1
|
Serra S, De Simeis D. One-pot process for the biotransformation of vegetable oils into natural deca- and dodecalactones. J Biotechnol 2024; 382:70-77. [PMID: 38295955 DOI: 10.1016/j.jbiotec.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Deca- and dodecalactones are highly desired natural compounds that are essential for creating flavor formulations with fruity, peachy, creamy, and floral notes. Although natural ingredients are preferred by consumers, these lactones cannot be extracted from natural sources. Therefore, the biotechnological processes that produce these compounds in their natural form are crucial for the flavor industry. Here, we report a study on the biotransformation of vegetable oils into natural deca- and dodecalactones. The proposed process is performed one-pot, through the sequential use of three different biotransformation steps, namely the lipase-mediated hydrolysis of the triglycerides, the use of probiotic bacteria for the hydration of the unsaturated fatty acids and the transformation of the obtained hydroxy-fatty acids into lactones derivatives employing Yarrowia lipolytica. By using a specific vegetable oil in combination with a selected bacterial strain, it is possible to obtain a preferred lactone derivative such as γ-dodecalactone, dairy lactone, tuberose lactone, or δ-decalactone in a concentration ranging from 0.9 to 1.5 g/L. Overall, our method is suitable for the industrial production of these lactones as it is easily scalable, it can be performed in only one bioreactor and it makes use of generally recognized as safe (GRAS) microorganisms.
Collapse
Affiliation(s)
- Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| | - Davide De Simeis
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
2
|
Kowalski R, Kowalska G, Mitura P, Rowiński R, Pankiewicz U, Hawlena J. The Effect of Peppermint and Thyme Oils on Stabilizing the Fatty Acid Profile of Sunflower Oil. Molecules 2024; 29:292. [PMID: 38257205 PMCID: PMC10819199 DOI: 10.3390/molecules29020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Presently, there is an increasing shift towards the utilization of natural antioxidants and compounds with protective attributes for fatty acids in order to replace synthetic counterparts that may pose health risks. This transition aligns with the growing emphasis on promoting healthy and organic food choices. Essential oils stand out in this context due to scientific validations of their antioxidant properties. There are few published research results concerning changes in the fatty acid composition in model systems with the addition of essential oils. This study aims to investigate the impact of incorporating peppermint and thyme oils on inhibiting changes in the fatty acid profile of sunflower oil stored at both room temperature with exposure to daylight and in a thermostat set at 40 °C. The experimental procedure involved the addition of peppermint and thyme oils, along with butylated hydroxyanisole (BHA), to batches of sunflower oil. The samples were then stored for 11 months. The study observed a detrimental influence of storage conditions on the quantitative changes in the fatty acid profile of the sunflower oil. The addition of BHA stabilized the content of linoleic acid in the sunflower oil (approximately 53 g/100 g of linoleic acid compared to approximately 58 g/100 g in the control sample). Meanwhile, the model system of sunflower oil with the addition of peppermint and thyme oils (40 °C) exhibited a statistically significant decrease in the concentration of linoleic acid to approximately 8 g/100 g after eleven months of thermostating. Similar trends to those observed for linoleic acid were noted for the total fatty acid content in the sunflower oil. Notably, the efficacy of the selected substances in inhibiting adverse transformations in fats was contingent upon their concentration and the storage temperature.
Collapse
Affiliation(s)
- Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Przemysław Mitura
- Department of Urology and Oncological Urology, Medical University of Lublin, 8 Jaczewskiego Str., 20-954 Lublin, Poland;
| | - Rafał Rowiński
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Joanna Hawlena
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| |
Collapse
|
3
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023:1-32. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Gajdoš M, Wagner J, Ospina F, Köhler A, Engqvist MKM, Hammer SC. Chiral Alcohols from Alkenes and Water: Directed Evolution of a Styrene Hydratase. Angew Chem Int Ed Engl 2023; 62:e202215093. [PMID: 36511829 PMCID: PMC10107627 DOI: 10.1002/anie.202215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought-after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1-arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (>99 : 1 e.r.) and could be applied on a preparative scale.
Collapse
Affiliation(s)
- Matúš Gajdoš
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jendrik Wagner
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Felipe Ospina
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Antonia Köhler
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Martin K M Engqvist
- Department of Biology and Biological Engineering., Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Stephan C Hammer
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
6
|
Verma P, Tripathi S, Yadav S, Chandra R. Degradation and decolourization potential of ligninolytic enzyme producing Bacillus paramycoides BL2 and Micrococcus luteus BL3 for pulp paper industrial effluent and its toxicity evaluation. Arch Microbiol 2022; 204:642. [PMID: 36161364 DOI: 10.1007/s00203-022-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.
