacharya A, Biswas A, Chatterji U. PDE4 inhibitor eliminates breast cancer stem cells via noncanonical activation of mTOR. J Cell Biochem 2022; 123:1980-1996. [PMID: 36063486 DOI: 10.1002/jcb.30325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Ineffective cancer treatment is implicated in metastasis, recurrence, resistance to chemotherapy and radiotherapy, and evasion of immune surveillance. All these failures occur due to the persistence of cancer stem cells (CSCs) even after rigorous therapy, thereby rendering them as essential targets for cancer management. Contrary to the quiescent nature of CSCs, a gene profiler array disclosed that phosphatidylinositol-3-kinase (PI3K), which is known to be crucial for cell proliferation, differentiation, and survival, was significantly upregulated in CSCs. Since PI3K is modulated by cyclic adenosine 3',5' monophosphate (cAMP), analyses of cAMP regulation revealed that breast CSCs expressed increased levels of phosphodiesterase 4 (PDE4) in contrast to normal stem cells. In accordance, the effects of rolipram, a PDE4 inhibitor, were evaluated on PI3K regulators and signaling. The efficacy of rolipram was compared with paclitaxel, an anticancer drug that is ineffective in obliterating breast CSCs. Analyses of downstream signaling components revealed a switch between cell survival and death, in response to rolipram, specifically of the CSCs. Rolipram-mediated downregulation of PDE4A levels in breast CSCs led to an increase in cAMP levels and protein kinase A (PKA) expression. Subsequently, PKA-mediated upregulation of phosphatase and tensin homolog antagonized the PI3K/AKT/mTOR pathway and led to cell cycle arrest. Interestingly, direct yet noncanonical activation of mTOR by PKA, circumventing the influence of PI3K and AKT, temporally shifted the fate of CSCs toward apoptosis. Rolipram in combination with paclitaxel indicated synergistic consequences, which effectively obliterated CSCs within a tumor, thereby suggesting combinatorial therapy as a sustainable and effective strategy to abrogate breast CSCs for better patient prognosis.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arka Bagchi
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Himansu Roy
- Department of Surgery, Calcutta Medical College, Kolkata, India
| | | | - Arunima Biswas
- Molecular Cell Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.,Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
16
|
Carvalho JO, Oliveira Neto JG, Silva Filho JG, de Sousa FF, Freire PTC, Santos AO, Façanha Filho PF. Physicochemical properties calculated using DFT method and changes of 5-methyluridine hemihydrate crystals at high temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121594. [PMID: 35841856 DOI: 10.1016/j.saa.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
5-methyluridine hemihydrate (5 mU) single crystals were synthesized by the slow solvent evaporation method. The physicochemical properties, such as frontier molecular orbitals, global reactivity indices and vibrational were computationally studied through density functional theory (DFT). In addition, structural, vibrational, and thermal properties were obtained by powder X-ray diffraction (PXRD), Raman spectroscopy, thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). PXRD evaluated the structural behavior of 5 mU crystal in the temperature range of 300-460 K. The high-temperature PXRD results suggested that the crystal undergoes two dehydration processes, being a first occurring from the orthorhombic structure (P21212) to triclinic (P1), in which the water losses occurred around 380 K. A second dehydration triggers the change from the triclinic structure to monoclinic (P21) within the 420-435 K temperature range. Furthermore, after this temperature, the anhydrous 5 mU suffers a melting process near 460 K, which is remarkably characterized as an irreversible process. Raman spectroscopy was carried out to identify the vibrational modes linked to the water molecule and the noticeable changes in these bands due to high-temperature effects around 380 K and 410 K. Indeed, changes on Raman bands, such as intensity inversion, the disappearance of bands associated with the hydrogen bonds formed from the water molecules and uracil group, and the ribose group were observed. Finally, this study provided details on the structural and vibrational changes caused by the dehydration of 5 mU crystals and the importance of hydrogen bonds for understanding the intermolecular interactions of the 5 mU, a methylated nucleoside with important biological functions.
Collapse
Affiliation(s)
- Jhonatam O Carvalho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto Federal do Maranhão, Campus Açailândia, MA 65930-000, Brazil
| | - João G Oliveira Neto
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - José G Silva Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Paulo T C Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE 60455-760, Brazil
| | - Adenilson O Santos
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Pedro F Façanha Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
17
|
Borneman RM, Gavin E, Musiyenko A, Richter W, Lee KJ, Crossman DK, Andrews JF, Wilhite AM, McClellan S, Aragon I, Ward AB, Chen X, Keeton AB, Berry K, Piazza GA, Scalici JM, da Silva LM. Phosphodiesterase 10A (PDE10A) as a novel target to suppress β-catenin and RAS signaling in epithelial ovarian cancer. J Ovarian Res 2022; 15:120. [PMID: 36324187 PMCID: PMC9632086 DOI: 10.1186/s13048-022-01050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced β-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Rebecca M. Borneman
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| | - Elaine Gavin
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| | - Alla Musiyenko
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| | - Wito Richter
- grid.267153.40000 0000 9552 1255Department of Biochemistry and Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL USA
| | - Kevin J. Lee
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - David K. Crossman
- grid.265892.20000000106344187Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Joel F. Andrews
- grid.267153.40000 0000 9552 1255Cellular and Biomolecular Imaging Facility, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Annelise M. Wilhite
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| | - Steven McClellan
- grid.267153.40000 0000 9552 1255Flow Cytometry Core Facility, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Ileana Aragon
- grid.267153.40000 0000 9552 1255Department of Biochemistry and Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL USA
| | - Antonio B. Ward
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Xi Chen
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Adam B. Keeton
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Kristy Berry
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Gary A. Piazza
- grid.267153.40000 0000 9552 1255Drug Discovery Research Center, Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Jennifer M. Scalici
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| | - Luciana Madeira da Silva
- grid.267153.40000 0000 9552 1255Gynecologic Oncology Division, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604 USA
| |
Collapse
|
18
|
Drozdz MM, Doane AS, Alkallas R, Desman G, Bareja R, Reilly M, Bang J, Yusupova M, You J, Eraslan Z, Wang JZ, Verma A, Aguirre K, Kane E, Watson IR, Elemento O, Piskounova E, Merghoub T, Zippin JH. A nuclear cAMP microdomain suppresses tumor growth by Hippo pathway inactivation. Cell Rep 2022; 40:111412. [PMID: 36170819 PMCID: PMC9549417 DOI: 10.1016/j.celrep.2022.111412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.
