1
|
Jiang JT, Guo Z, Deng SK, Jia X, Liu H, Xu J, Li H, Cheng LH. Origin of the Activity of Electrochemical Ozone Production Over Rutile PbO 2 Surfaces. CHEMSUSCHEM 2024; 17:e202400827. [PMID: 38785150 DOI: 10.1002/cssc.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Ozonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well-understood, which was in part due to the overlook of the electrochemistry-driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i. e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)-O2 coupled mechanism. In particular, rutile PbO2(101) with the "in-situ" generated OV exhibited superior EOP activities, outperforming the (111) and (110) surfaces. Finally, by catalytic volcano modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with previous experimental observations in terms of EOP overpotentials. This study provides the first volcano model to explain why rutile PbO2 is among the best metal oxide materials for EOP and provides new design guidelines for this rarely studied but industrially promising reaction.
Collapse
Affiliation(s)
- Jin-Tao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhongyuan Guo
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Shao-Kang Deng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xue Jia
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jiang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Li-Hua Cheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
- MOE Engineering Research Center of Membrane & Water Treatment Technology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
2
|
Fijołek L, Świetlik J, Frankowski M. Ozonation and catalytic ozonation - Sources of error. What do we need to know? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123031. [PMID: 39461159 DOI: 10.1016/j.jenvman.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Due to the increasing contamination of the environment, including water pollution by numerous emerging contaminants, there is a growing interest in advanced water purification/treatment processes. A technique of particular and growing interest over the years is ozonation in its broadest sense. It is a complex process, and its course, both in the version without and with the participation of a catalyst, depends on a number of factors that can affect its efficiency and the correct interpretation of the obtained results. The paper discusses the importance of the most relevant of these factors: ozone initiation and decomposition, proper catalyst preparation, potential sources enhancing the ozonation process (H2O2 and 1O2), the influence of commonly used buffers and natural water admixtures, and the importance of adsorption processes. The paper also explains how the structure of the ozonated compound can affect its oxidation efficiency and identifies the most common sources of errors having the influence on the interpretation of experimental data.
Collapse
Affiliation(s)
- Lilla Fijołek
- Adam Mickiewicz University, Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Joanna Świetlik
- Adam Mickiewicz University, Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Frankowski
- Adam Mickiewicz University, Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Zhang C, Li S, Sun H, Fu S, Jingjing J, Cui H, Zhou D. Feasibility of intimately coupled CaO-catalytic-ozonation and bio-contact oxidation reactor for heavy metal and color removal and deep mineralization of refractory organics in actual coking wastewater. BIORESOURCE TECHNOLOGY 2024; 408:131154. [PMID: 39053598 DOI: 10.1016/j.biortech.2024.131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Considering the challenges for both single and traditional two-stage treatments, advanced oxidation and biodegradation, in the treatment of actual coking wastewater, an intimately coupled catalytic ozonation and biodegradation (ICOB) reactor was developed. In this study, ICOB treatment significantly enhanced the removal of Cu2+, Fe3+, and color by 39 %, 45 %, and 52 %, respectively, outperforming biodegradation. Catalytic ozonation effectively breaking down unsaturated organic substances and high-molecular-weight dissolved organic matter into smaller, more biodegradable molecules. Compared with biodegradation, the ICOB system significantly increased the abundances of Pseudomonas, Sphingopyxis, and Brevundimonas by ∼ 96 %, ∼67 %, and ∼ 85 %, respectively. These microorganisms, possessing genes for degrading phenol, aromatic compounds, polycyclic aromatics, and sulfur metabolism, further enhanced the mineralization of intermediates. Consequently, the ICOB system outperformed biodegradation and catalytic ozonation treatments, exhibiting chemical oxygen demand removal rate of ∼ 58 % and toxicity reduction of ∼ 47 %. Overall, the ICOB treatment showcases promise for practical engineering applications in coking wastewater treatment.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Haoran Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Shaozhu Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Jiang Jingjing
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, Jilin, China
| | - Han Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| |
Collapse
|
4
|
Fallah N, Bloise E, García-López EI, Mele G. Carbon-Based Materials in Combined Adsorption/Ozonation for Indigo Dye Decolorization in Constrain Contact Time. Molecules 2024; 29:4144. [PMID: 39274991 PMCID: PMC11397410 DOI: 10.3390/molecules29174144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
This study presents a comprehensive evaluation of catalytic ozonation as an effective strategy for indigo dye bleaching, particularly examining the performance of four carbon-based catalysts, activated carbon (AC), multi-walled carbon nanotubes (MWCNT), graphitic carbon nitride (g-C3N4), and thermally etched nanosheets (C3N4-TE). The study investigates the efficiency of catalytic ozonation in degrading Potassium indigotrisulfonate (ITS) dye within the constraints of short contact times, aiming to simulate real-world industrial wastewater treatment conditions. The results reveal that all catalysts demonstrated remarkable decolorization efficiency, with over 99% of indigo dye removed within just 120 s of mixing time. Besides, the study delves into the mechanisms underlying catalytic ozonation reactions, elucidating the intricate interactions between the catalysts, ozone, and indigo dye molecules with the processes being influenced by factors such as PZC, pKa, and pH. Furthermore, experiments were conducted to analyze the adsorption characteristics of indigo dye on the surfaces of the materials and its impact on the catalytic ozonation process. MWCNT demonstrated the highest adsorption efficiency, effectively removing 43.4% of the indigo dye color over 60 s. Although the efficiency achieved with C3N4-TE was 21.4%, which is approximately half of that achieved with MWCNT and less than half of that with AC, it is noteworthy given the significantly lower surface area of C3N4-TE.
Collapse
Affiliation(s)
- Naghmeh Fallah
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Ermelinda Bloise
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Elisa I García-López
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
You N, Deng SH, He H, Hu J. Ferromanganese oxide-functionalized TiO 2 for rapid catalytic ozonation of PPCPs through a coordinated oxidation process with adjusted composition and strengthened generation of reactive oxygen species. WATER RESEARCH 2024; 258:121813. [PMID: 38820991 DOI: 10.1016/j.watres.2024.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Ferromanganese oxide (MFOx) was first utilized to functionalize TiO2 and an MFOx@TiO2 catalyst was developed for catalytic ozonation for rapid attack of pharmaceutical and personal care products (PPCPs) with adjusted reactive oxygen species (ROSs) composition and strengthened ROSs generation. Unlike Al2O3, which strongly relied on adsorption and was significantly influenced by MFOx loading, synergistic catalytical effects of MFOx and TiO2 were observed, and optimal MFOx doping of 2 wt% and MFOx@TiO2 dosage of 500 ppm were obtained for catalyzing ozonation. In ibuprofen (IBP) degradation, MFOx@TiO2-catalyzed ozonation (MFOx@TiO2/O3) obtained 2.0-, 4.7- and 6.9-folds the kobs of TiO2/O3, MFOx/O3 and bare ozonation (B/O3). Stronger O3 decomposition was observed by MFOx@TiO2 over bare TiO2 with the participation of redox pairs Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) and increased surface oxygen vacancies (SOVs) from 9.8 % to 33.7 % was detected. The results revealed that Fe(II), Mn(II) and Mn(III) with low valance accelerated Ti(III) generation from Ti(VI), obtaining an unprecedented high Ti(III) composition occupying 35.3 % of the total Ti atoms. Ti(III) catalyzed the direct reduction of SOVs-O2 to •O2-, and it accelerated the formation of Ti(VI)-OH and Ti(VI)-O which catalyzed O3 decomposition into •O2-. •O2- was found to primarily initiate IBP degradation with nucleophilic addition and dominated over 66 % IBP removal. The enhanced •O2- generation further strengthened •OH and 1O2 production. MFOx@TiO2/O3 obtained 17 %, 21 % and 30 % higher TOC removal over TiO2/O3, MFOx/O3 and B/O3, respectively. Acute toxicity tests confirmed the effective toxicity control of organics by MFOx@TiO2/O3 process (inhibition rate: 10.9 %). Degradation test of atenolol and sulfamethoxazole confirmed the catalytic effects of MFOx@TiO2. MFOx@TiO2 performed strong resistance to water matrix in application test and showed good stability and reusability. The study proposed an effective catalyst for strengthening the ozonation process on PPCPs degradation and provided an in-depth understanding of the mechanisms and characteristics of the MFOx@TiO2 catalyst and MFOx@TiO2/O3 process.
