1
|
Małajowicz J, Fabiszewska A, Zieniuk B, Bryś J, Kozłowska M, Marciniak-Lukasiak K. Valorization of Oil Cakes in Two-Pot Lactone Biosynthesis Process. Foods 2025; 14:187. [PMID: 39856854 PMCID: PMC11764905 DOI: 10.3390/foods14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Oil cakes are biomass wastes created by pressing oil from oilseeds. Their chemical composition (including high fat or protein content, a favorable fatty acid profile, and a high proportion of unsaturated acids) makes them valuable raw materials not only in animal feeding but are increasingly gaining popularity in biotechnological processes. This article examines the possibility of valorizing oil cakes using the lipid fraction extracted from them or their raw form in a two-pot biosynthesis process of GDDL-a cyclic ester with a creamy-peach aroma. This study tested five types of oil cakes (hemp seeds, rapeseed, safflower, camelina, and flax), analyzing their physicochemical composition and the fatty acid profile of their lipid fraction. Due to the high content of oleic acid (over 62% lipid fraction) and the wide availability, rapeseed cake was used in the biotransformation process. The synthesis of GDDL involved a three-step process: hydrolysis of triacylglycerols, hydration of oleic acid (via lactic acid bacteria in anaerobic conditions), and β-oxidation (via Yarrowia yeast, aerobic process). The analysis showed that it is possible to produce because of the two-pot biotransformation of approximately 1.7 g of GDDL/dm3. These results highlight the process's potential and justify the feasibility of waste valorization. The proposed biotransformation requires optimization and is a good example of the application of the circular economy in food processing and waste management.
Collapse
Affiliation(s)
- Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.); (J.B.); (M.K.)
| | - Katarzyna Marciniak-Lukasiak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland;
| |
Collapse
|
2
|
Zhu P, Savova MV, Kindt A, Wopereis H, Belzer C, Harms AC, Hankemeier T. Exploring the Fecal Metabolome in Infants With Cow's Milk Allergy: The Distinct Impacts of Cow's Milk Protein Tolerance Acquisition and of Synbiotic Supplementation. Mol Nutr Food Res 2025; 69:e202400583. [PMID: 39665335 PMCID: PMC11704826 DOI: 10.1002/mnfr.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
SCOPE Cow's milk allergy (CMA) is one of the most prevalent food allergies in early childhood, often treated via elimination diets including standard amino acid-based formula or amino acid-based formula supplemented with synbiotics (AAF or AAF-S). This work aimed to assess the effect of cow's milk (CM) tolerance acquisition and synbiotic (inulin, oligofructose, Bifidobacterium breve M-16 V) supplementation on the fecal metabolome in infants with IgE-mediated CMA. METHODS AND RESULTS The CMA-allergic infants received AAF or AAF-S for a year during which fecal samples were collected. The samples were subjected to metabolomics analyses covering gut microbial metabolites including SCFAs, tryptophan metabolites, and bile acids (BAs). Longitudinal data analysis suggested amino acids, BAs, and branched SCFAs alterations in infants who outgrew CMA during the intervention. Synbiotic supplementation significantly modified the fecal metabolome after 6 months of intervention, including altered purine, BA, and unsaturated fatty acid levels, and increased metabolites of infant-type Bifidobacterium species: indolelactic acid and 4-hydroxyphenyllactic acid. CONCLUSION This study offers no clear conclusion on the impact of CM-tolerance acquisition on the fecal metabolome. However, our results show that 6 months of synbiotic supplementation successfully altered fecal metabolome and suggest induced bifidobacteria activity, which subsequently declined after 12 months of intervention.
Collapse
Affiliation(s)
- Pingping Zhu
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Mariyana V. Savova
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | | | - Clara Belzer
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
3
|
Oh DK, Lee TE, Lee J, Shin KC, Park JB. Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids. Biotechnol Adv 2024; 79:108510. [PMID: 39732442 DOI: 10.1016/j.biotechadv.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.