Collapse
Affiliation(s)
- Marek M. Drozdz
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ashley S. Doane
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA
| | - Rached Alkallas
- Rosalind and Morris Goodman Cancer Institute, Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada,Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada,McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Garrett Desman
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Institute for Computational Biomedicine, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michael Reilly
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Maftuna Yusupova
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jaewon You
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zuhal Eraslan
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jenny Z. Wang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Akanksha Verma
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA
| | - Kelsey Aguirre
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Elsbeth Kane
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ian R. Watson
- Rosalind and Morris Goodman Cancer Institute, Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA
| | - Elena Piskounova
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Senior author
| | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Senior author
| | - Jonathan H. Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Englander Institute for Precision Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York NY 10065, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10029, USA,Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
19
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Choo SW, Zhong Y, Sendler E, Goustin AS, Cai J, Ju D, Kosir MA, Giordo R, Lipovich L. Estrogen distinctly regulates transcription and translation of lncRNAs and pseudogenes in breast cancer cells. Genomics 2022; 114:110421. [PMID: 35779786 DOI: 10.1016/j.ygeno.2022.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Estrogen drives key transcriptional changes in breast cancer and stimulates breast cancer cells' growth with multiple mechanisms to coordinate transcription and translation. In addition to protein-coding transcripts, estrogen can regulate long non-coding RNA (lncRNA) transcripts, plus diverse non-coding RNAs including antisense, enhancer, and intergenic. LncRNA genes comprise the majority of human genes. The accidental, or regulated, translation of their short open reading frames by ribosomes remains a controversial topic. Here we report for the first time an integrated analysis of RNA abundance and ribosome occupancy level, using Ribo-seq combined with RNA-Seq, in the estrogen-responsive, estrogen receptor α positive, human breast cancer cell model MCF7, before and after hormone treatment. Translational profiling can determine, in an unbiased manner, which fraction of the genome is actually translated into proteins, as well as resolving whether transcription and translation respond concurrently, or differentially, to estrogen treatment. Our data showed specific transcripts more robustly detected in RNA-Seq than in the ribosome-profiling data, and vice versa, suggesting distinct gene-specific estrogen responses at the transcriptional and the translational level, respectively. Here, we showed that estrogen stimulation affects the expression levels of numerous lncRNAs, but not their association with ribosomes, and that most lncRNAs are not ribosome-bound. For the first time, we also demonstrated the transcriptional and translational response of expressed pseudogenes to estrogen, pointing to new perspectives for drug-target development in breast cancer in the future.
Collapse
Affiliation(s)
- Siew-Woh Choo
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, China; Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China.
| | - Yu Zhong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA
| | - Anton-Scott Goustin
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA
| | - Juan Cai
- Department of Biochemistry, Microbiology and Immunology School of Medicine, Wayne State University, Detroit, USA
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, USA; Department of Surgery and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, USA
| | - Mary Ann Kosir
- Department of Surgery and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
21
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
22
|
Cui H, Ma R, Hu T, Xiao GG, Wu C. Bioinformatics Analysis Highlights Five Differentially Expressed Genes as Prognostic Biomarkers of Cervical Cancer and Novel Option for Anticancer Treatment. Front Cell Infect Microbiol 2022; 12:926348. [PMID: 35782114 PMCID: PMC9247199 DOI: 10.3389/fcimb.2022.926348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies and is related to human papillomavirus (HPV) infection, especially high-risk type HPV16 and HPV18. Aberrantly expressed genes are involved in the development of cervical cancer, which set a genetic basis for patient prognosis. In this study, we identified a set of aberrantly expressed key genes from The Cancer Genome Atlas (TCGA) database, which could be used to accurately predict the survival rate of patients with cervical squamous cell carcinoma (CESC). A total of 3,570 genes that are differentially expressed between normal and cancerous samples were analyzed by the algorithm of weighted gene co-expression network analysis (WGCNA): 1,606 differentially expressed genes (DEGs) were upregulated, while 1,964 DEGs were downregulated. Analysis of these DEGs divided them into 7 modules including 76 hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis revealed a significant increase of genes related to cell cycle, DNA replication, p53 signaling pathway, cGMP-PKG signaling pathway, and Fanconi anemia (FA) pathway in CESC. These biological activities are previously reported to associate with cervical cancer or/and HPV infection. Finally, we highlighted 5 key genes (EMEMP2, GIMAP4, DYNC2I2, FGF13-AS1, and GIMAP1) as robust prognostic markers to predict patient’s survival rate (p = 3.706e-05) through univariate and multivariate regression analyses. Thus, our study provides a novel option to set up several biomarkers for cervical cancer prognosis and anticancer drug targets.
Collapse
Affiliation(s)
- Hongtu Cui
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Ruilin Ma
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Tao Hu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- *Correspondence: Chengjun Wu,
| |
Collapse
|
23
|
Bagherabadi A, Hooshmand A, Shekari N, Singh P, Zolghadri S, Stanek A, Dohare R. Correlation of NTRK1 Downregulation with Low Levels of Tumor-Infiltrating Immune Cells and Poor Prognosis of Prostate Cancer Revealed by Gene Network Analysis. Genes (Basel) 2022; 13:840. [PMID: 35627227 PMCID: PMC9140438 DOI: 10.3390/genes13050840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) is a life-threatening heterogeneous malignancy of the urinary tract. Due to the incidence of prostate cancer and the crucial need to elucidate its molecular mechanisms, we searched for possible prognosis impactful genes in PCa using bioinformatics analysis. A script in R language was used for the identification of Differentially Expressed Genes (DEGs) from the GSE69223 dataset. The gene ontology (GO) of the DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was constructed using the STRING online database to identify hub genes. GEPIA and UALCAN databases were utilized for survival analysis and expression validation, and 990 DEGs (316 upregulated and 674 downregulated) were identified. The GO analysis was enriched mainly in the "collagen-containing extracellular matrix", and the KEGG pathway analysis was enriched mainly in "focal adhesion". The downregulation of neurotrophic receptor tyrosine kinase 1 (NTRK1) was associated with a poor prognosis of PCa and had a significant positive correlation with infiltrating levels of immune cells. We acquired a collection of pathways related to primary PCa, and our findings invite the further exploration of NTRK1 as a biomarker for early diagnosis and prognosis, and as a future potential molecular therapeutic target for PCa.