Collapse
Affiliation(s)
- Na You
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Cardoso RMF, Esteves da Silva JCG, Pinto da Silva L. Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3185. [PMID: 38998267 PMCID: PMC11242483 DOI: 10.3390/ma17133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Given the growing scarcity of water and the continuous increase in emerging pollutants detected in water bodies, there is an imperative need to develop new, more effective, and sustainable treatments for wastewater. Advanced oxidation processes (AOPs) are considered a competitive technology for water treatment. Specifically, ozonation has received notable attention as a promising approach for degrading organic pollutants in wastewater. However, different groups of pollutants are hardly degradable via single ozonation. With continuous development, it has been shown that using engineered nanomaterials as nanocatalysts in catalytic ozonation can increase efficiency by turning this process into a low-selective AOP for pollutant degradation. Nanocatalysts promote ozone decomposition and form active free radicals responsible for increasing the degradation and mineralization of pollutants. This work reviews the performances of different nanomaterials as homogeneous and heterogeneous nanocatalysts in catalytic ozonation. This review focuses on applying metal- and carbon-based engineered nanomaterials as nanocatalysts in catalytic ozonation and on identifying the main future directions for using this type of AOP toward wastewater treatment.
Collapse
Affiliation(s)
- Rita M F Cardoso
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Valdés C, Quispe C, Fritz RA, Andler R, Villaseñor J, Pecchi G, Avendaño E, Delgadillo A, Setzer WN, Sharifi-Rad J. MnO 2/TiO 2-Catalyzed ozonolysis: enhancing Pentachlorophenol degradation and understanding intermediates. BMC Chem 2024; 18:83. [PMID: 38725018 PMCID: PMC11080107 DOI: 10.1186/s13065-024-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Pentachlorophenol is a pesticide widely known for its harmful effects on sewage, causing harm to the environment. In previous studies, our group identified adsorption as a crucial factor in catalytic ozonation processes, and subsequent observations revealed the catalyst's role in reducing toxicity during degradation. In this research, we quantified organochlorine intermediates and low molecular weight organic acids generated under optimal pH conditions (pH 9), with and without the catalyst. Additionally, we assessed the reactivity of these intermediates through theoretical calculations. Our findings indicate that the catalyst reduces the duration of intermediates. Additionally, the presence of CO2 suggests enhanced mineralization of pentachlorophenol, a process notably facilitated by the catalyst. Theoretical calculations, such as Fukui analysis, offer insights into potential pathways for the dechlorination of aromatic molecules by radicals like OH, indicating the significance of this pathway.
Collapse
Affiliation(s)
- Cristian Valdés
- Centro de investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique, 1110939, Chile.
| | - Rubén A Fritz
- Dirección de Investigación Científica y Tecnológica. Vicerrectoría de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Universidad Católica del Maule, Avenida San Miguel 3605, Casilla 617, Talca, Chile
| | - Jorge Villaseñor
- Laboratorio de Fisicoquímica, Instituto de Química y Recursos Naturales, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Gina Pecchi
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Edgardo Avendaño
- Departamento de Química e Ingeniería Química, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores s/n, Tacna, 23001, Perú
| | - Alvaro Delgadillo
- Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, Chile
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | |
Collapse
|
8
|
Franco Peláez D, Rodríguez S JL, Poznyak T, Martínez Gutiérrez H, Andraca Adame JA, Lartundo Rojas L, Ramos Torres CJ. Efficient catalytic activity of NiO and CeO 2 films in benzoic acid removal using ozone. RSC Adv 2024; 14:3923-3935. [PMID: 38283593 PMCID: PMC10813819 DOI: 10.1039/d3ra07316e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
This research focuses on the synthesis of NiO and CeO2 thin films using spray pyrolysis for the removal of benzoic acid using ozone as an oxidant. The results indicate that the addition of CeO2 films significantly enhances the mineralization of benzoic acid, achieving a rate of over 80% as the CeO2 films react with ozone to produce strong oxidant species, such as hydroxyl radicals, superoxide radicals, and singlet oxygen as demonstrated by the presence of quenchers in the reaction system. The difference in catalytic activity between NiO and CeO2 films was analyzed via XPS technique; specifically, hydroxyl oxygen groups in the CeO2 film were greater in number than those in the NiO film, thus benefitting catalytic oxidation as these species are considered active oxidation sites. The effects of nozzle-substrate distances and deposition time during the synthesis of the films on benzoic acid removal efficiency were also explored. Based on XRD characterization, it was established that the NiO and CeO2 films were polycrystalline with a cubic structure. NiO spherical nanoparticles were well-distributed on the substrate surface, while some pin holes and overgrown clusters were observed in the CeO2 films according to the SEM results. The stability of the CeO2 films after five consecutive cycles confirms their reusability. The retrieval of films is easy because it does not require additional separation methods, unlike the catalyst in powder form. The obtained results indicate that the CeO2 films have potential application in pollutant removal from water through catalytic ozonation.
Collapse
Affiliation(s)
- Daynahi Franco Peláez
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Julia Liliana Rodríguez S
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Tatyana Poznyak
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Hugo Martínez Gutiérrez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - J Alberto Andraca Adame
- Departamento Ciencias Básicas, UPIIH-Instituto Politécnico Nacional México City 42050 Mexico
| | - Luis Lartundo Rojas
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Claudia Jazmín Ramos Torres
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| |
Collapse
|
9
|
Li Y, Fu M, Zhang X, He C, Chen D, Xiong Y, Guo L, Tian S. Enhanced catalytic ozonation performance by CuO x nanoclusters/TiO 2 nanotube and an insight into the catalytic mechanism. J Colloid Interface Sci 2023; 651:589-601. [PMID: 37562301 DOI: 10.1016/j.jcis.2023.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Highly reactive nanoclusters of metal oxides are extremely difficult to be synthesized due to their thermodynamic instability. For the first time, CuOx nanoclusters supported on anatase TiO2 nanotubes (NT) with many defects as anchoring sites were successfully prepared. Although the copper loading reached as high as 2.5 %, the size of CuOx nanoclusters in the sample of 2.5 %CuOx/NT were mainly around 1.0 nm. The aggregation of copper species during the calcination process was undoubtedly hampered by the anchoring effects of the abundant defects in NT support. Due to the highly exposed undercoordinated atoms of CuOx nanoclusters, the mixed valences of copper, and the strong interface interaction between CuOx nanoclusters and NT support, 2.5 %CuOx/NT-catalyzed ozonation showed the highest pseudo-first-order reaction rate constant of 8.5 × 10-2 min-1, 2.2 and 4.0 times that of NT-catalyzed ozonation and ozonation alone, respectively. Finally, the catalytic mechanism was revealed by both experiments and density functional theory calculations (DFT). The results demonstrated that the undercoordinated Cu in CuOx/NT could highly promote the adsorption of ozone with a high adsorption energy of -125.16 eV and the adsorbed ozone was activated immediately, tending to dissociate into a O2 molecule and a surface O atom. Thus, abundant reactive oxygen species, e.g., hydroxyl radical (·OH), superoxide radical (·O2-) and singlet oxygen (1O2), could be generated via chain reactions. Especially, ·OH mainly contributed to the removal of ibuprofen pollutants. This work sheds a light on the design and preparation of highly reactive nanoclusters of metal oxide catalysts for catalytic ozonation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yiqing Li
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Manqin Fu
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaoxia Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun He
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Dingsheng Chen
- Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environmental (MEE), Guangzhou 510655, PR China
| | - Ya Xiong
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Liqing Guo
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Shuanghong Tian
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China.