Collapse
Affiliation(s)
- Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign, Mohyein-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-do 17035, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Serra S, De Simeis D. One-pot process for the biotransformation of vegetable oils into natural deca- and dodecalactones. J Biotechnol 2024; 382:70-77. [PMID: 38295955 DOI: 10.1016/j.jbiotec.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Deca- and dodecalactones are highly desired natural compounds that are essential for creating flavor formulations with fruity, peachy, creamy, and floral notes. Although natural ingredients are preferred by consumers, these lactones cannot be extracted from natural sources. Therefore, the biotechnological processes that produce these compounds in their natural form are crucial for the flavor industry. Here, we report a study on the biotransformation of vegetable oils into natural deca- and dodecalactones. The proposed process is performed one-pot, through the sequential use of three different biotransformation steps, namely the lipase-mediated hydrolysis of the triglycerides, the use of probiotic bacteria for the hydration of the unsaturated fatty acids and the transformation of the obtained hydroxy-fatty acids into lactones derivatives employing Yarrowia lipolytica. By using a specific vegetable oil in combination with a selected bacterial strain, it is possible to obtain a preferred lactone derivative such as γ-dodecalactone, dairy lactone, tuberose lactone, or δ-decalactone in a concentration ranging from 0.9 to 1.5 g/L. Overall, our method is suitable for the industrial production of these lactones as it is easily scalable, it can be performed in only one bioreactor and it makes use of generally recognized as safe (GRAS) microorganisms.
Collapse
Affiliation(s)
- Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| | - Davide De Simeis
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
5
|
Giebułtowicz J, Grabicová K, Brooks BW, Grabic R. Influence of time-dependent sampling on the plasma metabolome and exposome of fish collected from an effluent-dependent pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167446. [PMID: 37778561 DOI: 10.1016/j.scitotenv.2023.167446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Metabolomics is increasingly recognized as a useful approach to characterize environmental pollution gradients. While the performance of analytical procedures must be validated and documented, many studies only briefly describe sampling and sample storage. Here we advance our recent study on the influences of sampling delay and holding media on contaminants of emerging concern in fish plasma by targeted analysis. We specifically examined the metabolome and exposome of common carp under three conditions: plasma sampled immediately after field collection (t = 0 h) and then after 3 h (t = 3 h) or 20 h (t = 20 h) of holding fish in lab water. Plasma samples were analyzed using reversed-phase and HILIC chromatography with mass spectrometric detection. 6143 of the 12,904 compounds (after clustering features) varied among the groups. We observed different metabolite variation patterns depending on the sample collection time. We also identified several xenobiotics (2-Ethylhexyl sulfate, 6-Chloro-5-methyl-1H-benzotriazole) at concentrations generally found at the highest levels in plasma sampled immediately after field collection (t = 0 h). Both the metabolome and the exposome changed rapidly in fish plasma with a time lag, which indicates that obtaining relevant results is complicated by fish-holding conditions. We further identified that non-lethal, relatively low-volume blood sample collection was sufficient with this species, which presents ethical and practical advantages.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic; Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha, PL-02-097 Warsaw, Poland.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
6
|
Kim SH, Singh D, Kim SA, Kwak MJ, Cho D, Kim J, Roh JH, Kim WG, Han NS, Lee CH. Strain-specific metabolomic diversity of Lactiplantibacillus plantarum under aerobic and anaerobic conditions. Food Microbiol 2023; 116:104364. [PMID: 37689426 DOI: 10.1016/j.fm.2023.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min Jeong Kwak
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Donghyun Cho
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Juewon Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea; Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Dari C, Cousin F, Le Coeur C, Dubois T, Benezech T, Saint-Jalmes A, Fameau AL. Ultrastable and Responsive Foams Based on 10-Hydroxystearic Acid Soap for Spore Decontamination. Molecules 2023; 28:molecules28114295. [PMID: 37298785 DOI: 10.3390/molecules28114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, there is renewed interest in using fatty acid soaps as surfactants. Hydroxylated fatty acids are specific fatty acids with a hydroxyl group in the alkyl chain, giving rise to chirality and specific surfactant properties. The most famous hydroxylated fatty acid is 12-hydroxystearic acid (12-HSA), which is widely used in industry and comes from castor oil. A very similar and new hydroxylated fatty acid, 10-hydroxystearic acid (10-HSA), can be easily obtained from oleic acid by using microorganisms. Here, we studied for the first time the self-assembly and foaming properties of R-10-HSA soap in an aqueous solution. A multiscale approach was used by combining microscopy techniques, small-angle neutron scattering, wide-angle X-ray scattering, rheology experiments, and surface tension measurements as a function of temperature. The behavior of R-10-HSA was systematically compared with that of 12-HSA soap. Although multilamellar micron-sized tubes were observed for both R-10-HSA and 12-HSA, the structure of the self-assemblies at the nanoscale was different, which is probably due to the fact that the 12-HSA solutions were racemic mixtures, while the 10-HSA solutions were obtained from a pure R enantiomer. We also demonstrated that stable foams based on R-10-HSA soap can be used for cleaning applications, by studying spore removal on model surfaces in static conditions via foam imbibition.