Collapse
Affiliation(s)
- Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
| | - Amirreza Hooshmand
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 74147-85318, Iran;
| | - Nooshin Shekari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.)
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 74147-85318, Iran;
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.)
| |
Collapse
|
24
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
25
|
Gomes DA, Joubert AM, Visagie MH. In Vitro Effects of Papaverine on Cell Migration and Vascular Endothelial Growth Factor in Cancer Cell Lines. Int J Mol Sci 2022; 23:4654. [PMID: 35563045 PMCID: PMC9104338 DOI: 10.3390/ijms23094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Papaverine (PPV) is a benzylisoquinoline alkaloid isolated from Papaver somniferum that exerts antiproliferative activity. However, several questions remain regarding the biochemical pathways affected by PPV in tumourigenic cells. In this study, the influence of PPV on cell migration (light microscopy), expression of vascular endothelial growth factor (VEGF) B, VEGF R1, VEGF R2, and phosphorylated focal adhesion kinase (pFAK) were investigated using spectrophotometry in MDA-MB-231-, A549- and DU145 cell lines. The migration assay revealed that, after 48 h, PPV (100 µM) reduced cell migration to 81%, 91%, and 71% in MDA-MB-231-, A549-, and DU145 cells, respectively. VEGF B expression was reduced to 0.79-, 0.71-, and 0.73-fold after 48 h of exposure to PPV in MDA-MB-231-, A549- and DU145 cells, while PPV exposure of 48 h increased VEGF R1 expression in MDA-MB-231- and DU145 cells to 1.38 and 1.46. A fold decrease in VEGF R1 expression was observed in A549 cells to 0.90 after exposure to 150 µM. No statistically significant effects were observed on VEGF R2- and FAK expression after exposure to PPV. This study contributes to the understanding of the effects of a phytomedicinal alkaloid compound in cancer cells and may provide novel approaches to the application of non-addictive alkaloids.
Collapse
Affiliation(s)
| | | | - Michelle Helen Visagie
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa; (D.A.G.); (A.M.J.)
| |
Collapse
|
26
|
O6-[(2″,3″-O-Isopropylidene-5″-O-tbutyldimethylsilyl)pentyl]-5′-O-tbutyldiphenylsilyl-2′,3′-O-isopropylideneinosine. MOLBANK 2022. [DOI: 10.3390/m1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a cyclic nucleotide involved in the Ca2+ homeostasis. In its structure, the northern ribose, bonded to adenosine through an N1 glycosidic bond, is connected to the southern ribose through a pyrophosphate bridge. Due to the chemical instability at the N1 glycosidic bond, new bioactive cADPR derivatives have been synthesized. One of the most interesting analogues is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine replaced adenosine. The efforts for synthesizing new linear and cyclic northern ribose modified cIDPR analogues led us to study in detail the inosine N1 alkylation reaction. In the last few years, we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. With the aim to obtain the closest flexible cIDPR analogue, we have attached to the inosine N1 position a 2″,3″-dihydroxypentyl chain, possessing the two OH groups in a ribose-like fashion. The inosine alkylation reaction afforded also the O6-alkylated regioisomer, which could be a useful intermediate for the construction of new kinds of cADPR mimics.
Collapse
|
27
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspectives from Ca2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk for developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, a dyshomeostasis of Ca2+ has been considered as a topic involved in both cancer and hypertension and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes: pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of anti-inflammatory outcomes. OBJECTIVE This article has discussed the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports about the role of Ca2+ channel blockers for restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION Understanding the association among these diseases could expand current pharmacotherapy, including that involving Ca2+ channel blockers and pharmaceuticals which rise cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology - Universidade Federal de São Paulo - Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology - 55 11 5576-4973, Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP, Brazil
| |
Collapse
|
28
|
Anti-inflammation and anti-cancer effects of Naringenin combination with Artemisinins in human lung cancer cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
30
|
Cai XL, Li SJ, Zhang P, Li Z, Hide G, Lai DH, Lun ZR. The Occurrence of Malignancy in Trypanosoma brucei brucei by Rapid Passage in Mice. Front Microbiol 2022; 12:806626. [PMID: 35087505 PMCID: PMC8789148 DOI: 10.3389/fmicb.2021.806626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
Pleomorphic Trypanosoma brucei are best known for their tightly controlled cell growth and developmental program, which ensures their transmissibility and host fitness between the mammalian host and insect vector. However, after long-term adaptation in the laboratory or by natural evolution, monomorphic parasites can be derived. The origin of these monomorphic forms is currently unclear. Here, we produced a series of monomorphic trypanosome stocks by artificially syringe-passage in mice, creating snapshots of the transition from pleomorphism to monomorphism. We then compared these artificial monomorphic trypanosomes, alongside several naturally monomorphic T. evansi and T. equiperdum strains, with the pleomorphic T. brucei. In addition to failing to generate stumpy forms in animal bloodstream, we found that monomorphic trypanosomes from laboratory and nature exhibited distinct differentiation patterns, which are reflected by their distinct differentiation potential and transcriptional changes. Lab-adapted monomorphic trypanosomes could still be induced to differentiate, and showed only minor transcriptional differences to that of the pleomorphic slender forms but some accumulated differences were observed as the passages progress. All naturally monomorphic strains completely fail to differentiate, corresponding to their impaired differentiation regulation. We propose that the natural phenomenon of trypanosomal monomorphism is actually a malignant manifestation of protozoal cells. From a disease epidemiological and evolutionary perspective, our results provide evidence for a new way of thinking about the origin of these naturally monomorphic strains, the malignant evolution of trypanosomes may raise some concerns. Additionally, these monomorphic trypanosomes may reflect the quantitative and qualitative changes in the malignant evolution of T. brucei, suggesting that single-celled protozoa may also provide the most primitive model of cellular malignancy, which could be a primitive and inherent biological phenomenon of eukaryotic organisms from protozoans to mammals.