| |
Collapse
|
10
|
Van HT, Hoang VH, Luu TC, Vi TL, Nga LTQ, Marcaida GSIJ, Pham TT. Enhancing acid orange II degradation in ozonation processes with CaFe 2O 4 nanoparticles as a heterogeneous catalyst. RSC Adv 2023; 13:28753-28766. [PMID: 37790093 PMCID: PMC10543647 DOI: 10.1039/d3ra04553f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
This study used CaFe2O4 nanoparticles as a catalyst for ozonation processes to degrade Acid Orange II (AOII) in aqueous solution. The study compared heterogeneous catalytic ozonation (CaFe2O4/O3) with ozone treatment alone (O3) at different pH values (3-11), catalyst dosages (0.25-2.0 g L-1), and initial AOII concentrations (100-500 mg L-1). The O3 alone and CaFe2O4/O3 systems nearly completely removed AOII's color. In the first 5 min, O3 alone had a color removal efficiency of 75.66%, rising to 92% in 10 min, whereas the CaFe2O4/O3 system had 81.49%, 94%, and 98% after 5, 10, and 20 min, respectively. The O3 and CaFe2O4/O3 systems degrade TOC most efficiently at pH 9 and better with 1.0 g per L CaFe2O4. TOC removal effectiveness reduced from 85% to 62% when the initial AOII concentration increased from 100 to 500 mg L-1. The study of degradation kinetics reveals a pseudo-first-order reaction mechanism significantly as the solution pH increased from 3 to 9. Compared to the O3 alone system, the CaFe2O4/O3 system has higher k values. At pH 9, the k value for the CaFe2O4/O3 system is 1.83 times higher than that of the O3 alone system. Moreover, increasing AOII concentration from 100 mg L-1 to 500 mg L-1 subsequently caused a decline in the k values. The experimental data match pseudo-first-order kinetics, as shown by R2 values of 0.95-0.99. AOII degradation involves absorption, ozone activation, and reactive species production based on the existence of CaO and FeO in the CaFe2O4 nanocatalyst. This catalyst can be effectively recycled multiple times.
Collapse
Affiliation(s)
- Huu Tap Van
- Center for Advanced Technology Development, Thai Nguyen University Tan Thinh Ward Thai Nguyen City Vietnam
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Van Hung Hoang
- Thai Nguyen University Tan Thinh Ward Thai Nguyen City Vietnam
- Faculty of Agriculture and Forestry, TNU - Lao Cai Campus Lao Cai City Vietnam
| | - Thi Cuc Luu
- Faculty of Agriculture and Forestry, TNU - Lao Cai Campus Lao Cai City Vietnam
| | - Thuy Linh Vi
- Faculty of Natural Resources and Environment, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Luong Thi Quynh Nga
- Department of Infectious Diseases, Faculty of Sub-Specialties, Thai Nguyen University of Medicine and Pharmacy (TNUMP) No. 284, Luong Ngoc Quyen Street Thai Nguyen City Vietnam
| | - Gio Serafin Ivan Jimenez Marcaida
- Department of Environmental Science and Management, Advanced Education Program, TNU - University Agriculture and Forestry (TUAF) Quyet Thang Ward Thai Nguyen City Vietnam
| | - Truong-Tho Pham
- Laboratory of Magnetism and Magnetic Materials, Science and Technology Advanced Institute, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| |
Collapse
|
11
|
Mohebali H, Moussavi G, Karimi M, Giannakis S. Development of a magnetic Ce-Zr bimetallic MOF as an efficient catalytic ozonation mediator: Preparation, characterization, and catalytic activity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Abdelbaky M, Abdelghany AM, Oraby AH, Abdelrazek EM, Rashad MM. Efficacious elimination of crystal violet pollutant via photo-Fenton process based on Gd (2-x)La (x)Zr 2O 7 nanoparticles. Sci Rep 2023; 13:7723. [PMID: 37173412 PMCID: PMC10182015 DOI: 10.1038/s41598-023-34838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The photo-Fenton process is an appropriate method of the Advanced Oxidation Process that is used in the photocatalysis of organic dyes like crystal violet (CV). La3+ ion substituted gadolinium zirconium oxide Gd(2-x)La(x)Zr2O7 nanopowders (x = 0.1, 0.2, 0.3, and 0.5) have been successfully prepared by using sol-gel auto-combustion method to be used for the efficient photocatalysis of CV with photo-Fenton process. The well-crystallized defect-fluorite, structured with space group: Fm-3m, was detected using X-ray diffraction analysis. The lattice parameters were found to increase with the evaluated La3+ ion concentration. The grain size of the synthesized powders increased with the increase in La3+ ion content. The SAED patterns depicted fluorite structured fluorite. UV/Vis. spectrophotometer was used for the determination of band gap energy of Gd(2-x)La(x)Zr2O7 nanopowders which increased with increasing La3+ ion content. It was found to enhance from 4 to 3.6 eV. The visible spectrophotometer was used for determining unknown concentrations during the photocatalysis process to assure the effectiveness of the process. Overall, results illustrate that the photo-Fenton reaction on Gd(2-x)La(x)Zr2O7 performed excellently in removing crystal violet (CV). The photo-remediation ratio of CV reached 90% within 1 h.
Collapse
Affiliation(s)
- M Abdelbaky
- Faculty of Science, New Mansoura University, International Coastal Rd, New Mansoura City, Dakahlia, Egypt.
| | - A M Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 ElBehouth St., DokkiGiza, 12311, Egypt
| | - A H Oraby
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - E M Abdelrazek
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - M M Rashad
- Electronic and Magnetic Materials Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, 11421, Cairo, Egypt
| |
Collapse
|
13
|
Boucenna N, Mokhtari-Belkhadem F, Bouteiba A, Sahel K, Medina F, Lounis M. Catalytic ozonation of N-methyldiethanolamine over mixed oxides derived from Mg/Fe-LDH. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1803-1818. [PMID: 37119156 DOI: 10.2166/wst.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The aim of this study was to evaluate the efficiency of catalytic ozonation to increase the degradation of aqueous N-methyldiethanolamine (MDEA) solutions, using two lamellar double hydroxides, namely MgxFe-LDH with x = Mg/Fe = 2, 3, were synthesized by the simple and rapid co-precipitation method. Then, the obtained materials were calcined at 400 °C for 6 h. The calcined products were respectively designated as HTcMg2Fe and HTcMg3Fe, and characterized by powder X-ray diffraction (XRD), N2 physisorption (BET), Fourier transform infrared spectra (FT-IR), and scanning electron microscopy (SEM). The powders produced were used in the ozonation reaction to remove MDEA from aqueous solutions. Experimental results showed that the highest MDEA removal efficiency is in the catalytic ozonation process. Under the optimal conditions for heterogeneous catalytic ozonation of MDEA: initial concentration of 4 Wt% MDEA, 30 °C, catalyst mass of 30 mg/100 ml solution, and contact time of 60 min. The results showed the highest percentage of COD removal, which was up to 80.76% for HTcMg2Fe higher than that of HTcMg3Fe 80.36%.