Collapse
Affiliation(s)
- Carolina Dari
- CNRS, INRAE, Centrale Lille, UMET, University of Lille, UMR 8207, F-59000 Lille, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR CEA Saclay, F-91191 Gif sur Yvette, France
| | - Clemence Le Coeur
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR CEA Saclay, F-91191 Gif sur Yvette, France
- CNRS, ICMPE, UMR 7182, University Paris Est Creteil, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Thomas Dubois
- CNRS, INRAE, Centrale Lille, UMET, University of Lille, UMR 8207, F-59000 Lille, France
| | - Thierry Benezech
- CNRS, INRAE, Centrale Lille, UMET, University of Lille, UMR 8207, F-59000 Lille, France
| | - Arnaud Saint-Jalmes
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, University of Rennes, F-35000 Rennes, France
| | - Anne-Laure Fameau
- CNRS, INRAE, Centrale Lille, UMET, University of Lille, UMR 8207, F-59000 Lille, France
| |
Collapse
|
8
|
Gohil P, Nanavati B, Patel K, Suthar V, Joshi M, Patil DB, Joshi CG. Assessing the efficacy of probiotics in augmenting bovine reproductive health: an integrated in vitro, in silico, and in vivo study. Front Microbiol 2023; 14:1137611. [PMID: 37275132 PMCID: PMC10232901 DOI: 10.3389/fmicb.2023.1137611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The aim of this study was to isolate and characterize bovine-vaginal probiotics genotypically and phenotypically using in silico and evaluate their in vivo performance in buffaloes with endometritis. For the in vitro isolation and characterization, vaginal swabs were collected from 34 cows and 17 buffaloes, and 709 primary bacterial isolates with probiotic activity were obtained using MRS agar media. Two isolates Lactiplantibacillus plantarum KUGBRC (LPKUGBRC) and Pediococcus pentosaceus GBRCKU (PPGBRCKU) demonstrated optimum in vitro probiotic activities as compared to Lacticaseibacillus rhamnosus GG including, acid production, secretion of fatty acids and exopolysaccharide, cell surface hydrophobicity, self-aggregating and co-aggregating capacity with pathogens, anti-microbial activity and bacteriocin-like compounds against pathogens Escherichia coli and Staphylococcus aureus in cell-free supernatant and absence of hemolytic activity. Their phenotypic capacity was confirmed by analyzing the whole genome sequencing data and identifying genes and pathways associated with probiotic properties. These probiotic isolates have shown no virulence genes were discovered in their genomic study. In vivo study of 92 buffaloes suffering from clinical endometritis with purulent cervico-vaginal mucus (CVM) were randomly allocated 40 × 108 CFU/ml LPKUGBRC and PPGBRCKU and 40 ml Normal saline. The LPKUGBRC reduced the duration between administration of probiotic to induction of healthy estrus significantly. However, no effect was observed on pregnancy rate. These results suggest that LPKUGBRC and PPGBRCKU probiotic bacteria demonstrate probiotic efficiency and adaptability. Further sourced from the same niche as the targeted infection, they offer a distinct advantage in targeting the specific microbial population associated with endometritis. The findings of this study highlight the potential of LPKUGBRC and PPGBRCKU probiotics in treating endometritis and suggest further exploration of their clinical applications.
Collapse
Affiliation(s)
- Purva Gohil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Bhavya Nanavati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Kajal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Vishal Suthar
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Deepak B. Patil
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
9
|
On JY, Kim SH, Kim JM, Park S, Kim KH, Lee CH, Kim SK. Effects of Fermented Artemisia annua L. and Salicornia herbacea L. on Inhibition of Obesity In Vitro and In Mice. Nutrients 2023; 15:2022. [PMID: 37432154 DOI: 10.3390/nu15092022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jeong-Yeon On
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Mee Kim
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Institute of Animal Resource Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Lee HR, Kwon SY, Choi SA, Lee JH, Lee HS, Park JB. Valorization of Soy Lecithin by Enzyme Cascade Reactions Including a Phospholipase A2, a Fatty Acid Double-Bond Hydratase, and/or a Photoactivated Decarboxylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10818-10825. [PMID: 36001340 DOI: 10.1021/acs.jafc.2c04012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin. This was exploited by enzymatic transformation of soy lecithin into lysolecithin liposomes, including functional free fatty acids, hydroxy fatty acids, hydrocarbons, or secondary fatty alcohols. One of the representative examples was the preparation of lysolecithin liposomes containing secondary fatty alcohols [e.g., 9-Hydroxyheptadec-11-ene (9) and 9-heptadecanol (10)] by using a phospholipase A2 from Streptomyces violaceoruber, a fatty acid double-bond hydratase from Stenotrophomonas maltophilia, and a photoactivated decarboxylase from Chlorella variabilis NC64A. The engineered liposomes turned out to range ca. 144 nm in diameter by dynamic light scattering analysis. Thereby, this study will contribute to application of functional fatty acids and their derivatives as well as valorization of lecithin for the food and cosmetic industries.