Collapse
Affiliation(s)
- Xiao-Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Su-Jin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Geoff Hide
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
32
|
Rathi A, Kumar V, Sundar D. Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors. J Biomol Struct Dyn 2022; 41:2108-2117. [PMID: 35060432 DOI: 10.1080/07391102.2022.2028679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Medicinal herbs have been used as traditional medicines for centuries. The molecular mechanism of action of their bioactive molecules against various diseases or therapeutic targets is still being explored. Here, the active compounds (withanolides) of a well-known Indian medicinal herb, Ashwagandha (Withania somnifera), have been studied for their most potential therapeutic targets and their mechanism of action using ligand-based screening and receptor-based approaches. Ligand-based screening predicted the six top therapeutic targets, namely, Protein kinase C alpha (PRKCA), Protein kinase C delta (PRKCD), Protein kinase C epsilon (PRKCE), Androgenic Receptor (AR), Cycloxygenase-2 (PTGS-2) and Phosphodiesterase-4D (PDE4D). Further, when these predictions were validated using receptor-based studies, i.e. molecular docking, molecular dynamics simulation and free energy calculations, it was found that PDE4D was the most potent target for four withanolides, namely, Withaferin-A, 17-Hydroxywithaferin-A, 27-Hydroxywithanone and Withanolide-R. These compounds had a better binding affinity and similar interactions as that of an already known inhibitor (Zardaverine) of PDE4D. These results warrant further in-vitro and in-vivo investigations to examine their therapeutic potential as an inhibitor of PDE4D.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Rathi
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
33
|
Unraveling unique and common cell type-specific mechanisms in glioblastoma multiforme. Comput Struct Biotechnol J 2022; 20:90-106. [PMID: 34976314 PMCID: PMC8688884 DOI: 10.1016/j.csbj.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.
Collapse
Key Words
- CAMs, Cell adhesion molecules
- CNS, Cental nervous system
- DEG, Differentially expressed genes
- EMT, Epithelial-mesenchymal transistion
- GBM, Glioblastoma multiforme
- GSC, Glioblastoma Stem Cell
- Glial cell types
- Glioblastoma multiforme
- INstruct, a database of structurally resolved protein interactome
- MO, Myelinating oligodendrocyte
- NCBI, National Centre for Biotechnology Information
- NFO, Newly formed oligodendrocyte
- NPC, Neural progenitor cell
- OPC, Oligodendrocyte precursor cell
- PDI, Protein domain interactions
- PDIN, Protein domain interaction network
- PPI, Protein-protein interactions
- Primary solid tumour
- Protein domains
- Protein interaction networks
- RSEM, RNA-seq by Expectation-Maximization
- Recurrent solid tumour transcription factors
- SIGNOR, Signaling Network Open Resource
- TCGA, The Cancer Genome Atlas
- TF, Transcription factor
- TP, Primary solid tumour
- TR, Recurrent solid tumour
- WHO, World health organization
- iDEP, Integrated Differential Expression and Pathway analysis
Collapse
|
34
|
Muñoz-López S, Sánchez-Melgar A, Martín M, Albasanz JL. Resveratrol enhances A 1 and hinders A 2A adenosine receptors signaling in both HeLa and SH-SY5Y cells: Potential mechanism of its antitumoral action. Front Endocrinol (Lausanne) 2022; 13:1007801. [PMID: 36407311 PMCID: PMC9669387 DOI: 10.3389/fendo.2022.1007801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite great efforts, effective treatment against cancer has not yet been found. However, natural compounds such as the polyphenol resveratrol have emerged as promising preventive agent in cancer therapy. The mode of action of resveratrol is still poorly understood, but it can modulate many signaling pathways related to the initiation and progression of cancer. Adenosinergic signaling may be involved in the antitumoral action of resveratrol since resveratrol binds to the orthosteric binding site of adenosine A2A receptors and acts as a non-selective agonist for adenosine receptors. In the present study, we measured the impact of resveratrol treatment on different adenosinergic pathway components (i.e. adenosine receptors levels, 5'-nucleotidase, adenosine deaminase, and adenylyl cyclase activities, protein kinase A levels, intracellular adenosine and other related metabolites levels) and cell viability and proliferation in HeLa and SH-SY5Y cell lines. Results revealed changes leading to turning off cAMP signaling such as decreased levels of A2A receptors and reduced adenylyl cyclase activation, increased levels of A1 receptors and increased adenylyl cyclase inhibition, and lower levels of PKA. All these changes could contribute to the antitumoral action of resveratrol. Interestingly, these effects were almost identical in HeLa and SH-SY5Y cells suggesting that resveratrol enhances A1 and hinders A2A adenosine receptors signaling as part of a potential mechanism of antitumoral action.
Collapse
|
35
|
Dang W, Cao P, Yan Q, Yang L, Wang Y, Yang J, Xin S, Zhang J, Li J, Long S, Zhang W, Zhang S, Lu J. IGFBP7-AS1 is a p53-responsive long noncoding RNA downregulated by Epstein-Barr virus that contributes to viral tumorigenesis. Cancer Lett 2021; 523:135-147. [PMID: 34634383 DOI: 10.1016/j.canlet.2021.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023]
Abstract
Epstein-Barr virus (EBV) is closely related to the development of several malignancies, such as B-cell lymphoma (B-CL), by the mechanism through which these malignancies develop remains largely unknown. We previously observed downregulation of the long noncoding RNA (lncRNA) IGFBP7-AS1 in response to EBV infection. However, the role of IGFBP7-AS1 in EBV-associated cancers has not been clarified. Here, we found that expression of IGFBP7-AS1, as well as its sense gene IGFBP7, is decreased in EBV-positive B-CL cells and clinical tissues. IGFBP7-AS1 stabilizes IGFBP7 mRNA by forming a duplex based on their overlapping regions. The tumour suppressor p53 transcriptionally activates IGFBP7-AS1 expression by binding to the promoter region of the lncRNA gene. The IGFBP7-AS1 expression is able to be rescued in EBV-positive cells in wild-type (wt) p53-dependent manner. IGFBP7-AS1 inhibits the proliferation and promotes the apoptosis of B-CL cells. Moreover, tumorigenic properties due to the depletion of IGFBP7-AS1 were restored by exogenous expression of IGFBP7 or wt-p53. Furthermore, the functional p53/IGFBP7-AS1/IGFBP7 axis facilitates apoptosis by suppressing the production and secretion of the NPPB signal peptide and further regulating the cGMP-PKG signalling pathway. This study demonstrates that EBV promotes tumorigenesis, particularly in B-CL progression, by downregulating the novel p53-responsive lncRNA IGFBP7-AS1.