Collapse
Affiliation(s)
- Nabil Boucenna
- Laboratoire des Éco-Matériaux, Fonctionnels et Nanostructures, Faculté de Chimie, Université des Sciences et de la technologie d'Oran (USTO M. B), BP 1505 El M'naouar, Oran 31000, Algeria E-mail: ;
| | - Fatiha Mokhtari-Belkhadem
- Laboratoire des Éco-Matériaux, Fonctionnels et Nanostructures, Faculté de Chimie, Université des Sciences et de la technologie d'Oran (USTO M. B), BP 1505 El M'naouar, Oran 31000, Algeria E-mail: ;
| | - Ali Bouteiba
- Laboratoire de Chimie des Matériaux Inorganiques et Application (LCMIA), Faculté de Chimie, Université des Sciences et de la technologie d'Oran (USTO M. B), BP 1505 El M'naouar, Oran 31000, Algeria
| | - Karima Sahel
- Laboratoire des Éco-Matériaux, Fonctionnels et Nanostructures, Faculté de Chimie, Université des Sciences et de la technologie d'Oran (USTO M. B), BP 1505 El M'naouar, Oran 31000, Algeria E-mail: ;
| | - Francisco Medina
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Mourad Lounis
- Laboratoire FIMA, Faculté de Science et de la Technologie, Université Djilali Bounaama, Khemis Miliana 44225, Algeria
| |
Collapse
|
14
|
Wang X, Zhang Y, Zhang C, Wei H, Jin H, Mu Z, Chen X, Chen X, Wang P, Guo X, Ding F, Liu X, Ma L. Artificial intelligence-aided preparation of perovskite SrFe xZr 1-xO 3-δ catalysts for ozonation degradation of organic pollutant concentrated water after membrane treatment. CHEMOSPHERE 2023; 318:137825. [PMID: 36681194 DOI: 10.1016/j.chemosphere.2023.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Membrane technology has been widely used to treat wastewater from a variety of industries, but it also results in a large amount of concentrated wastewater containing organic pollutants after membrane treatment, which is challenging to decompose. Here in this work, a series of perovskite SrFexZr1-xO3-δ catalysts were prepared via a modified co-precipitation method and evaluated for catalytic ozone oxidative degradation of m-cresol. An artificial neural intelligence networks (ANN) model was employed to train the experimental data to optimize the preparation parameters of catalysts, with SrFe0.13Zr0.87O3-δ being the optimal catalysts. The resultant catalysts before and after reduction were then thoroughly characterized and tested for m-cresol degradation. It was found that the co-doping of Fe and Zr at the B-site and the improvement of oxygen vacancies and oxygen active species by reduction dramatically increased TOC removal rates up to 5 times compared with ozone alone, with the conversion rate of m-cresol reaching 100%. We also proposed a possible mechanism for m-cresol degradation via investigating the intermediates using GC-MS, and confirmed the good versatility of the reduced SrFe0.13Zr0.87O3-δ catalyst to remove other common organic pollutants in concentrated wastewater. This work demonstrates new prospects for the use of perovskite materials in wastewater treatment.
Collapse
Affiliation(s)
- Xu Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Cheng Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Haibo Jin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Zhao Mu
- Institute of Applied Chemical Technology for Oilfield/ College of New Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Xiaofei Chen
- Chen Ping Laboratory of TIANS Engineering Technology Group Co. Ltd., Shijiazhuang 050000, Hebei, PR China
| | - Xinru Chen
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Ping Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Xiaoyan Guo
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China
| | - Fuchen Ding
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China.
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, PR China.
| |
Collapse
|
15
|
Wang D, Dong S, Fu S, Shen Y, Zeng T, Yu W, Lu X, Wang L, Song S, Ma J. Catalytic ozonation for imazapic degradation over kelp-derived biochar: Promotional role of N- and S-based active sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160473. [PMID: 36455736 DOI: 10.1016/j.scitotenv.2022.160473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
It is a feasible strategy to prepare reliable biochar catalysts for heterogeneous catalytic ozonation (HCO) processes by using inexpensive, high quality, and easily available raw materials. Here, an environmentally friendly, simple, and green biochar catalyst rich in nitrogen (N) and sulfur (S) has been prepared by the pyrolysis of kelp. Compared with directly carbonized kelp biomass (KB), acid-activated KB (KBA) and base-activated KB (KBB) have higher specific surface areas and more extensive porous structures, although only KBB displays effective ozone activation. Imazapic (IMZC), a refractory organic herbicide, was chosen as the target pollutant, which has apparently not hitherto been investigated in the HCO process. Second-order rate constants (k) for the reactions of IMZC with three different reactive oxygen species (ROS), specifically kO3, IMZC, kOH, IMZC, and k1O2, IMZC, have been determined as 0.974, 2.48 × 109, and 6.23 × 105 M-1 s-1, respectively. The amounts of graphitic N and thiophene S derived from the intrinsic N and S showed good correlations with the IMZC degradation rate, implicating them as the main active sites. OH and O2- and 1O2 were identified as main ROS in heterogeneous catalytic ozonation system for IMZC degradation. This study exemplified the utilization of endogenous N and S in biological carbon, and provided more options for the application of advanced oxidation processes and the development of marine resources.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiwen Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqi Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiti Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Beltrán FJ, Chávez AM, Cintas P, Martínez RF. Mechanistic Insights into the Oxidative Degradation of Formic and Oxalic Acids with Ozone and OH Radical. A Computational Rationale. J Phys Chem A 2023; 127:1491-1498. [PMID: 36749871 PMCID: PMC9940222 DOI: 10.1021/acs.jpca.2c08091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Gas-phase and aqueous oxidations of formic and oxalic acids with ozone and OH radicals have been thoroughly examined by DFT methods. Such acids are not only important feedstocks for the iterative construction of other organic compounds but also final products generated by mineralization and advanced oxidation of higher organics. Our computational simulation unravels both common and distinctive reaction channels, albeit consistent with known H atom abstraction pathways and formation of hydropolyoxide derivatives. Notably, reactions with neutral ozone and OH radical proceed through low-energy concerted mechanisms involving asynchronous transition structures. For formic acid, carbonylic H-abstraction appears to be more favorable than the dissociative abstraction of the acid proton. Formation of long oxygen chains does not cause a significant energy penalty and highly oxygenated products are stable enough, even if subsequent decomposition releases environmentally benign side substances like O2 and H2O.
Collapse
Affiliation(s)
- Fernando J. Beltrán
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| | - Ana María Chávez
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| |
Collapse
|
17
|
Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts 2023. [DOI: 10.3390/catal13020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Catalytic ozonation is a non-selective mineralization technology of organic matter in water by using active free radicals generated by ozone degradation. Catalytic ozonation technology can be divided into homogeneous catalytic reactions using metal ions as catalysts and heterogeneous catalytic reactions using solid catalysts. Homogeneous catalytic ozonation technology has many problems, such as low mineralization rate, secondary pollution caused by the introduction of metal ions and low utilization efficiency of oxidants, which limit its practical application. Compared with homogeneous catalytic ozonation technology, heterogeneous catalytic ozonation technology has the advantages of easy recovery, lower cost of water treatment, higher activity and improved mineralization rate of organic matter. This overview classifies and describes catalysts for heterogeneous catalytic ozonation technology, including the different types of metal oxides, metal-free catalysts, and substrates used to immobilize catalysts. In addition, the heterogeneous catalytic ozonation process involved in the multiphase complex reaction process is discussed. The effects of different parameters on the performance of heterogeneous catalytic ozonation are also discussed.
Collapse
|
18
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
19
|
Zhu S, Jiang R, Qin L, Huang D, Yao C, Xu J, Wang Z. Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158518. [PMID: 36063926 DOI: 10.1016/j.scitotenv.2022.158518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Undiluted dairy farm liquid digestate contains high levels of organic matters, chromaticity and total ammonia nitrogen (TAN), resulting in inhibition to microalgal growth. In this study, a novel cascade pretreatment with ozonation and ammonia stripping (O + S) was employed to remove these inhibitors, and was compared with single pretreatment approach. The optimum parameters for ozonation and ammonia stripping were obtained and the mechanisms of inhibition elimination were investigated. The results show that ozonation contributed to the degradation of non-fluorescent chromophoric organics through the direct molecular ozone attack, which mitigated the inhibition of chromaticity to microalgae, while ammonia stripping relieved the inhibition of high TAN to microalgae. After cascade pretreatment, TAN, total nitrogen (TN), COD and chromaticity were reduced by 80.2 %, 75.4 %, 20.6 % and 75.8 % respectively. When C. vulgaris was cultured on different pretreated digestate, it was found that cascade pretreatment was beneficial for retaining high PSII activity and synergistically improved microalgal growth. The highest biomass increment and productivity achieved 5.40 g L-1 and 900 mg L-1 d-1 respectively in the integration system of cascade pretreatment with microalgae cultivation (O + S + M). After O + S + M treatment, the removal efficiencies of TAN, TN, COD and total phosphorus (TP) were 100 %, 92.8 %, 46.7 % and 99.6 %, respectively. This work provided a promising strategy (O + S + M) for sustainable liquid digestate treatment, along with nutrient recovery and value-added biomass production.
