1
|
Skvortsova NN, Akhmadullina NS, Vafin IY, Obraztsova EA, Hrytseniuk YS, Nikandrova AA, A. Lukianov D, Gayanova TE, Voronova EV, Shishilov ON, Stepakhin VD. The Synthesis and Analysis of the Cytotoxicity of Al 2O 3-Supported Silver Nanoparticles Prepared by the Plasma Chemical Process Initiated by Pulsed MW Radiation in the Al 2O 3-Ag Powder Mixtures. Int J Mol Sci 2024; 25:5326. [PMID: 38791365 PMCID: PMC11121626 DOI: 10.3390/ijms25105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
An original plasma chemical process initiated by microwave discharge in a mixture of metal and dielectric powders was applied to prepare specific materials, which consisted of microsized spherical particles of aluminum oxide covered with silver nanoparticles. The prepared materials are highly uniform in shape, size distribution, and composition. Their cytotoxicity was investigated using the human cell lines MCF7, HEK293T, A549, and VA-13 and the bacterial strains E. coli JW5503 (ΔtolC) and E. coli K12. Their cytotoxicity was found not to exceed the cytotoxicity of the starting materials. Thus, the prepared materials can be considered highly promising for catalysis and biotechnology applications.
Collapse
Affiliation(s)
- Nina N. Skvortsova
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| | - Nailya S. Akhmadullina
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
- A.A. Baikov Institute of Metallurgy and Material Science of Russian Academy of Sciences, Leninsky av. 49, Moscow 119991, Russia
| | - Ildar Yu. Vafin
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| | - Ekaterina A. Obraztsova
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| | - Yanislav S. Hrytseniuk
- Faculty of Chemistry, Moscow State University, Leninskie Gory, Moscow 119991, Russia; (Y.S.H.); (A.A.N.); or (D.A.L.)
| | - Arina A. Nikandrova
- Faculty of Chemistry, Moscow State University, Leninskie Gory, Moscow 119991, Russia; (Y.S.H.); (A.A.N.); or (D.A.L.)
| | - Dmitrii A. Lukianov
- Faculty of Chemistry, Moscow State University, Leninskie Gory, Moscow 119991, Russia; (Y.S.H.); (A.A.N.); or (D.A.L.)
| | - Tatiana E. Gayanova
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| | - Elena V. Voronova
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| | - Oleg N. Shishilov
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo av. 86, Moscow 119571, Russia
| | - Vladimir D. Stepakhin
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova st. 38, Moscow 119991, Russia; (N.N.S.); (I.Y.V.); (E.A.O.); (T.E.G.); (O.N.S.); (V.D.S.)
| |
Collapse
|
2
|
Araya-Hermosilla R, Martínez J, Loyola CZ, Ramírez S, Salazar S, Henry CS, Lavín R, Silva N. Fast and easy synthesis of silver, copper, and bimetallic nanoparticles on cellulose paper assisted by ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106545. [PMID: 37572428 PMCID: PMC10448225 DOI: 10.1016/j.ultsonch.2023.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
This work focuses on a systematic method to produce Ag, Cu, and Ag/Cu metallic nanoparticles (MNPs) in situ assisted with ultrasound on cellulose paper. By tuning the concentration of AgNO3 and CuSO4 salt precursors and ultrasound time, combined with a fixed concentration of ascorbic acid (AA) as a reducing agent, it was possible to control the size, morphology, and polydispersity of the resulting MNPs on cellulose papers. Notably, high yield and low polydispersity of MNPs and bimetallic nanoparticles are achieved by increasing the sonication time on paper samples pre-treated with salt precursors before reduction with AA. Moreover, mechanical analysis on paper samples presenting well-dispersed and distributed MNPs showed slightly decreasing values of Young's modulus compared to neat papers. The strain at break is substantially improved in papers containing solely Ag or Cu MNPs. The latter suggests that the elastic/plastic transition and deformation of papers are tuned by cellulose and MNPs interfacial interaction, as indicated by mechanical analysis. The proposed method provides insights into each factor affecting the sonochemistry in situ synthesis of MNPs on cellulose papers. In addition, it offers a straightforward alternative to scale up the production of MNPs on paper, ensuring an eco-friendly method.
Collapse
Affiliation(s)
- Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile.
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo. Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - César Zúñiga Loyola
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile.
| | - Sara Ramírez
- Centro de estudios e investigación en salud y sociedad (CEISS), Facultad de Ciencias Médicas, Universidad Bernardo O'Higging, General Gana 1702 Santiago, Chile.
| | - Sebastián Salazar
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Roberto Lavín
- Instituto de Ciencias Básicas, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Ejército 441, Santiago 8370191, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Santiago 9170124, Chile.