Collapse
Affiliation(s)
- Prerna Verma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
7
|
Lee HR, Kwon SY, Choi SA, Lee JH, Lee HS, Park JB. Valorization of Soy Lecithin by Enzyme Cascade Reactions Including a Phospholipase A2, a Fatty Acid Double-Bond Hydratase, and/or a Photoactivated Decarboxylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10818-10825. [PMID: 36001340 DOI: 10.1021/acs.jafc.2c04012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin. This was exploited by enzymatic transformation of soy lecithin into lysolecithin liposomes, including functional free fatty acids, hydroxy fatty acids, hydrocarbons, or secondary fatty alcohols. One of the representative examples was the preparation of lysolecithin liposomes containing secondary fatty alcohols [e.g., 9-Hydroxyheptadec-11-ene (9) and 9-heptadecanol (10)] by using a phospholipase A2 from Streptomyces violaceoruber, a fatty acid double-bond hydratase from Stenotrophomonas maltophilia, and a photoactivated decarboxylase from Chlorella variabilis NC64A. The engineered liposomes turned out to range ca. 144 nm in diameter by dynamic light scattering analysis. Thereby, this study will contribute to application of functional fatty acids and their derivatives as well as valorization of lecithin for the food and cosmetic industries.
Collapse
Affiliation(s)
- Hyo-Ran Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Yeon Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Ah Choi
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jeong-Hoo Lee
- Docsmedi Co.,Ltd., 143 Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Gyeonggi-do, Republic of Korea
| | - Hye-Seong Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Breum NMD, Schubert S, Hashemi N, Kyhnau R, Knauf MS, Mathialakan M, Takeuchi M, Kishino S, Ogawa J, Kristensen P, Guo Z, Eser BE. Semi-rational Engineering of a Promiscuous Fatty Acid Hydratase for Alteration of Regioselectivity. Chembiochem 2021; 23:e202100606. [PMID: 34929055 DOI: 10.1002/cbic.202100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Fatty acid hydratases (FAHs) catalyze regio- and stereo-selective hydration of unsaturated fatty acids to produce hydroxy fatty acids. Fatty acid hydratase-1 (FA-HY1) from Lactobacillus Acidophilus is the most promiscuous and regiodiverse FAH identified so far. Here, we engineered binding site residues of FA-HY1 (S393, S395, S218 and P380) by semi-rational protein engineering to alter regioselectivity. Although it was not possible to obtain a completely new type of regioselectivity with our mutant libraries, a significant shift of regioselectivity was observed towards cis-5, cis-8, cis-11, cis-14, cis-17-eicosapentaenoic acid (EPA). We identified mutants (S393/S395 mutants) with excellent regioselectivity, generating a single hydroxy fatty acid product from EPA (15-OH product), which is advantageous from application perspective. This result is impressive given that wild-type FA-HY1 produces a mixture of 12-OH and 15-OH products at 63 : 37 ratio (12-OH : 15-OH). Moreover, our results indicate that native FA-HY1 is at its limit in terms of promiscuity and regiospecificity, thus it may not be possible to diversify its product portfolio with active site engineering. This behavior of FA-HY1 is unlike its orthologue, fatty acid hydratase-2 (FA-HY2; 58 % sequence identity to FA-HY1), which has been shown earlier to exhibit significant promiscuity and regioselectivity changes by a few active site mutations. Our reverse engineering from FA-HY1 to FA-HY2 further demonstrates this conclusion.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | | | - Sune Schubert
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Negin Hashemi
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Rikke Kyhnau
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Marius Sandholt Knauf
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Masuthan Mathialakan
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Michiki Takeuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Peter Kristensen
- Faculty of Engineering and Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
9
|
Juma WP, Nyoni D, Brady D, Bode ML. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Chembiochem 2021; 23:e202100527. [PMID: 34822736 DOI: 10.1002/cbic.202100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The Morita-Baylis-Hillman (MBH) reaction affords highly functionalised allylic alcohols containing a new stereogenic centre. These MBH adducts are very versatile and have been transformed into a large range of products, some of which have medicinal potential. Several examples of asymmetric syntheses of MBH adducts have been reported, although a generally applicable method remains to be developed. Biocatalytic approaches for the synthesis and enzymatic kinetic resolution of MBH adducts have been reported, and are discussed in detail in this review. Enzymes able to catalyse the asymmetric MBH reaction have been identified, but selectivity and efficiency have generally been low. Lipases, esterases and nitrile-converting enzymes have all been successfully applied in the resolution of MBH adducts, with excellent selectivity being realised in most cases.
Collapse
Affiliation(s)
- Wanyama Peter Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dubekile Nyoni
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| |
Collapse
|
10
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
11
|
Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: A FADH2-Dependent Enzyme with Remarkable Industrial Potential. Catalysts 2021. [DOI: 10.3390/catal11091051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, we described the preparation of the recombinant oleate hydratase from Lactobacillus rhamnosus ATCC 53103. We observed that the purified C-terminal His-tagged enzyme was completely inactive and the catalytic activity was partially restored only in presence of a large amount of flavin adenine dinucleotide (FAD). In the present work, we assess that this hydratase in the presence of the reduced form of flavin adenine dinucleotide (FADH2) is at least one hundred times as active as in the presence of the same concentration of FAD. By means of two different biochemical processes, we demonstrated unambiguously that oleate hydratase from Lactobacillus rhamnosus ATCC 53103 is a FADH2-dependent enzyme. As a first relevant application of this discovery, we devised a preparative procedure for the stereoselective synthesis of (R)-10-hydroxystearic acid. Accordingly, the hydration of oleic acid (up to 50 g/L) is performed on a multigram scale using the recombinant hydratase and FADH2 generated in situ as cofactor. The produced (R)-10-hydroxystearic acid (ee > 97%) precipitates from the reaction solvent (water/glycerol/ethanol) and is conveniently recovered by simple filtration (>90% yield).