Collapse
Affiliation(s)
- Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Renyuan Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chongzhi Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
20
|
Rodríguez JL, Valenzuela MA. Ni-based catalysts used in heterogeneous catalytic ozonation for organic pollutant degradation: a minireview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84056-84075. [PMID: 36251197 DOI: 10.1007/s11356-022-23634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Among various advanced oxidation processes for wastewater treatment, heterogeneous catalytic ozonation (HCO) has a growing interest in pollutant degradation, e.g., pesticides, pharmaceuticals, cresols, detergents, polymers, dyes, and others. Direct oxidation with ozone can occur by this route or indirectly, generating reactive oxygen species through the catalytic activation of the ozone molecule. Then, many catalytic materials were evaluated, such as unsupported and supported oxides, activated carbon, nanocarbons, carbon nitride, and mesoporous materials. This review focuses on the properties and performance of Ni-based catalysts (NiO, supported NiO, Ni ferrites, and M-Ni bimetallic), emphasizing the reaction mechanisms and the importance of the reactive oxygen species in removing toxic organic compounds.
Collapse
Affiliation(s)
- Julia L Rodríguez
- Lab. Ing. Química Ambiental, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de México, México.
| | - Miguel A Valenzuela
- Lab. Catálisis Y Materiales, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de México, México
| |
Collapse
|
21
|
Qazi UY, Iftikhar R, Ikhlaq A, Riaz I, Jaleel R, Nusrat R, Javaid R. Application of Fe-RGO for the removal of dyes by catalytic ozonation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89485-89497. [PMID: 35852749 DOI: 10.1007/s11356-022-21879-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Due to continuous industrialization, the discharge of hazardous dyes has enormously disrupted the ecosystem causing environmental problems. Due to the stable recalcitrant nature of dyes, advanced catalytic ozonation processes with the latest catalyst are under investigation. Fe-RGO is an effective oxidation catalyst, and the metal loaded platform provides enhanced catalytic performance. This study aims to investigate the effectiveness of Fe-RGO/O3 process for the removal of dyes. In the current research, the application of iron-coated reduced graphene oxide (Fe-RGO) was studied as a catalyst in the heterogeneous catalytic ozonation process to remove dyes. Methylene blue (MB) was selected as a model pollutant. RGO was prepared using the improved Hummers method and was coated with iron (Fe) implying the impregnation method. The FTIR, SEM-EDX, XRD, and BET analyses of RG and Fe-RGO were performed to characterize the catalyst. The effect of various parameters such as pH (3-10), catalyst dose (0.01-0.04 g), and radical scavengers (NaHCO3, NaCl) on removal efficiency was elucidated. The result revealed an excellent catalytic efficiency of Fe-RGO in the ozonation process. At optimum conditions, 96% removal efficiency was achieved in catalytic ozonation at pH 7 with a catalyst dose of 0.02 g and ozone dose 0.5 mg/min, after 10 min. Interestingly, a slight decrease in removal efficiency was observed in the catalytic ozonation process in hydroxyl radical scavengers (NaCl and NaHCO3), which makes the proposed catalyst more applicable in real conditions. Therefore, it is concluded that Fe-RGO can be used as an excellent catalyst for the removal of dyes in real conditions where radical scavengers may be present in a significant amount.
Collapse
Affiliation(s)
- Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Kingdom of Saudi Arabia
| | - Rabia Iftikhar
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan.
| | - Ibtsam Riaz
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Rashid Jaleel
- Department of Physics, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
- School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Rabia Nusrat
- Institute of Environmental Engineering and Research, University of Engineering and Technology, GT Road, Lahore, 54890, Punjab, Pakistan
| | - Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298, Japan.
| |
Collapse
|
22
|
Nica AV, Olaru EA, Bradu C, Dumitru A, Avramescu SM. Catalytic Ozonation of Ibuprofen in Aqueous Media over Polyaniline-Derived Nitrogen Containing Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193468. [PMID: 36234595 PMCID: PMC9565786 DOI: 10.3390/nano12193468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/20/2023]
Abstract
Catalytic ozonation is an important water treatment method among advanced oxidation processes (AOPs). Since the first development, catalytic ozonation has been consistently improved in terms of catalysts used and the optimization of operational parameters. The aim of this work is to compare the catalytic activity of polyaniline (PANI) and thermally treated polyaniline (PANI 900) in the catalytic ozonation of ibuprofen solutions at different pH values (4, 7, and 10). Catalysts were thoroughly characterized through multiple techniques (SEM, Raman spectroscopy, XPS, pHPZC, and so on), while the oxidation process of ibuprofen solutions (100 mgL-1) was assessed by several analytical methods (HPLC, UV254, TOC, COD, and BOD5). The experimental data demonstrate a significant improvement in ibuprofen removal in the presence of prepared solids (20 min for PANI 900 at pH10) compared with non-catalytic processes (56 min at pH 10). Moreover, the influence of solution pH was emphasized, showing that, in the basic region, the removal rate of organic substrate is higher than in acidic or neutral range. Ozone consumption mgO3/mg ibuprofen was considerably reduced for catalytic processes (17.55-PANI, 11.18-PANI 900) compared with the absence of catalysts (29.64). Hence, beside the ibuprofen degradation, the catalysts used are very active in the mineralization of organic substrate and/or formation of biodegradable compounds. The best removal rate of target pollutants and oxidation by-products was achieved by PANI 900, although raw polyaniline also presents important activity in the oxidation process. Therefore, it can be stated that polyaniline-based catalysts are effective in the oxidation processes.
Collapse
Affiliation(s)
- Angel-Vasile Nica
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
| | - Elena Alina Olaru
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
| | - Corina Bradu
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
| | - Anca Dumitru
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
- Correspondence: (A.D.); (S.M.A.)
| | - Sorin Marius Avramescu
- PROTMED Research Centre, University of Bucharest, Splaiul Independenţei 91–95, Sect. 5, 050107 Bucharest, Romania
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania
- Correspondence: (A.D.); (S.M.A.)
| |
Collapse
|
23
|
Khoo YS, Goh PS, Lau WJ, Ismail AF, Abdullah MS, Mohd Ghazali NH, Yahaya NKEM, Hashim N, Othman AR, Mohammed A, Kerisnan NDA, Mohamed Yusoff MA, Fazlin Hashim NH, Karim J, Abdullah NS. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. CHEMOSPHERE 2022; 305:135151. [PMID: 35654232 DOI: 10.1016/j.chemosphere.2022.135151] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nor Hisham Mohd Ghazali
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ahmad Rozian Othman
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Alias Mohammed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Nirmala Devi A/P Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Muhammad Azroie Mohamed Yusoff
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Noor Haza Fazlin Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Jamilah Karim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nor Salmi Abdullah
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
24
|
Recent Developments in Activated Carbon Catalysts Based on Pore Size Regulation in the Application of Catalytic Ozonation. Catalysts 2022. [DOI: 10.3390/catal12101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to its highly developed pore structure and large specific surface area, activated carbon is often used as a catalyst or catalyst carrier in catalytic ozonation. Although the pore structure of activated carbon plays a significant role in the treatment of wastewater and the mass transfer of ozone molecules, the effect is complicated and unclear. Because different application scenarios require catalysts with different pore structures, catalysts with appropriate pore structure characteristics should be developed. In this review, we systematically summarized the current adjustment methods for the pore structure of activated carbon, including raw material, carbonization, activation, modification, and loading. Then, based on the brief introduction of the application of activated carbon in catalytic ozonation, the effects of pore structure on catalytic ozonation and mass transfer are reviewed. Furthermore, we proposed that the effect of pore structure is mainly to provide catalytic active sites, promote free radical generation, and reduce mass transfer resistance. Therefore, large external surface area and reasonable pore size distribution are conducive to catalytic ozonation and mass transfer.
Collapse
|
25
|
Efficient One-Pot Synthesis of TiO2/ZrO2/SiO2 Ternary Nanocomposites Using Prunus × Yedoensis Leaf Extract for Enhanced Photocatalytic Dye Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3088827. [PMID: 36120599 PMCID: PMC9481355 DOI: 10.1155/2022/3088827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
A simple, efficient, and ecofriendly method was employed to synthesize TiO2/ZrO2/SiO2 ternary nanocomposites using Prunus × yedoensis leaf extract (PYLE) that shows improved photocatalytic and antibacterial properties. The characterization of the obtained nanocomposites was done by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopic (EDS) analysis. The synthesized ternary nanocomposites with nanoscale pore diameters were investigated for the elimination of Reactive Red 120 (RR120) dye. The obtained results showed about 96.2% removal of RR120 dye from aqueous solution under sunlight irradiation. Furthermore, it shows promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The improved photocatalytic and antibacterial activity of TiO2/ZrO2/SiO2 may bring unique insights into the production of ternary nanocomposites and their applications in the environment and biomedical field.