Collapse
Affiliation(s)
- Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yiwei Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Yang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
36
|
Pros and Cons of Pharmacological Manipulation of cGMP-PDEs in the Prevention and Treatment of Breast Cancer. Int J Mol Sci 2021; 23:ijms23010262. [PMID: 35008687 PMCID: PMC8745278 DOI: 10.3390/ijms23010262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.
Collapse
|
37
|
Abdel-Wahab BA, Alqhtani H, Walbi IA, Albarqi HA, Aljadaan AM, Khateeb MM, Hassanein EHM. Piclamilast mitigates 1,2-dimethylhydrazine induced colon cancer in rats through modulation of Ras/PI3K/Akt/mTOR and NF-κβ signaling. Chem Biol Interact 2021; 350:109686. [PMID: 34627785 DOI: 10.1016/j.cbi.2021.109686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading type of adult cancer in both genders with high morbidity and mortality worldwide. Even though the discovery of many antineoplastic drugs for CRC, the current therapy is not adequately efficient.This study was designed to investigate the effect and mechanism of Piclamilast (PIC), a selective PDE4 inhibitor, on a DMH-induced colorectal cancer (CRC) rat model. The rats were grouped (n = 10) into group 1 (control), group 2 (PIC 3 mg/kg, p.o.), groups 3-5 received DMH (20 mg/kg/week, S.C.), and groups 4 and 5 received PIC (1 and 3 mg/kg/day, p.o.) for 15 weeks. The DMH treatment increased aberrant crypt foci (ACF), Proliferating cell nuclear antigen (PCNA), and TBARS levels, along with decreased antioxidant defenses (GSH, GSH-Px, and catalase). Increased NF-κβ expression and inflammatory cytokines were also evident. PIC dose-dependently reduced ACF and restored oxidative stress and inflammatory markers favorably. Moreover, PIC in its large, tested dose only significantly increased the intracellular level of cAMP and suppressed the activation of Ras and PI3K and its downstream Akt/mTOR signaling. Furthermore, PIC promoted CRC apoptosis, and increased the gene expression of the apoptotic factors, caspase-3 and Bax, and decreased the anti-apoptotic factor Bcl-2. The results of this study show that PIC may be a promising therapeutic agent for the treatment of CRC. PIC might inhibit the proliferation of CRC cells and induce apoptosis via multiple mechanisms that involve its antioxidant effect and inhibition of NF-κβ and Ras/PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia; Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt.
| | - Hussain Alqhtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Adel M Aljadaan
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia; School of Medicine, University of Nottingham, United Kingdom
| | - Masood M Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| |
Collapse
|
38
|
An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol 2021; 910:174469. [PMID: 34478688 DOI: 10.1016/j.ejphar.2021.174469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
Despite the years of research, epilepsy remains uncontrolled in one-third of afflicted individuals and poses a health and economic burden on society. Currently available anti-epileptic drugs mainly target the excitatory-inhibitory imbalance despite targeting the underlying pathophysiology of the disease. Recent research focuses on understanding the pathophysiologic mechanisms that lead to seizure generation and on possible new treatment avenues for preventing epilepsy after a brain injury. Various signaling pathways, including the mechanistic target of rapamycin (mTOR) pathway, mitogen-activated protein kinase (MAP-ERK) pathway, JAK-STAT pathway, wnt/β-catenin signaling, cAMP pathway, and jun kinase pathway, have been suggested to play an essential role in this regard. Recent work suggests that the mTOR pathway intervenes epileptogenesis and proposes that mTOR inhibitors may have antiepileptogenic properties for epilepsy. In the same way, several animal studies have indicated the involvement of the Wnt signaling pathway in neurogenesis and neuronal death induced by seizures in different phases (acute and chronic) of seizure development. Various studies have also documented the activation of JAK-STAT signaling in epilepsy and cAMP involvement in epileptogenesis through CREB (cAMP response element-binding protein). Although studies are there, the mechanism for how components of these pathways mediate epileptogenesis requires further investigation. This review summarises the current role of various signaling pathways involved in epileptogenesis and the crosstalk among them. Furthermore, we will also discuss the mechanical base for the interaction between these pathways and how these interactions could be a new emerging promising target for future epilepsy therapies.
Collapse
|
39
|
Mok K, Tsoi H, Man EPS, Leung M, Chau KM, Wong L, Chan W, Chan S, Luk M, Chan JY, Leung JK, Chan YH, Batalha S, Lau V, Siu DC, Lee TK, Gong C, Khoo U. Repurposing hyperpolarization-activated cyclic nucleotide-gated channels as a novel therapy for breast cancer. Clin Transl Med 2021; 11:e578. [PMID: 34841695 PMCID: PMC8567035 DOI: 10.1002/ctm2.578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are members of the voltage-gated cation channel family known to be expressed in the heart and central nervous system. Ivabradine, a small molecule HCN channel-blocker, is FDA-approved for clinical use as a heart rate-reducing agent. We found that HCN2 and HCN3 are overexpressed in breast cancer cells compared with normal breast epithelia, and the high expression of HCN2 and HCN3 is associated with poorer survival in breast cancer patients. Inhibition of HCN by Ivabradine or by RNAi, aborted breast cancer cell proliferation in vitro and suppressed tumour growth in patient-derived tumour xenograft models established from triple-negative breast cancer (TNBC) tissues, with no evident side-effects on the mice. Transcriptome-wide analysis showed enrichment for cholesterol metabolism and biosynthesis as well as lipid metabolism pathways associated with ER-stress following Ivabradine treatment. Mechanistic studies confirmed that HCN inhibition leads to ER-stress, in part due to disturbed Ca2+ homeostasis, which subsequently triggered the apoptosis cascade. More importantly, we investigated the synergistic effect of Ivabradine and paclitaxel on TNBC and confirmed that both drugs acted synergistically in vitro through ER-stress to amplify signals for caspase activation. Combination therapy could suppress tumour growth of xenografts at much lower doses for both drugs. In summary, our study identified a new molecular target with potential for being developed into targeted therapy, providing scientific grounds for initiating clinical trials for a new treatment regimen of combining HCN inhibition with chemotherapy.
