1
|
Alhashimi A, Abdelkareem A, Amin MA, Nowwar AI, Fouda A, Ismail MA, Mustafa AE, Alharbi M, Elkelish A, Sayed AM, Said HA. Eco-friendly approach to decrease the harmful effects of untreated wastewater on growth, yield, biochemical constituents, and heavy metal contents of carrot (Daucus carota L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14043-14058. [PMID: 38273079 DOI: 10.1007/s11356-024-31869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.
Collapse
Affiliation(s)
- Abdulrahman Alhashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ayman Abdelkareem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdelatti I Nowwar
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abeer E Mustafa
- Department of Botany and Microbiology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Maha Alharbi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Abdelrahman M Sayed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Hanan A Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
2
|
Hamza MF, Mira H, Khalafalla MS, Wang J, Wei Y, Yin X, Ning S, Althumayri K, Fouda A. Photocatalytic Performance of Functionalized Biopolymer for Neodymium (III) Sorption and the Recovery from Leachate Solution. Catalysts 2023. [DOI: 10.3390/catal13040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Successive grafting of new sorbent bearing amino phosphonic groups based on chitosan nano magnetite particles was performed through successive coupling with formaldehyde. The produced composite was characterized by the high sorption capacity toward rare earth elements (REEs) and consists of different types of functional groups (phosphonic, hydroxyls and amine groups) that are used for enhancing the sorption properties. The chemical modification and the sorption mechanism were investigated through different analytical tools; i.e., FTIR, SEM, SEM-EDX, TGA, BET (surface area) and pHpzc. The sorption was investigated toward Nd(III) as one of the REE(III) members under ultraviolet (UV) and visible light (VL) conditions. The optimum sorption was found at pH0 4 and the sorption capacity was recorded at 0.871 and 0.779 mmol Nd g−1 under UV and VL respectively. Sorption isotherms and uptake kinetics were fitted by Langmuir and Sips and by pseudo-first order rate equation (PFORE) for the functionalized sorbent, respectively. The sorbent showed a relatively high-speed sorption kinetic (20 min). The bounded metal ions were progressively eluted using 0.2 M HCl solution with a desorption rate 10–15 min, while the loss in the total capacity after a series of sorption recycling (sorption/desorption) (five cycles) was limited (around 3%) with 100% of the desorption efficiency, indicating the high stability of the sorbent toward an acidic medium. The sorbent was used for the recovery of REEs from leach liquor residue after pretreatment for the extraction of particular elements. From these results (high loading capacity, high selectivity and high stability against acid treatments), we can see that the sorbent is a promising tool for the selective recovery of rare earth elements in the field of metal valorization.
Collapse
|
3
|
Zhang S, Khan A, Ali N, Malik S, Khan H, Ali N, Iqbal HMN, Bilal M. Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. ENVIRONMENTAL RESEARCH 2022; 213:113722. [PMID: 35728638 DOI: 10.1016/j.envres.2022.113722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Centre of Biotechnology and Microbiology, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, KP, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
4
|
Fouda A, Al-Otaibi WA, Saber T, AlMotwaa SM, Alshallash KS, Elhady M, Badr NF, Abdel-Rahman MA. Antimicrobial, Antiviral, and In-Vitro Cytotoxicity and Mosquitocidal Activities of Portulaca oleracea-Based Green Synthesis of Selenium Nanoparticles. J Funct Biomater 2022; 13:jfb13030157. [PMID: 36135592 PMCID: PMC9504135 DOI: 10.3390/jfb13030157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The aqueous extract of Portulaca oleracea was used as a biocatalyst for the reduction of Na2SeO3 to form Se-NPs that appeared red in color and showed maximum surface plasmon resonance at a wavelength of 266 nm, indicating the successful Phyto-fabrication of Se-NPs. A FT-IR chart clarified the role of plant metabolites such as proteins, carbohydrates, and amino acids in capping and stabilizing Se-NPs. TEM, SAED, and XRD analyses indicated the formation of spherical, well-arranged, and crystalline Se-NPs with sizes in the range of 2-22 nm. SEM-EDX mapping showed the maximum peaks of Se at 1.4, 11.3, and 12.4 KeV, with weight and atomic percentages of 36.49 and 30.39%, respectively. A zeta potential of -43.8 mV also indicated the high stability of the synthesized Se-NPs. The Phyto-synthesized Se-NPs showed varied biological activities in a dose-dependent manner, including promising activity against pathogenic bacteria and Candida species with varied MIC values in the range of 12.5-50 µg·mL-1. Moreover, the Se-NPs showed antiviral activity toward HAV and Cox-B4, with percentages of 70.26 and 62.58%, respectively. Interestingly, Se-NPs showed a target orientation to cancer cell lines (HepG2) with low IC50 concentration at 70.79 ± 2.2 µg·mL-1 compared to normal cell lines (WI-38) with IC50 at165.5 ± 5.4 µg·mL-1. Moreover, the as-formed Se-NPs showed high activity against various instar larvae I, II, III, and IV of Culex pipiens, with the highest mortality percentages of 89 ± 3.1, 73 ± 1.2, 68 ± 1.4, and 59 ± 1.0%, respectively, at 50 mg L-1. Thus, P. oleracea-based Se-NPs would be strong potential antimicrobial, anti-viral, anti-cancer, and anti-insect agents in the pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.F.); (M.A.A.-R.); Tel.: +20-111-335-1244 (A.F.); +20-109-148-5138 (M.A.A.-R.)
| | - Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Khalid S. Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mohamed Elhady
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Naglaa Fathi Badr
- Department of Zoology and Entomology, Faculty of Science (Girls’ Brunch), Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.F.); (M.A.A.-R.); Tel.: +20-111-335-1244 (A.F.); +20-109-148-5138 (M.A.A.-R.)
| |
Collapse
|
5
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
6
|
Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants. MATERIALS 2022; 15:ma15134676. [PMID: 35806800 PMCID: PMC9267285 DOI: 10.3390/ma15134676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Modified chitosan has been widely used for heavy metals removal during the last few decades. In this research, the study was focused on the effect of modified chitosan particles after grafting with heterocyclic constituent for enhancing the sorption of Cr(VI) ions. Chitosan was functionalized by 2-thioxodihydropyrimidine-4,6(1H,5H)-dione, in which the synthesized composite considered as a nanoscale size with average 5–7 nm. This explains the fast kinetics of sorption with large surface area. The prepared sorbent was characterized by Fourier-transform infrared (FTIR), elemental analysis (EA), Brunauer–Emmett–Teller (BET surface area) theory, thermogravimetric analysis (TGA), mass spectroscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses. The experimental part of this work involved the application of the synthesized sorbent for the removal of Cr(VI) ions from highly contaminated tannery effluents that are characterized by a high concentration toward chromate ions with other associated toxic elements, i.e., Pb(II) and Cd (II) ions, which underscore the importance of this treatment. Under the selected conditions (K2Cr2O7 salt, Co: 100 mg L−1 and pH: 4), the sorption diagram shows high Cr(VI) sorption and fast uptake kinetics. The sorption was enhanced by functionalization to 5.7 mmol Cr g−1 as well as fast uptake kinetics; 30 min is sufficient for total sorption compared with 1.97 mmol Cr g−1 and 60 min for the non-grafted sorbent. The Langmuir and Sips equations were fitted for the sorption isotherms, while the pseudo-first order rate equation (PFORE) was fitted for the uptake kinetics.
Collapse
|
7
|
High-Performance Hydrogel Based on Modified Chitosan for Removal of Heavy Metal Ions in Borehole: A Case Study from the Bahariya Oasis, Egypt. Catalysts 2022. [DOI: 10.3390/catal12070721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Globally, there is a rising demand for water purification. This demand is driven by numerous factors, including economic growth, increasing population, water shortage, and deterioration of water quality. The current work highlights the manufacturing of environmentally friendly and highly efficient sorbent based on chitosan nanoparticles after successive crosslinking (using glutaraldehyde) and modification through grafting of 4-aminoazobenzene-3,4′-disulfonic acid (AZDS) as a source of sulfonic groups. First, the produced sorbent was thoroughly specified using FTIR, TGA, SEM, SEM-EDX, pHpzc, BET (nitrogen sorption desorption isotherms), and elemental analyses (EA). The sorbent was tested for the sorption of Fe(III) before application to highly contaminated iron water well samples. Next, the sorption was improved as the sulfonation process was conducted under the selected experimental conditions within 25 and 20 min with a maximum capacity of 2.7 and 3.0 mmol Fe g−1 in visible light and under UV, respectively. Then, the uptake kinetics for both techniques were fitted by the pseudo-first-order rate equation (PFORE), in which the effect of the resistance to intraparticle diffusion has remained an unneglected factor, while the Langmuir equation has fitted the sorption isotherms. After that, the efficient desorption was achieved by using 0.2 M hydrochloric acid solution, and the desorption process was as fast as the sorption process; 15 min was sufficient for complete desorption. The sorbent shows high selectivity for heavy metal ions compared to the representative elements. Finally, the sorbent was used for the removal of heavy metal ions from a highly contaminated water well in the Bahariya Oasis and appeared to be highly efficient for heavy metal removal even in a diluted solution. Accordingly, it can be implemented in the task of water treatment.
Collapse
|
8
|
Aspergillus flavus-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Anti-Candida, Acaricides, and Photocatalytic Activities. Catalysts 2022. [DOI: 10.3390/catal12050462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aspergillus flavus F5 was used to reduce AgNO3 to form silver nanoparticles (Ag-NPs) that were monitored by a color change from colorless to yellowish-brown. The characterizations were achieved by UV-Vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed that there was a successful formation of crystalline, spherical shape Ag-NPs with a particle average size of 12.5 ± 5.1 nm. The FT-IR clarified the role of various functional groups in the reducing/capping process. EDX-SEM revealed that the main component of the as-formed sample was set to be mainly Ag with a weight percentage of 46.1%. The synthesized Ag-NPs exhibit antibacterial and anti-Candida activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis, with inhibition zones ranging between 9.3 ± 0.5 to 20.8 ± 0.3 nm based on concentrations used and MIC values between 6.25 to 25 ppm. The mortality percentages of Tyrophagus putrescentiae mite species due to the mixing of their diet with different Ag-NPs concentrations of 0.5, 1.0, and 1.5 mg were 55.7 ± 2.1, 73.3 ± 1.5, and 87.4 ± 1.6% respectively after 20 days post-treatment. The catalytic activity of Ag-NPs to degrade methylene blue (MB) was investigated in the presence and absence of light irradiation. Data showed that a high photocatalytic degradation of MB compared with dark conditions at various times and concentrations. At a concentration of 70 mg/30 mL after 200 min., the dye removal percentages were 86.4 ± 0.4% in the presence of light irradiation versus 66.5 ± 1.1% in dark conditions.
Collapse
|