Collapse
|
26
|
Naghizadeh M, Aghapour AA, khorsandi H. The degradation and mineralization of hydrochlorothiazide (HCTZ) using catalytic ozonation process (COP) with Al2O3/granular activated carbon composite. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wang D, Yang Z, Lu X, Wang L, Song S, Ma J. 催化臭氧净水过程中催化材料晶面的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zhang J, Guo Q, Wu W, Shao S, Li Z, Liu Y, Jiao W. Preparation of Fe-MnOX/AC by high gravity method for heterogeneous catalytic ozonation of phenolic wastewater. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
30
|
Rigoletto DM, Calza P, Gaggero E, Laurenti DE. Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
31
|
Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO 2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor. MATERIALS 2021; 14:ma14185207. [PMID: 34576439 PMCID: PMC8467099 DOI: 10.3390/ma14185207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/07/2022]
Abstract
This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV-Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L-1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.
Collapse
|
33
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Abstract
Phenol acts as a pollutant even at very low concentrations in water. It is classified as one of the main priority pollutants that need to be treated before being discharged into the environment. If phenolic-based compounds are discharged into the environment without any treatments, they pose serious health risks to humans, animals, and aquatic systems. This review emphasizes the development of advanced technologies for phenol removal. Several technologies have been developed to remove phenol to prevent environmental pollution, such as biological treatment, conventional technologies, and advanced technologies. Among these technologies, heterogeneous catalytic ozonation has received great attention as an effective, environmentally friendly, and sustainable process for the degradation of phenolic-based compounds, which can overcome some of the disadvantages of other technologies. Recently, zeolites have been widely used as one of the most promising catalysts in the heterogeneous catalytic ozonation process to degrade phenol and its derivatives because they provide a large specific surface area, high active site density, and excellent shape-selective properties as a catalyst. Rational design of zeolite-based catalysts with various synthesis methods and pre-defined physiochemical properties including framework, ratio of silica to alumina (SiO2/Al2O3), specific surface area, size, and porosity, must be considered to understand the reaction mechanism of phenol removal. Ultimately, recommendations for future research related to the application of catalytic ozonation technology using a zeolite-based catalyst for phenol removal are also described.
Collapse
|
35
|
Zhao KH, Ma YL, Lin F, Ge SY, Zhu L. Refractory organic compounds in coal chemical wastewater treatment by catalytic ozonation using Mn-Cu-Ce/Al 2O 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41504-41515. [PMID: 33782829 DOI: 10.1007/s11356-021-13629-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A composite Mn-Cu-Ce tri-metal oxide supported on γ-Al2O3 (Mn-Cu-Ce/Al2O3) catalyst was prepared by an impregnation-calcination method and investigated in the catalytic ozonation treatment of real coal chemical wastewater (CCW). The catalyst was characterized by XRD, SEM, TEM, XRF, BET, and XPS techniques. The results showed that Mn, Cu, and Ce metal oxides were evenly distributed on the Al2O3 surface and the catalyst maintained a large surface area and a high pore volume compared with the pristine Al2O3. The synergy between Mn, Cu, and Ce oxides greatly enriched the catalytic active sites and enhanced the ozonation performance. The catalytic ozonation process with Mn-Cu-Ce/Al2O3 increased the removal rate of total organic carbon (TOC) by 31.6% compared with ozonation alone. The ketones, aromatic compounds, phenols, and nitrogen-containing heterocyclic compounds in CCW have been effectively degraded and mineralized by Mn-Cu-Ce/Al2O3 catalytic ozonation process, and its biodegradability has also been significantly improved. The experimental results of ∙OH scavengers revealed that the mechanism of Mn-Cu-Ce/Al2O3 catalytic ozonation was to promote the generation of ∙OH radicals. The catalytic activity of Mn-Cu-Ce/Al2O3 was only a slight decrease in six consecutive catalytic ozonation treatments, showing good stability. Therefore, Mn-Cu-Ce/Al2O3 can be used as a candidate catalyst for the advanced treatment of refractory organic wastewaters upon catalytic ozonation.
Collapse
Affiliation(s)
- Kang-He Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Helanshan Rd. 539, Yinchuan, 750021, China
| | - Yu-Long Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Helanshan Rd. 539, Yinchuan, 750021, China.
| | - Feng Lin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Helanshan Rd. 539, Yinchuan, 750021, China
| | - Shao-Ying Ge
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Helanshan Rd. 539, Yinchuan, 750021, China
| | - Li Zhu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Helanshan Rd. 539, Yinchuan, 750021, China
| |
Collapse
|
36
|
Promoted elimination of antibiotic sulfamethoxazole in water using sodium percarbonate activated by ozone: Mechanism, degradation pathway and toxicity assessment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021. [DOI: 10.3390/catal11070782] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The petroleum industry is one of the most rapidly developing industries and is projected to grow faster in the coming years. The recent environmental activities and global requirements for cleaner methods are pushing the petroleum refining industries for the use of green techniques and industrial wastewater treatment. Petroleum industry wastewater contains a broad diversity of contaminants such as petroleum hydrocarbons, oil and grease, phenol, ammonia, sulfides, and other organic composites, etc. All of these compounds within discharged water from the petroleum industry exist in an extremely complicated form, which is unsafe for the environment. Conventional treatment systems treating refinery wastewater have shown major drawbacks including low efficiency, high capital and operating cost, and sensitivity to low biodegradability and toxicity. The advanced oxidation process (AOP) method is one of the methods applied for petroleum refinery wastewater treatment. The objective of this work is to review the current application of AOP technologies in the treatment of petroleum industry wastewater. The petroleum wastewater treatment using AOP methods includes Fenton and photo-Fenton, H2O2/UV, photocatalysis, ozonation, and biological processes. This review reports that the treatment efficiencies strongly depend on the chosen AOP type, the physical and chemical properties of target contaminants, and the operating conditions. It is reported that other mechanisms, as well as hydroxyl radical oxidation, might occur throughout the AOP treatment and donate to the decrease in target contaminants. Mainly, the recent advances in the AOP treatment of petroleum wastewater are discussed. Moreover, the review identifies scientific literature on knowledge gaps, and future research ways are provided to assess the effects of these technologies in the treatment of petroleum wastewater.
Collapse
|
38
|
Cai C, Duan X, Xie X, Kang S, Liao C, Dong J, Liu Y, Xiang S, Dionysiou DD. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe 2O 4 catalyst in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124604. [PMID: 33277078 DOI: 10.1016/j.jhazmat.2020.124604] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
CoFe2O4 (Cobalt ferrite, CF) nanoparticles were prepared, well characterized and applied as efficient solid catalyst in catalytic ozonation, named CF/O3 process, for the removal of emerging organic contaminants (EOCs). The degradation and mineralization of clofibric acid (CA) in CF/O3 process were dramatically enhanced in comparison with those under the O3 system. Surface hydroxyl groups (HGs) were considered as an important factor for ozone decomposition and the reactive oxygen species (ROS) on the catalyst surface were mainly responsible for CA elimination. The contribution and formation of ROS, including hydroxyl radicals (•OH), especially superoxide radicals (O2•-), singlet oxygen (1O2), and hydrogen peroxide (H2O2) were evaluated, and a rational mechanism was elucidated accordingly. Probable degradation pathway of CA was proposed according to the organic intermediates identified. The acute toxicity of the treated solution increased during the first 15 min and then declined rapidly and nearly disappeared as the reaction proceeded. In addition, acceptable catalytic performance of CF/O3 can be obtained for the treatment of other EOCs and the treatment of natural surface water spiked with CA. This work presents an efficient and promising catalytic ozonation technique for the elimination of EOCs in complex water matrices.