Collapse
Affiliation(s)
- Hyo-Ran Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Yeon Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Ah Choi
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jeong-Hoo Lee
- Docsmedi Co.,Ltd., 143 Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Gyeonggi-do, Republic of Korea
| | - Hye-Seong Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Tong KTX, Tan IS, Foo HCY, Tiong ACY, Lam MK, Lee KT. Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. BIORESOURCE TECHNOLOGY 2021; 342:125880. [PMID: 34592620 DOI: 10.1016/j.biortech.2021.125880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The development of an efficient third-generation L-lactic acid (L-LA) production process from Eucheuma denticulatum extract (EDE) was achieved in this study. Microwave-assisted dilute acid hydrolysis (MADAH) and microwave-assisted hydrothermal hydrolysis (MAHTH) were chosen as the hydrolysis of EDE for the objective of increasing galactose yield. Single-factor optimization of hydrolysis of the EDE was studied, MADAH had high performance in galactose production relative to MAHTH, in which the yield and optimal conditions for both processes were 50.7% (0.1 M H2SO4, 120 °C for 25 min) and 47.8% (0 M H2SO4,160 °C for 35 min), respectively. For fermentation, the optimal L-LA yield was achieved at the inoculum cell density of 4% (w/w) Bacillus coagulans ATCC 7050 with 89.4% and 6% (w/w) Lactobacillus acidophilus LA-14 with 87.6%. In addition, lipid-extracted Chlorella vulgaris residues (CVRs) as co-nutrient supplementation increased the relative abundance of B. coagulans ATCC 7050, thus benefiting L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Adrian Chiong Yuh Tiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
12
|
Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: A FADH2-Dependent Enzyme with Remarkable Industrial Potential. Catalysts 2021. [DOI: 10.3390/catal11091051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, we described the preparation of the recombinant oleate hydratase from Lactobacillus rhamnosus ATCC 53103. We observed that the purified C-terminal His-tagged enzyme was completely inactive and the catalytic activity was partially restored only in presence of a large amount of flavin adenine dinucleotide (FAD). In the present work, we assess that this hydratase in the presence of the reduced form of flavin adenine dinucleotide (FADH2) is at least one hundred times as active as in the presence of the same concentration of FAD. By means of two different biochemical processes, we demonstrated unambiguously that oleate hydratase from Lactobacillus rhamnosus ATCC 53103 is a FADH2-dependent enzyme. As a first relevant application of this discovery, we devised a preparative procedure for the stereoselective synthesis of (R)-10-hydroxystearic acid. Accordingly, the hydration of oleic acid (up to 50 g/L) is performed on a multigram scale using the recombinant hydratase and FADH2 generated in situ as cofactor. The produced (R)-10-hydroxystearic acid (ee > 97%) precipitates from the reaction solvent (water/glycerol/ethanol) and is conveniently recovered by simple filtration (>90% yield).
Collapse
|
13
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
14
|
B Gowda SG, Gowda D, Ohno M, Liang C, Chiba H, Hui SP. Detection and Structural Characterization of SFAHFA Homologous Series in Mouse Colon Contents by LTQ-Orbitrap-MS and Their Implication in Influenza Virus Infection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2196-2205. [PMID: 34170677 DOI: 10.1021/jasms.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with promising physiological functions in mammals. We previously introduced a new type of lipids to this family called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), branching specific to the C2 carbon of a long-chain fatty acid (≥C20). In this study, we discovered a homologous series of SFAHFAs comprising C16-C26 hydroxy fatty acids esterified with short-chain fatty acids (C2-C5) in mouse colon contents. The detected SFAHFAs were characterized by high-resolution mass spectrometry with MSn analysis. The double-bond position of monounsaturated SFAHFAs was determined by the epoxidation reaction of samples with m-chloroperoxybenzoic acid and their MSn analysis. Further, the measurement of SFAHFA concentration in the colon contents of mice infected with influenza A/Puerto Rico/8/34 (H1N1; PR8) virus revealed a significant increase in their levels compared to native control. A strong correlation was observed between hydroxy fatty acid and SFAHFAs. Detection, characterization, and profiling of these new SFAHFA levels in relation with pandemic H1N1; PR8 influenza virus will contribute to the in-depth study of their function and metabolism.