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, 7610658 Las Condes, Santiago, Chile.
| |
Collapse
|
3
|
Ravichandran R, Annamalai K, Annamalai A, Elumalai S. Solid State – Green Construction of Starch- beaded Fe3O4@Ag nanocomposite as Superior Redox Catalyst. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
5
|
Melchior A, Sanadar M, Cappai R, Tolazzi M. Entropy and Enthalpy Effects on Metal Complex Formation in Non-Aqueous Solvents: The Case of Silver(I) and Monoamines. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1253. [PMID: 36141139 PMCID: PMC9498076 DOI: 10.3390/e24091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Access to the enthalpy and entropy of the formation of metal complexes in solution is essential for understanding the factors determining their thermodynamic stability and speciation. As a case study, in this report we systematically examine the complexation of silver(I) in acetonitrile (AN) with the following monoamines: n-propylamine (n-pr), n-butylamine (n-but), hexylamine (hexyl), diethylamine (di-et), dipropylamine (di-pr), dibutylamine (di-but), triethylamine (tri-et) and tripropylamine (tri-pr). The study shows that the complex stabilities are quite independent of the length of the substitution chain on the N atom and demonstrates that, in general, the overall enthalpy terms associated with the complex formation are strongly exothermic, whereas the entropy values oppose the complex formations. In addition, we examined the similarity of the formation constants of AgL complexes of the primary monoamines in AN, dimethylsulfoxide (DMSO) and water, which were unexpected on the basis of the difference between the donor properties of solvents.
Collapse
Affiliation(s)
- Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Rosita Cappai
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
6
|
Su R, Zhang H, Chen F, Wang Z, Huang L. Applications of Single Atom Catalysts for Environmental Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11155. [PMID: 36141429 PMCID: PMC9517379 DOI: 10.3390/ijerph191811155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 05/07/2023]
Abstract
With the rapid development of industrialization, human beings have caused many negative effects on the environment that have endangered the survival and development of human beings, such as the greenhouse effect, water pollution, energy depletion, etc [...].
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Power China Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Chen
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Shi ZH, Hsu FM, Mansel BW, Chen HL, Fruk L, Chuang WT, Hung YC. Kinetics and Mechanism of In Situ Metallization of Bulk DNA Films. NANOSCALE RESEARCH LETTERS 2022; 17:18. [PMID: 35072827 PMCID: PMC8787019 DOI: 10.1186/s11671-022-03658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
DNA-templated metallization is broadly investigated in the fabrication of metallic structures by virtue of the unique DNA-metal ion interaction. However, current DNA-templated synthesis is primarily carried out based on pure DNA in an aqueous solution. In this study, we present in situ synthesis of metallic structures in a natural DNA complex bulk film by UV light irradiation, where the growth of silver particles is resolved by in situ time-resolved small-angle X-ray scattering and dielectric spectroscopy. Our studies provide physical insights into the kinetics and mechanisms of natural DNA metallization, in correlation with the multi-stage switching operations in the bulk phase, paving the way towards the development of versatile biomaterial composites with tunable physical properties for optical storage, plasmonics, and catalytic applications.
Collapse
Affiliation(s)
- Zi-Hao Shi
- Institute of Photonics Technologies, National Tsing Hua University, Hsin Chu, Taiwan
| | - Feng-Ming Hsu
- Institute of Photonics Technologies, National Tsing Hua University, Hsin Chu, Taiwan
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsin Chu, Taiwan
- National Synchrotron Radiation Research Center, Hsin Chu, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsin Chu, Taiwan
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, London, UK
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsin Chu, Taiwan.
| | - Yu-Chueh Hung
- Institute of Photonics Technologies, National Tsing Hua University, Hsin Chu, Taiwan.
| |
Collapse
|
8
|
Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, Xu Q, Li X, Yu J. Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized with the Peel Extract of Mango. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5878. [PMID: 34640275 PMCID: PMC8510210 DOI: 10.3390/ma14195878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023]
Abstract
The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xingmei Liao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Wenxiu Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Department of Agricultural Technology, Neijiang Vocational and Technical College, Neijiang 641000, China
| | - Ruihan Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jing Tang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xuanlin Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jinze Yu
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China;
| |
Collapse
|
9
|
Tickner BJ, Zhivonitko VV, Telkki VV. Ultrafast Laplace NMR to study metal-ligand interactions in reversible polarisation transfer from parahydrogen. Phys Chem Chem Phys 2021; 23:16542-16550. [PMID: 34338685 PMCID: PMC8359933 DOI: 10.1039/d1cp02383g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Laplace Nuclear Magnetic Resonance (NMR) can determine relaxation parameters and diffusion constants, giving valuable information about molecular structure and dynamics. Information about relaxation times (T1 and T2) and the self-diffusion coefficient (D) can be extracted from exponentially decaying NMR signals by performing a Laplace transform, which is a different approach to traditional NMR involving Fourier transform of a free induction decay. Ultrafast Laplace NMR uses spatial encoding to collect the entire data set in just a single scan which provides orders of magnitude time savings. In this work we use ultrafast Laplace NMR D-T2 correlation sequences to measure key relaxation (T2) and diffusion (D) parameters of methanolic solutions containing pyridine. For the first time we combine this technique with the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE), which employs an iridium catalyst to reversibly transfer polarisation from parahydrogen, to boost the 1H NMR signals of pyridine by up to 300-fold. We demonstrate use of ultrafast Laplace NMR to monitor changes in pyridine T2 and D associated with ligation to the iridium SABRE catalyst and kinetic isotope exchange reactions. The combined 1440-fold reduction in experiment time and 300-fold 1H NMR signal enhancement allow the determination of pyridine D coefficients and T2 values at 25 mM concentrations in just 3 seconds using SABRE hyperpolarised ultrafast Laplace NMR.
Collapse
Affiliation(s)
- Ben. J. Tickner
- NMR Research Unit, Faculty of Science, University of Oulu90014Finland
| | | | | |
Collapse
|
10
|
Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).
Collapse
|