Collapse
|
12
|
Hagedoorn PL, Hollmann F, Hanefeld U. Novel oleate hydratases and potential biotechnological applications. Appl Microbiol Biotechnol 2021; 105:6159-6172. [PMID: 34350478 PMCID: PMC8403116 DOI: 10.1007/s00253-021-11465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Abstract Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using ‘decoy’ small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. Key points • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.
Collapse
Affiliation(s)
- Peter Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
13
|
Zhang Y, Eser BE, Kougioumtzoglou G, Eser Z, Poborsky M, Kishino S, Takeuchi M, Ogawa J, Kristensen P, Guo Z. Effects of the engineering of a single binding pocket residue on specificity and regioselectivity of hydratases from Lactobacillus Acidophilus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts 2021. [DOI: 10.3390/catal11060663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, the transesterification of methyl estolides (ME) extracted from the lipid component present in the sewage scum was investigated. Methyl 10-(R)-hydroxystearate (Me-10-HSA) and Fatty Acid Methyl Esters (FAMEs) were obtained in a single step. A three-level and four factorial Box–Behnken experimental design were used to study the effects of methanol amounts, catalyst, temperature, and reaction time on the transesterification reaction using aluminum chloride hexahydrate (AlCl3·6H2O) or hydrochloric acid (HCl) as catalysts. AlCl3·6H2O was found quite active as well as conventional homogeneous acid catalysts as HCl. In both cases, a complete conversion of ME into Me-10-HSA and FAMEs was observed. The products were isolated, quantified, and fully characterized. At the end of the process, Me-10-HSA (32.3%wt) was purified through a chromatographic separation and analyzed by NMR. The high enantiomeric excess (ee > 92%) of the R-enantiomer isomer opens a new scenario for the valorization of sewage scum.
Collapse
|
15
|
Salamanca D, Bühler K, Engesser KH, Schmid A, Karande R. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes. N Biotechnol 2020; 60:200-206. [PMID: 33127412 DOI: 10.1016/j.nbt.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
Omega hydroxycarboxylic acids (ω-HAs) possess two functional groups, a hydroxyl group and a carboxyl group, and are essential precursors for the production of biodegradable polyester polymers. In this work, an Acidovorax mutant was investigated as a whole-cell biocatalyst for the conversion of cycloalkanes to their respective ω-hydroxycarboxylic acids. This Acidovorax sp. strain CHX100 originated from a wastewater treatment plant and uses cyclohexane as the sole source of carbon and energy with excellent growth rates (0.199 h-1). The metabolic efficiency of Acidovorax CHX100 is based on a highly efficient enzyme cascade used for the mineralization of cyclohexane. A deletion of 6-hydroxyhexanoate dehydrogenase in the native cycloalkane pathway resulted in the Acidovorax sp. strain CHX100 Δ6HX mutant, which accumulated short ω-hydroxycarboxylic acids (C5 to C10) from cycloalkanes. This mutant transformed cyclopentane and cyclohexane (5 mM) to 5-hydroxypentanoic acid and 6-hydroxyhexanoic acid, respectively, with a molar conversion above 98% in 6 h. An elementary environmental and economical assessment based on E-factor and biocatalyst yield suggests the use of inexpensive electron donor and carbon sources, with subsequent efforts to minimize waste generation. Such an early-stage analysis highlights the main bottlenecks that need to be solved in developing a sustainable bioprocess.
Collapse
Affiliation(s)
- Diego Salamanca
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Katja Bühler
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Andreas Schmid
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rohan Karande
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
16
|
Recombinant Oleate Hydratase from Lactobacillus rhamnosus ATCC 53103: Enzyme Expression and Design of a Reliable Experimental Procedure for the Stereoselective Hydration of Oleic Acid. Catalysts 2020. [DOI: 10.3390/catal10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Different microbial strains are able to transform oleic acid (OA) into 10-hydroxystearic acid (10-HSA) by means of the catalytic activity of the enzymes oleate hydratase (EC 4.2.1.53). Lactobacillus rhamnosus ATCC 53103 performs this biotransformation with very high stereoselectivity, affording enantiopure (R)-10-HSA. In this work, we cloned, in Escherichia coli, the oleate hydratase present in the above-mentioned probiotic strain. Our study demonstrated that the obtained recombinant hydratase retains the catalytic properties of the Lactobacillus strain but that its activity was greatly affected by the expression procedure. According to our findings, we devised a reliable procedure for the hydration of oleic acid using a recombinant E. coli whole-cell catalyst. We established that the optimal reaction conditions were pH 6.6 at 28 °C in phosphate buffer, using glycerol and ethanol as co-solvents. According to our experimental protocol, the biocatalyst does not show significant substrate inhibition as the hydration reaction can be performed at high oleic acid concentration (up to 50 g/L).
Collapse
|