Collapse
Affiliation(s)
- Ka‐Chun Mok
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ho Tsoi
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ellen PS Man
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Man‐Hong Leung
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ka Man Chau
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lai‐San Wong
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Wing‐Lok Chan
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sum‐Yin Chan
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Mai‐Yee Luk
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Jessie Y.W. Chan
- Department of SurgeryPamela Youde Nethersole Eastern HospitalHong KongHong Kong
| | - Jackie K.M. Leung
- Department of SurgeryPamela Youde Nethersole Eastern HospitalHong KongHong Kong
| | | | - Sellma Batalha
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Virginia Lau
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - David C.W. Siu
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - Terence K.W. Lee
- Department of Applied Biology & Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Chun Gong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ui‐Soon Khoo
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
40
|
Dillard C, Borde C, Mohammad A, Puchois V, Jourdren L, Larsen AK, Sabbah M, Maréchal V, Escargueil AE, Pramil E. Expression Pattern of Purinergic Signaling Components in Colorectal Cancer Cells and Differential Cellular Outcomes Induced by Extracellular ATP and Adenosine. Int J Mol Sci 2021; 22:ijms222111472. [PMID: 34768902 PMCID: PMC8583864 DOI: 10.3390/ijms222111472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through "RNA-Sequencing" (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.
Collapse
Affiliation(s)
- Clémentine Dillard
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Chloé Borde
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France; (A.M.); (L.J.)
| | - Virginie Puchois
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Alliance for Research in Cancerology—APREC, Tenon Hospital, F-75020 Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France; (A.M.); (L.J.)
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Vincent Maréchal
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
| | - Alexandre E. Escargueil
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Correspondence: ; Tel.: +33-1-49-28-46-44
| | - Elodie Pramil
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM U938, F-75012 Paris, France; (C.D.); (C.B.); (V.P.); (A.K.L.); (M.S.); (V.M.); (E.P.)
- Alliance for Research in Cancerology—APREC, Tenon Hospital, F-75020 Paris, France
| |
Collapse
|
41
|
Ono H, Arai Y, Furukawa E, Narushima D, Matsuura T, Nakamura H, Shiokawa D, Nagai M, Imai T, Mimori K, Okamoto K, Hippo Y, Shibata T, Kato M. Single-cell DNA and RNA sequencing reveals the dynamics of intra-tumor heterogeneity in a colorectal cancer model. BMC Biol 2021; 19:207. [PMID: 34548081 PMCID: PMC8456589 DOI: 10.1186/s12915-021-01147-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Intra-tumor heterogeneity (ITH) encompasses cellular differences in tumors and is related to clinical outcomes such as drug resistance. However, little is known about the dynamics of ITH, owing to the lack of time-series analysis at the single-cell level. Mouse models that recapitulate cancer development are useful for controlled serial time sampling. RESULTS We performed single-cell exome and transcriptome sequencing of 200 cells to investigate how ITH is generated in a mouse colorectal cancer model. In the model, a single normal intestinal cell is grown into organoids that mimic the intestinal crypt structure. Upon RNAi-mediated downregulation of a tumor suppressor gene APC, the transduced organoids were serially transplanted into mice to allow exposure to in vivo microenvironments, which play relevant roles in cancer development. The ITH of the transcriptome increased after the transplantation, while that of the exome decreased. Mutations generated during organoid culture did not greatly change at the bulk-cell level upon the transplantation. The RNA ITH increase was due to the emergence of new transcriptional subpopulations. In contrast to the initial cells expressing mesenchymal-marker genes, new subpopulations repressed these genes after the transplantation. Analyses of colorectal cancer data from The Cancer Genome Atlas revealed a high proportion of metastatic cases in human subjects with expression patterns similar to the new cell subpopulations in mouse. These results suggest that the birth of transcriptional subpopulations may be a key for adaptation to drastic micro-environmental changes when cancer cells have sufficient genetic alterations at later tumor stages. CONCLUSIONS This study revealed an evolutionary dynamics of single-cell RNA and DNA heterogeneity in tumor progression, giving insights into the mesenchymal-epithelial transformation of tumor cells at metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Hanako Ono
- Division of Bioinformatics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisaku Furukawa
- Division of Bioinformatics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daichi Narushima
- Division of Bioinformatics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tetsuya Matsuura
- Department of Animal Experimentation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daisuke Shiokawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Momoko Nagai
- Division of Bioinformatics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshio Imai
- Department of Animal Experimentation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 101 Hasamamachiidaigaoka, Yufu, Oita, 879-5593, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Hippo
- Department of Animal Experimentation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chiba Chuo-ku, Chiba, 260-8717, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
42
|
Bailey JJ, Wuest M, Bojovic T, Kronemann T, Wängler C, Wängler B, Wuest F, Schirrmacher R. On the Viability of Tadalafil-Based 18F-Radiotracers for In Vivo Phosphodiesterase 5 (PDE5) PET Imaging. ACS OMEGA 2021; 6:21741-21754. [PMID: 34471776 PMCID: PMC8388084 DOI: 10.1021/acsomega.1c03315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Phosphodiesterase 5 (PDE5) is a clinically relevant biomarker and therapeutic target for many human pathologies, yet a noninvasive agent for the assessment of PDE5 expression has yet to be realized. Such agents would improve our understanding of the nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP)/PDE5 pathway in human pathologies and potentially lead to novel uses of PDE5 inhibitors to manage lung conditions like SARS-CoV-2-mediated pulmonary inflammatory responses. In this study, efforts were made to produce an 18F-labeled analogue of the PDE5 inhibitor tadalafil to visualize PDE5 expression in vivo with positron emission tomography (PET). However, during the late-stage fluorination step, quantitative epimerization of the tadalafil C12a stereocenter occurred, yielding a less active epi-isomer. In vivo dynamic microPET images in mice revealed that the epimerized radiotracer, [18F]epi-18, rapidly accumulated in the liver with negligible uptake in tissues of known PDE5 expression.