Collapse
Affiliation(s)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Marumi Ohno
- Zoonosis Research Center, Hokkaido University, Kita-20, Nishi-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
15
|
A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts 2021. [DOI: 10.3390/catal11060663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, the transesterification of methyl estolides (ME) extracted from the lipid component present in the sewage scum was investigated. Methyl 10-(R)-hydroxystearate (Me-10-HSA) and Fatty Acid Methyl Esters (FAMEs) were obtained in a single step. A three-level and four factorial Box–Behnken experimental design were used to study the effects of methanol amounts, catalyst, temperature, and reaction time on the transesterification reaction using aluminum chloride hexahydrate (AlCl3·6H2O) or hydrochloric acid (HCl) as catalysts. AlCl3·6H2O was found quite active as well as conventional homogeneous acid catalysts as HCl. In both cases, a complete conversion of ME into Me-10-HSA and FAMEs was observed. The products were isolated, quantified, and fully characterized. At the end of the process, Me-10-HSA (32.3%wt) was purified through a chromatographic separation and analyzed by NMR. The high enantiomeric excess (ee > 92%) of the R-enantiomer isomer opens a new scenario for the valorization of sewage scum.
Collapse
|
16
|
Asaro F, Boga C, Zorzi RD, Geremia S, Gigli L, Nitti P, Semeraro S. ( R)-10-Hydroxystearic Acid: Crystals vs. Organogel. Int J Mol Sci 2020; 21:ijms21218124. [PMID: 33143206 PMCID: PMC7662707 DOI: 10.3390/ijms21218124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/03/2022] Open
Abstract
The chiral (R)-10-hydroxystearic acid ((R)-10-HSA) is a positional homologue of both (R)-12-HSA and (R)-9-HSA with the OH group in an intermediate position. While (R)-12-HSA is one of the best-known low-molecular-weight organogelators, (R)-9-HSA is not, but it forms crystals in several solvents. With the aim to gain information on the structural role of hydrogen-bonding interactions of the carbinol OH groups, we investigated the behavior of (R)-10-HSA in various solvents. This isomer displays an intermediate behavior between (R)-9 and (R)-12-HSA, producing a stable gel exclusively in paraffin oil, while it crystallizes in other organic solvents. Here, we report the X-ray structure of a single crystal of (R)-10-HSA as well as some structural information on its polymorphism, obtained through X-ray Powder Diffraction (XRPD) and Infrared Spectroscopy (IR). This case study provides new elements to elucidate the structural determinants of the microscopic architectures that lead to the formation of organogels of stearic acid derivatives.
Collapse
Affiliation(s)
- Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
- Correspondence: (F.A.); (R.D.Z.); Tel.: +39-040-5583951 (F.A.)
| | - Carla Boga
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
- Correspondence: (F.A.); (R.D.Z.); Tel.: +39-040-5583951 (F.A.)
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| | - Lara Gigli
- Elettra–Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy;
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| | - Sabrina Semeraro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (S.G.); (P.N.); (S.S.)
| |
Collapse
|
17
|
Recombinant Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: Enzyme Expression and Design of a Reliable Experimental Procedure for the Stereoselective Hydration of Oleic Acid. Catalysts 2020. [DOI: 10.3390/catal10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different microbial strains are able to transform oleic acid (OA) into 10-hydroxystearic acid (10-HSA) by means of the catalytic activity of the enzymes oleate hydratase (EC 4.2.1.53). Lactobacillus rhamnosus ATCC 53103 performs this biotransformation with very high stereoselectivity, affording enantiopure (R)-10-HSA. In this work, we cloned, in Escherichia coli, the oleate hydratase present in the above-mentioned probiotic strain. Our study demonstrated that the obtained recombinant hydratase retains the catalytic properties of the Lactobacillus strain but that its activity was greatly affected by the expression procedure. According to our findings, we devised a reliable procedure for the hydration of oleic acid using a recombinant E. coli whole-cell catalyst. We established that the optimal reaction conditions were pH 6.6 at 28 °C in phosphate buffer, using glycerol and ethanol as co-solvents. According to our experimental protocol, the biocatalyst does not show significant substrate inhibition as the hydration reaction can be performed at high oleic acid concentration (up to 50 g/L).