Collapse
Affiliation(s)
- Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China; Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States
| | - Xianjun Xie
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Shuping Kang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiaming Dong
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Yangfan Liu
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States.
| |
Collapse
|
39
|
Cao Q, Sang L, Tu J, Xiao Y, Liu N, Wu L, Zhang J. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. CHEMOSPHERE 2021; 270:128621. [PMID: 33092824 DOI: 10.1016/j.chemosphere.2020.128621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Recently microreactor technology attracts attention due to the excellent multiphase mixing and enhanced mass transfer. Herein, a continuous ozonation system based on a micro-packed bed reactor (μPBR) was used to improve the dissolution rate of ozone and achieved a rapid and efficient degradation of refractory organic pollutants. The effects of liquid flow rate, gas flow rate, initial pH, initial O3 concentration and initial phenol concentration on the phenol and chemical oxygen demand (COD) removal efficiencies were also investigated. Experimental results showed that phenol and COD removal efficiencies under optimal conditions achieved 100.0% and 86.4%, respectively. Compared with large-scale reactors, the apparent reaction rate constant in μPBR increased by 1-2 orders of magnitude. In addition, some typical organic pollutants (including phenols, antibiotics and dyes) were treated by ozonation in μPBR. The removal efficiencies of these organic pollutants and COD achieved 100.0% and 70.2%-80.5% within 71 s, respectively. In this continuous treatment system, 100% of the unreacted ozone was converted to oxygen, which promoted the healthy development of aquatic ecosystems. Thus, this continuous system based on μPBR is a promising method in rapid and efficient treating refractory organic pollutants.
Collapse
Affiliation(s)
- Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Le Sang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiacheng Tu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Chen H, Wang J. MOF-derived Co 3O 4-C@FeOOH as an efficient catalyst for catalytic ozonation of norfloxacin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123697. [PMID: 33264886 DOI: 10.1016/j.jhazmat.2020.123697] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) ZIF-67-derived Co3O4-C@FeOOH composite was prepared, characterized and used as an efficinet catalyst for ozonation of norfloxacin (NOF). Results showed that ZIF-67-derived Co3O4-C composite maintained the polyhedral structure of ZIF-67. After modification, abundant amorphous FeOOH nanowire attached on the surface of Co3O4-C composite, resulting in Co3O4-C@FeOOH interwoven polyhedrons. Furthermore, the specific surface area of the formed composite was about 2.5 times that of Co3O4-C composite, which might provide more active sites for catalytic reaction. Compared with single ozonation system, the catalytic ozonation process (Co3O4-C@FeOOH/O3) had better performance in NOF mineralization under the same operating conditions. Moreover, in the presence of Co3O4-C@FeOOH, faster O3 decomposition and higher •OH concentration were observed, which could explain the significant enhancement of TOC removal. The co-existence of Fe and Co in various valence states in catalyst might improve the conversion of Co(III)/Co(II) and Fe(III)/Fe(II), which would increase the catalytic activity in catalytic ozonation process. Besides, several main intermediate products were detected and possible NOF degradation pathway was proposed.
Collapse
Affiliation(s)
- Hai Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Top 10 Cited Papers in the Section “Environmental Catalysis”. Catalysts 2021. [DOI: 10.3390/catal11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This editorial examines the 10 most cited articles of 2018–2019 published in the “Environmental Catalysis” section of the Catalysts journal [...]
Collapse
|
42
|
Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts 2020. [DOI: 10.3390/catal10121485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to summarize the results obtained in a wide research project carried out for more than 15 years on the catalytic activity of different catalysts (activated carbon, metal–carbon xerogels/aerogels, iron-doped silica xerogels, ruthenium metal complexes, reduced graphene oxide-metal oxide composites, and zeolites) in the photooxidation (by using UV or solar radiation) and ozonation of water pollutants, including herbicides, naphthalenesulfonic acids, sodium para-chlorobenzoate, nitroimidazoles, tetracyclines, parabens, sulfamethazine, sodium diatrizoate, cytarabine, and surfactants. All catalysts were synthesized and then texturally, chemically, and electronically characterized using numerous experimental techniques, including N2 and CO2 adsorption, mercury porosimetry, thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV–vis spectroscopy, photoluminescence analysis, and transmission electron microscopy. The behavior of these materials as photocatalysts and ozonation catalysts was related to their characteristics, and the catalytic mechanisms in these advanced oxidation processes were explored. Investigations were conducted into the effects on pollutant degradation, total organic carbon reduction, and water toxicity of operational variables and the presence of different chemical species in ultrapure, surface, ground, and wastewaters. Finally, a review is provided of the most recent and relevant published studies on photocatalysis and catalyzed ozonation in water treatments using similar catalysts to those examined in our project.
Collapse
|
43
|
Heterogeneous Catalytic Ozonation of Aniline-Contaminated Waters: A Three-Phase Modelling Approach Using TiO2/GAC. WATER 2020. [DOI: 10.3390/w12123448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work aims to study the sustainable catalytic ozonation of aniline promoted by granular active carbon (GAC) doped with TiO2. Aniline was selected as a model compound for the accelerator manufacturing industries used in the manufacture of rubber due to its environmental impact, low biodegradability, and harmful genotoxic effects on human health. Based on the evolution of total organic carbon (TOC), aniline concentration measured using high performance liquid chromatography (HPLC), pH and ozone concentration in liquid and gas phase, and catalyst loading, a three-phase reaction system has been modelled. The proposed three-phase model related the ozone transfer parameters and the pseudo-first order kinetic constants through three coefficients that involve the adsorption process, oxidation in the liquid, and the solid catalyst. The interpretation of the kinetic constants of the process allowed the predominance of the mechanism of Langmuir–Hinshelwood or modified Eley–Rideal to be elucidated. Seven intermediate aromatic reaction products, representative of the direct action of ozone and the radical pathway, were identified and quantified, as well as precursors of the appearance of turbidity, with which two possible routes of degradation of aniline being proposed.
Collapse
|
44
|
Xu M, Zhou H, Wu Z, Li N, Xiong Z, Yao G, Lai B. Efficient degradation of sulfamethoxazole by NiCo 2O 4 modified expanded graphite activated peroxymonosulfate: Characterization, mechanism and degradation intermediates. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123103. [PMID: 32937720 DOI: 10.1016/j.jhazmat.2020.123103] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/24/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Expanded graphite (EG) immobilized nickel ferrite (NiCo2O4) was successfully constructed by a simple hydrothermal approach and applied for the degradation of sulfamethoxazole (SMX) in model wastewater by peroxymonosulfate (PMS) activation. The features of prepared catalysts were characterized by SEM, TEM, EDS, XRD, BET, TPD and XPS techniques. The influences of several critical parameters including the prepared NiCo2O4-EG dosages, PMS concentrations, temperature, initial solution pH and inorganic ions on SMX removal were studied in details. In particular, the synthesized NiCo2O4-EG exhibits excellent catalytic performances for SMX depredation over a wide pH range (pH 3.0-11.0). Besides, the transformation of various reactive oxygen species (SO4-, HO, O2- and 1O2) with the change of initial pH was investigated by the electron paramagnetic resonance (EPR) and quenching tests. In addition, twelve major degradation intermediates of SMX were detected by UPLC-QTOF-MS/MS. Finally, the PMS activation mechanism in NiCo2O4-EG/PMS system by the synergistic coupling of EG and NiCo2O4 were put forward. In brief, this work provided a promising and potential catalyst for PMS activation to remove SMX from wastewater.
Collapse
Affiliation(s)
- Mengjuan Xu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
45
|
Catalytic Ozonation and Membrane Contactors—A Review Concerning Fouling Occurrence and Pollutant Removal. WATER 2020. [DOI: 10.3390/w12112964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Membrane filtration has been widely used in water and wastewater treatment. However, this process is not very effective for the removal of refractory organic compounds (e.g., of pharmaceutical origin). Coupling membrane filtration with ozonation (or other Advanced Oxidation Methods) can enhance the degradation of these compounds and, subsequently, the incidence of membrane fouling (i.e., the major problem of membrane uses) would be also limited. Ozonation is an efficient oxidative process, although ozone is considered to be a rather selective oxidant agent and sometimes it presents quite low mineralization rates. An improvement of this advanced oxidation process is catalytic ozonation, which can decrease the by-product formation via the acceleration of hydroxyl radicals production. The hydroxyl radicals are unselective oxidative species, presenting high reaction constants with organic compounds. An efficient way to couple membrane filtration with catalytic ozonation is the deposition of an appropriate solid catalyst onto the membrane surface. However, it must be noted that only metal oxides have been used as catalysts in this process, while the membrane material can be of either polymeric or ceramic origin. The relevant studies regarding the application of polymeric membranes are rather scarce, because only a few polymeric materials can be ozone-resistant and the deposition of metal oxides on their surface presents several difficulties (e.g., affinity etc.). The respective literature about catalytic membrane ozonation is quite limited; however, some studies have been performed concerning membrane fouling and the degradation of micropollutants, which will be presented in this review. From the relevant results it seems that this hybrid process can be an efficient technology both for the reduction of fouling occurrence as well as of enhancement of micropollutant removal, when compared to the application of single filtration or ozonation.