Collapse
Affiliation(s)
- Justin J. Bailey
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Melinda Wuest
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Tamara Bojovic
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Travis Kronemann
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department
of Clinical Radiology and Nuclear
Medicine and Molecular Imaging and Radiochemistry, Department of Clinical Radiology
and Nuclear Medicine, Medical Faculty Mannheim
of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Björn Wängler
- Biomedical Chemistry, Department
of Clinical Radiology and Nuclear
Medicine and Molecular Imaging and Radiochemistry, Department of Clinical Radiology
and Nuclear Medicine, Medical Faculty Mannheim
of Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Frank Wuest
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department
of Oncology, Cross Cancer Institute, University
of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
43
|
Quadri M, Comitato A, Palazzo E, Tiso N, Rentsch A, Pellacani G, Marconi A, Marigo V. Activation of cGMP-Dependent Protein Kinase Restricts Melanoma Growth and Invasion by Interfering with the EGF/EGFR Pathway. J Invest Dermatol 2021; 142:201-211. [PMID: 34265328 DOI: 10.1016/j.jid.2021.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Drug resistance mechanisms still characterize metastatic melanoma, despite the new treatments that have been recently developed. Targeting of the cGMP/protein kinase G pathway is emerging as a therapeutic approach in cancer research. In this study, we evaluated the anticancer effects of two polymeric-linked dimeric cGMP analogs able to bind and activate protein kinase G, called protein kinase G activators (PAs) 4 and 5. PA5 was identified as the most effective compound on melanoma cell lines as well as on patient-derived metastatic melanoma cells cultured as three-dimensional spheroids and in a zebrafish melanoma model. PA5 was able to significantly reduce cell viability, size, and invasion of melanoma spheroids. Importantly, PA5 showed a tumor-specific outcome because no toxic effect was observed in healthy melanocytes exposed to the cGMP analog. We defined that by triggering protein kinase G, PA5 interfered with the EGF pathway as shown by lower EGFR phosphorylation and reduction of activated, phosphorylated forms of protein kinase B and extracellular signal‒regulated kinase 1/2 in melanoma cells. Finally, PA5 significantly reduced the metastatic process in zebrafish. These studies open future perspectives for the cGMP analog PA5 as a potential therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padua, Padua, Italy
| | - Andreas Rentsch
- BIOLOG Life Science Institute. Forschungslabor und Biochemica-Vertrieb, Bremen, Germany
| | - Giovanni Pellacani
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy.
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
44
|
Bergantin LB. Diabetes and inflammatory diseases: An overview from the perspective of Ca 2+/3'-5'-cyclic adenosine monophosphate signaling. World J Diabetes 2021; 12:767-779. [PMID: 34168726 PMCID: PMC8192245 DOI: 10.4239/wjd.v12.i6.767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases, e.g., cancer, dementia, and hypertension. In addition, it is also suggested that dysregulations related to Ca2+ signaling could link these diseases, in addition to 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways. Thus, revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases. Publications involving signaling pathways related to Ca2+ and cAMP, inflammation, diabetes, dementia, cancer, and hypertension (alone or combined) were collected by searching PubMed and EMBASE. Both signaling pathways, Ca2+ and cAMP signaling, control the release of neurotransmitters and hormones, in addition to neurodegeneration, and tumor growth. Furthermore, there is a clear relationship between Ca2+ signaling, e.g., increased Ca2+ signals, and inflammatory responses. cAMP also regulates pro- and anti-inflammatory responses. Due to the experience of our group in this field, this article discusses the role of Ca2+ and cAMP signaling in the correlation between diabetes and inflammatory diseases, including its pharmacological implications. As a novelty, this article also includes: (1) A timeline of the major events in Ca2+/cAMP signaling; and (2) As coronavirus disease 2019 (COVID-19) is an emerging and rapidly evolving situation, this article also discusses recent reports on the role of Ca2+ channel blockers for preventing Ca2+ signaling disruption due to COVID-19, including the correlation between COVID-19 and diabetes.
Collapse
|
45
|
Sobol NT, Solernó LM, Beltrán B, Vásquez L, Ripoll GV, Garona J, Alonso DF. Anticancer activity of repurposed hemostatic agent desmopressin on AVPR2-expressing human osteosarcoma. Exp Ther Med 2021; 21:566. [PMID: 33850538 PMCID: PMC8027742 DOI: 10.3892/etm.2021.9998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most prevalent primary bone malignancy. Due to its high aggressiveness, novel treatment strategies are urgently required to improve survival of patients with osteosarcoma, especially those with advanced disease. Desmopressin (dDAVP) is a widely used blood-saving agent that has been repurposed as an adjuvant agent for cancer management due to its antiangiogenic and antimetastatic properties. dDAVP acts as a selective agonist of the vasopressin membrane receptor type 2 (AVPR2) present in the microvascular endothelium and in some cancer cells, including breast, lung, colorectal and neuroendocrine tumor cells. Despite the fact that dDAVP has demonstrated its antitumor efficacy in a wide variety of tumor types, exploration of its potential anti-osteosarcoma activity has, to the best of our knowledge, not yet been conducted. Therefore, the aim of the present study was to evaluate the preclinical antitumor activity of dDAVP in osteosarcoma. Human MG-63 and U-2 OS osteosarcoma cell lines were used to assess in vitro and in vivo therapeutic effects of dDAVP. At low micromolar concentrations, dDAVP reduced AVPR2-expressing MG-63 cell growth in a concentration-dependent manner. In contrast, dDAVP exhibited no direct cytostatic effect on AVPR2-negative U-2 OS cells. As it would be expected for canonical AVPR2-activation, dDAVP raised intracellular cAMP levels in osteosarcoma cells, and coincubation with phosphodiesterase-inhibitor rolipram indicated synergistic antiproliferative activity. Cytostatic effects were associated with increased apoptosis, reduced mitotic index and impairment of osteosarcoma cell chemotaxis, as evaluated by TUNEL-labeling, mitotic body count in DAPI-stained cultures and Transwell migration assays. Intravenous administration of dDAVP (12 µg/kg; three times per week) to athymic mice bearing rapidly growing MG-63 xenografts, was indicated to be capable of reducing tumor progression after a 4-week treatment. No major alterations in animal weight, biochemical or hematological parameters were associated with dDAVP treatment, confirming its good tolerability and safety. Finally, AVPR2 expression was detected by immunohistochemistry in 66% of all evaluated chemotherapy-naive human conventional osteosarcoma biopsies. Taking these findings into account, repurposed agent dDAVP may represent an interesting therapeutic tool for the management of osteosarcoma. Further preclinical exploration of dDAVP activity on orthotopic or metastatic osteosarcoma models are required.