Collapse
|
18
|
Boratyński F, Szczepańska E, De Simeis D, Serra S, Brenna E. Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of γ-Dodecalactone and 10-Ketostearic Acid in the Culture of Micrococcus luteus. Molecules 2020; 25:E3024. [PMID: 32630666 PMCID: PMC7411827 DOI: 10.3390/molecules25133024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial conversion of oleic acid (1) to form value-added industrial products has gained increasing scientific and economic interest. So far, the production of natural lactones with flavor and fragrance properties from fatty acids by non-genetically modified organisms (non-GMO) involves whole cells of bacteria catalyzing the hydration of unsaturated fatty acids as well as yeast strains responsible for further β-oxidation processes. Development of a non-GMO process, involving a sole strain possessing both enzymatic activities, significantly lowers the costs of the process and constitutes a better method from the customers' point of view regarding biosafety issues. Twenty bacteria from the genus of Bacillus, Comamonas, Dietzia, Gordonia, Micrococcus, Pseudomonas, Rhodococcus and Streptomyces were screened for oxidative functionalization of oleic acid (1). Micrococcus luteus PCM525 was selected as the sole strain catalyzing the one-pot transformation of oleic acid (1) into natural valuable peach and strawberry-flavored γ-dodecalactone (6) used in the food, beverage, cosmetics and pharmaceutical industries. Based on the identified products formed during the process of biotransformation, we clearly established a pathway showing that oleic acid (1) is hydrated to 10-hydroxystearic acid (2), then oxidized to 10-ketostearic acid (3), giving 4-ketolauric acid (4) after three cycles of β-oxidation, which is subsequently reduced and cyclized to γ-dodecalactone (6) (Scheme 1). Moreover, three other strains (Rhodococcus erythropolis DSM44534, Rhodococcus ruber PCM2166, Dietzia sp. DSM44016), with high concomitant activities of oleate hydratase and alcohol dehydrogenase, were identified as efficient producers of 10-ketostearic acid (3), which can be used in lubricant and detergent formulations. Considering the prevalence of γ-dodecalactone (6) and 10-ketostearic acid (3) applications and the economic benefits of sustainable management, microbial bioconversion of oleic acid (1) is an undeniably attractive approach.
Collapse
Affiliation(s)
- Filip Boratyński
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Ewa Szczepańska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Davide De Simeis
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—CNR, Via Mancinelli 7, I-20131 Milan, Italy; (D.D.S.); (S.S.)
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—CNR, Via Mancinelli 7, I-20131 Milan, Italy; (D.D.S.); (S.S.)
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy;
| |
Collapse
|
19
|
Busch H, Tonin F, Alvarenga N, van den Broek M, Lu S, Daran JM, Hanefeld U, Hagedoorn PL. Exploring the abundance of oleate hydratases in the genus Rhodococcus-discovery of novel enzymes with complementary substrate scope. Appl Microbiol Biotechnol 2020; 104:5801-5812. [PMID: 32358760 PMCID: PMC7306040 DOI: 10.1007/s00253-020-10627-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022]
Abstract
Oleate hydratases (Ohys, EC 4.2.1.53) are a class of enzymes capable of selective water addition reactions to a broad range of unsaturated fatty acids leading to the respective chiral alcohols. Much research was dedicated to improving the applications of existing Ohys as well as to the identification of undescribed Ohys with potentially novel properties. This study focuses on the latter by exploring the genus Rhodococcus for its plenitude of oleate hydratases. Three different Rhodococcus clades showed the presence of oleate hydratases whereby each clade was represented by a specific oleate hydratase family (HFam). Phylogenetic and sequence analyses revealed HFam-specific patterns amongst conserved amino acids. Oleate hydratases from two Rhodococcus strains (HFam 2 and 3) were heterologously expressed in Escherichia coli and their substrate scope investigated. Here, both enzymes showed a complementary behaviour towards sterically demanding and multiple unsaturated fatty acids. Furthermore, this study includes the characterisation of the newly discovered Rhodococcus pyridinivorans Ohy. The steady-state kinetics of R. pyridinivorans Ohy was measured using a novel coupled assay based on the alcohol dehydrogenase and NAD+-dependent oxidation of 10-hydroxystearic acid.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Natália Alvarenga
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Simona Lu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|