Collapse
|
46
|
Ha LTV, Dai LM, Lim DT, Nhiem DN, Pham NN. Pure and cerium‐doped zinc oxides: Hydrothermal synthesis and photocatalytic degradation of methylene blue under visible light irradiation. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luu Thi Viet Ha
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Luu Minh Dai
- Institute of Materials Science Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Duong Thi Lim
- Institute of Geography Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Dao Ngoc Nhiem
- Institute of Materials Science Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Ngo Nghia Pham
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
47
|
Abstract
This study evaluates naproxen (NP) degradation efficiency by ozonation using nickel oxide films (NiO(F)) as a catalyst. The NiO films were synthesized by chemical vapor deposition and characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. NP degradation was conducted for 5 min using 10 films of NiO(F) comparing against ozonation using 100 mg/L NiO powder in suspension (NiO(S)) and conventional ozonation (O3-conv). Total organic carbon analysis demonstrated a mineralization degree of 12% with O3-conv, 35% with NiO as powder and 22% with NiO(F) after 60 min of reaction. The films of NiO(F) were sequentially used 4 times in ozonation demonstrating the stability of the synthesized material, as well as its properties as a catalyst for ozonation. A proposed modeling strategy using robust parametric identification techniques allows the comparison of NP decomposition pseudo-monomolecular reaction rates.
Collapse
|
48
|
Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions. Catalysts 2020. [DOI: 10.3390/catal10070786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The presence of pharmaceuticals in surface water, drinking water, and wastewater has attracted significant concern because of the non-biodegradability, resistance, and toxicity of pharmaceutical compounds. The catalytic ozonation of an anti-inflammatory pharmaceutical, ibuprofen was investigated in this work. The reaction mixture was analyzed and measured by high-performance liquid chromatography (HPLC). Liquid chromatography-mass spectrometry (LC-MS) was used for the quantification of by-products during the catalytic ozonation process. Ibuprofen was degraded by ozonation under optimized conditions within 1 h. However, some intermediate oxidation products were detected during the ibuprofen ozonation process that were more resistant than the parent compound. To optimize the process, nine heterogeneous catalysts were synthesized using different preparation methods and used with ozone to degrade the ibuprofen dissolved in aqueous solution. The aim of using several catalysts was to reveal the effect of various catalyst preparation methods on the degradation of ibuprofen as well as the formation and elimination of by-products. Furthermore, the goal was to reveal the influence of various support structures and different metals such as Pd-, Fe-, Ni-, metal particle size, and metal dispersion in ozone degradation. Most of the catalysts improved the elimination kinetics of the by-products. Among these catalysts, Cu-H-Beta-150-DP synthesized by the deposition–precipitation process showed the highest decomposition rate. The regenerated Cu-H-Beta-150-DP catalyst preserved the catalytic activity to that of the fresh catalyst. The catalyst characterization methods applied in this work included nitrogen adsorption–desorption, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The large pore volume and small metal particle size contributed to the improved catalytic activity.
Collapse
|
49
|
Surface-Modified Sewage Sludge-Derived Carbonaceous Catalyst as a Persulfate Activator for Phenol Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093286. [PMID: 32397257 PMCID: PMC7246733 DOI: 10.3390/ijerph17093286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/07/2022]
Abstract
In this study, a catalytic persulfate oxidation process comprising sodium persulfate (PS) and modified sewage sludge-derived carbonaceous catalysts was tested for the degradation of phenol. Sludge-based biochar was modified by high-temperature treatment combined with hydrochloric acid oxidation. The surface properties of carbonaceous catalysts before and after modification were characterized by elemental analysis, N2 isothermal adsorption-desorption, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The effects of reaction parameters including catalyst dosage, PS/phenol molar ratio, initial pH and reaction temperature on the degradation rate of phenol were investigated. The kinetics of phenol transformation was explored and the reaction rate appeared pseudo first-order kinetics. In SS-600-HCl/PS system, 91% phenol could be efficiently degraded under certain reaction conditions ([phenol]0 = 100 mg/L, catalyst dosage = 0.8 g/L, PS/phenol molar ratio = 3/1, pH = 7, 25 °C) in 180 min. Thus, the results showed that the modified sewage sludge-derived carbonaceous catalyst had a better ability to activate PS for phenol degradation.
Collapse
|
50
|
Abbas HA, Nasr RA, Abu-Zurayk R, Al Bawab A, Jamil TS. Decolourization of crystal violet using nano-sized novel fluorite structure Ga 2Zr 2-x W x O 7 photocatalyst under visible light irradiation. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191632. [PMID: 32269795 PMCID: PMC7137949 DOI: 10.1098/rsos.191632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/11/2020] [Indexed: 05/27/2023]
Abstract
Fluorite-type Zr-based oxides with the composition Ga2Zr2-x W x O7 (x = 0, 0.05, 0.1, 0.15 and 0.2) were prepared using the citrate technique. Appropriate characterizations of all prepared materials were carried out. X-ray diffraction clarified that the undoped and W-doped Ga2Zr2O7 samples were crystallized in the cubic fluorite phase structure. The average particle size of the samples was in the range of 3-8 nm. The lowest band gap (1.7 eV) and the highest surface area (124.3 m2 g-1) were recorded for Ga2Zr0.85W0.15O7. The photocatalytic impacts of the prepared systems were studied by removal of crystal violet (CV) dye employing visible light illumination and taking into consideration the initial dye concentrations, duration of visible irradiation treatment, catalysts dose and the dopant concentration. The obtained results showed higher dye removal with the boost of the catalyst dosage. W doping shifted the absorption to the visible light range by decreasing the band gap from 4.95 eV for parent Ga2Zr2O7 to 1.7 eV for 15 mol% tungsten-doped Ga2Zr2O7 enhancing the photocatalytic decolourization of CV from 4.2% to 83.6% for undoped and 15 mol% W-doped Ga2Zr2O7, respectively, at optimum operating conditions (pH 9, 1 g l-1 catalyst dose and 300 min) while heavily doped W sample containing 20 mol% W showed lower removal than 15 mol% W-doped Ga2Zr2O7. Complete CV degradation using 15 mol% W-doped Ga2Zr2O7 was attained with the assistance of 25 mmol l-1 hydrogen peroxide. The reaction is aligned to pseudo-first-order kinetics. Different scavengers were introduced to decide the significance of the reactive species in CV degradation. O 2 - ∙ and h + had the major role in the degradation of CV by Ga2Zr2-x W x O7 system compared with HO•.
Collapse
Affiliation(s)
- H. A. Abbas
- Inorganic Chemistry Department, National Research Center, El Behouth Street, PO Box 12622, Dokki, Cairo, Egypt
| | - Rabab A. Nasr
- Water Pollution Control Department, National Research Center, El Behouth Street, PO Box 12622, Dokki, Cairo, Egypt
| | - Rund Abu-Zurayk
- Chemistry Department School of Science, The University of Jordan, Hamdi Mango Centre for Scientific Research, 11942, Amman, Jordan
| | - Abeer Al Bawab
- Chemistry Department School of Science, The University of Jordan, Hamdi Mango Centre for Scientific Research, 11942, Amman, Jordan
| | - Tarek S. Jamil
- Water Pollution Control Department, National Research Center, El Behouth Street, PO Box 12622, Dokki, Cairo, Egypt
| |
Collapse
|