Collapse
Affiliation(s)
- Natasha Tatiana Sobol
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Luisina María Solernó
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Brady Beltrán
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Giselle Vanina Ripoll
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Juan Garona
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Daniel Fernando Alonso
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
46
|
Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, Alharbi SA, Batiha GES, Hossain MU. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021; 21:577. [PMID: 34016083 PMCID: PMC8136133 DOI: 10.1186/s12885-021-08332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PDE9A (Phosphodiesterase 9A) plays an important role in proliferation of cells, their differentiation and apoptosis via intracellular cGMP (cyclic guanosine monophosphate) signaling. The expression pattern of PDE9A is associated with diverse tumors and carcinomas. Therefore, PDE9A could be a prospective candidate as a therapeutic target in different types of carcinoma. The study presented here was designed to carry out the prognostic value as a biomarker of PDE9A in Colorectal cancer (CRC). The present study integrated several cancer databases with in-silico techniques to evaluate the cancer prognosis of CRC. RESULTS The analyses suggested that the expression of PDE9A was significantly down-regulated in CRC tissues than in normal tissues. Moreover, methylation in the DNA promoter region might also manipulate PDE9A gene expression. The Kaplan-Meier curves indicated that high level of expression of PDE9A gene was associated to higher survival in OS, RFS, and DSS in CRC patients. PDE9A demonstrated the highest positive correlation for rectal cancer recurrence with a marker gene CEACAM7. Furtheremore, PDE9A shared consolidated pathways with MAPK14 to induce survival autophagy in CRC cells and showed interaction with GUCY1A2 to drive CRPC. CONCLUSIONS Overall, the prognostic value of PDE9A gene could be used as a potential tumor biomarker for CRC.
Collapse
Affiliation(s)
- Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Md. Moshiur Rahman Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Farzana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shariful Islam
- Department of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808 Japan
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506-022 USA
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511 Egypt
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349 Bangladesh
| |
Collapse
|
47
|
Bergantin LB. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer Agents Med Chem 2021; 20:777-782. [PMID: 32077833 DOI: 10.2174/1871520620666200220113817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Limitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, Brazil
| |
Collapse
|
48
|
Ostojić J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, Montminy M. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep 2021; 35:109136. [PMID: 34010639 DOI: 10.1016/j.celrep.2021.109136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic AMP pathway promotes melanocyte differentiation by activating CREB and the cAMP-regulated transcription co-activators 1-3 (CRTC1-3). Differentiation is dysregulated in melanomas, although the contributions of CRTC proteins is unclear. We report a selective differentiation impairment in CRTC3 KO melanocytes and melanoma cells, due to downregulation of oculo-cutaneous albinism II (OCA2) and block of melanosome maturation. CRTC3 stimulates OCA2 expression by binding to CREB on a conserved enhancer, a regulatory site for pigmentation and melanoma risk. CRTC3 is uniquely activated by ERK1/2-mediated phosphorylation at Ser391 and by low levels of cAMP. Phosphorylation at Ser391 is constitutively elevated in human melanoma cells with hyperactivated ERK1/2 signaling; knockout of CRTC3 in this setting impairs anchorage-independent growth, migration, and invasiveness, whereas CRTC3 overexpression supports cell survival in response to the mitogen-activated protein kinase (MAPK) inhibitor vemurafenib. As melanomas expressing gain-of-function mutations in CRTC3 are associated with reduced survival, our results suggest that CRTC3 inhibition may provide therapeutic benefit in this setting.
Collapse
Affiliation(s)
- Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Billy Nguyen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maxim Shokhirev
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Phosphodiesterase 4D Depletion/Inhibition Exerts Anti-Oncogenic Properties in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092182. [PMID: 34062786 PMCID: PMC8125776 DOI: 10.3390/cancers13092182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Drug resistance is a serious problem in the treatment of HCC. Therefore, it is of high clinical impact to discover targeted therapies that may overcome drug-related resistance and improve the survival of patients affected by HCC. In the present study, we investigated the role of Isoform D of type 4 phosphodiesterase (PDE4D) in HCC development and progression. We found that PDE4D is over-expressed HCCs in vitro and in vivo and the depletion of the gene by silencing or the pharmacological inhibition of protein activity exerted anti-tumorigenic activities. Abstract Isoform D of type 4 phosphodiesterase (PDE4D) has recently been associated with several human cancer types with the exception of human hepatocellular carcinoma (HCC). Here we explored the role of PDE4D in HCC. We found that PDE4D gene/protein were over-expressed in different samples of human HCCs compared to normal livers. Accordingly, HCC cells showed higher PDE4D activity than non-tumorigenic cells, accompanied by over-expression of the PDE4D isoform. Silencing of PDE4D gene and pharmacological inhibition of protein activity by the specific inhibitor Gebr-7b reduced cell proliferation and increased apoptosis in HCC cells, with a decreased fraction of cells in S phase and a differential modulation of key regulators of cell cycle and apoptosis. PDE4D silencing/inhibition also affected the gene expression of several cancer-related genes, such as the pro-oncogenic insulin growth factor (IGF2), which is down-regulated. Finally, gene expression data, available in the CancerLivER data base, confirm that PDE4D over-expression in human HCCs correlated with an increased expression of IGF2, suggesting a new possible molecular network that requires further investigations. In conclusion, intracellular depletion/inhibition of PDE4D prevents the growth of HCC cells, displaying anti-oncogenic effects. PDE4D may thus represent a new biomarker for diagnosis and a potential adjuvant target for HCC therapy.
Collapse
|
50
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|