1
|
Teja YN, Sakar M. Comprehensive Insights into the Family of Atomically Thin 2D-Materials for Diverse Photocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303980. [PMID: 37461252 DOI: 10.1002/smll.202303980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Indexed: 11/16/2023]
Abstract
2D materials with their fascinating physiochemical, structural, and electronic properties have attracted researchers and have been used for a variety of applications such as electrocatalysis, photocatalysis, energy storage, magnetoresistance, and sensing. In recent times, 2D materials have gained great momentum in the spectrum of photocatalytic applications such as pollutant degradation, water splitting, CO2 reduction, NH3 production, microbial disinfection, and heavy metal reduction, thanks to their superior properties including visible light responsive band gap, improved charge separation and electron mobility, suppressed charge recombination and high surface reactive sites, and thus enhance the photocatalytic properties rationally as compared to 3D and other low-dimensional materials. In this context, this review spot-lights the family of various 2D materials, their properties and their 2D structure-induced photocatalytic mechanisms while giving an overview on their synthesis methods along with a detailed discussion on their diverse photocatalytic applications. Furthermore, the challenges and the future opportunities are also presented related to the future developments and advancements of 2D materials for the large-scale real-time photocatalytic applications.
Collapse
Affiliation(s)
- Y N Teja
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| |
Collapse
|
2
|
Abd Elkodous M, Kawamura G, Matsuda A. Al–SrTiO3/Au/CdS Z-schemes for the efficient photocatalytic H2 production under visible light. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023. [DOI: 10.1016/j.ijhydene.2023.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Abd Elkodous M, El-Khawaga AM, Abouelela MM, Abdel Maksoud MIA. Cocatalyst loaded Al-SrTiO 3 cubes for Congo red dye photo-degradation under wide range of light. Sci Rep 2023; 13:6331. [PMID: 37072527 PMCID: PMC10113377 DOI: 10.1038/s41598-023-33249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
The continued pollution, waste, and unequal distribution of the limited amount of fresh water on earth are pushing the world into water scarcity crisis. Consequently, development of revolutionary, cost-effective, and efficient techniques for water purification is essential. Herein, molten flux method was used for the preparation of micro-sized Al-doped SrTiO3 photocatalyst loaded with RhCr2O3 and CoOOH cocatalysts via simple impregnation method for the photo-assisted degradation of Congo red dye under UV and visible irradiation compared with P25 standard photocatalyst. In addition, photoelectrochemical analysis was conducted to reveal the separation and transfer efficiency of the photogenerated e-/h+ pairs playing the key role in photocatalysis. SEM and TEM analyses revealed that both P25 and the pristine SrTiO3 have spherical shapes, while Al-doped SrTiO3 and the sample loaded with cocatalysts have cubic shapes with a relatively higher particle size reaching 145 nm. In addition, the lowest bandgap is due to Al+3 ion doping and excessive surface oxygen vacancies, as confirmed by both UV-Vis diffuse-reflectance and XPS analyses. The loading of the cocatalysts resulted in a change in the bandgap from n-type (pristine SrTiO3 and Al-SrTiO3) into p-type (cocatalyst loaded sample) as exhibited by Mott-Schottky plots. Besides, the cocatalyst-loaded sample exhibited good performance stability after 5 cycles of the photocatalytic removal of Congo red dye. OH· radical was the primary species responsible for CR degradation as confirmed by experiments with radical scavengers. The observed performance of the prepared samples under both UV and visible light could foster the ongoing efforts towards more efficient photocatalysts for water purification.
Collapse
Affiliation(s)
- M Abd Elkodous
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Marwa Mohamed Abouelela
- Petrochemical Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
4
|
Construction of hierarchical FeIn2S4/BiOBr S-scheme heterojunction with enhanced visible-light photocatalytic performance for antibiotics degradation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Liu J, Wang H, Chang MJ, Li WJ, Zhu WY, Bai G, Yang LQ, Du HL, Luo ZM, Shang T. Efficient doping to synthesize high-performance Co/Fe-BiOCl photocatalyst assisted by the ion release from novel CoFe2O4 nanofiber reservoir. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Facile synthesis of BiOCl with extremely superior visible light photocatalytic activity synergistically enhanced by Co doping and oxygen vacancies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Abd Elkodous M, El-Khawaga AM, Abdel Maksoud MIA, El-Sayyad GS, Alias N, Abdelsalam H, Ibrahim MA, Elsayed MA, Kawamura G, Lockman Z, Tan WK, Matsuda A. Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. NANOSCALE 2022; 14:8306-8317. [PMID: 35660850 DOI: 10.1039/d2nr01710e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nurhaswani Alias
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- Theoretical Physics Department, National Research Centre, El-Buhouth Str., Dokki, Giza, 12622, Egypt
| | - Medhat A Ibrahim
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Zainovia Lockman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
8
|
Hussain A, Hou J, Tahir M, Ali S, Rehman ZU, Bilal M, Zhang T, Dou Q, Wang X. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif Hussain
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Department of Physics, University of Lahore, Lahore, Pakistan
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Guangling College, Yangzhou University, 225009, Yangzhou, Jiangsu. PR, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| | - Muhammad Tahir
- Physics Department, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - S.S Ali
- School of Physical Sciences University of the Punjab Lahore, 54590, Pakistan
| | - Zia Ur Rehman
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Muhammad Bilal
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Tingting Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Qian Dou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| |
Collapse
|
9
|
Photocatalysis: Activity of Nanomaterials. Catalysts 2021. [DOI: 10.3390/catal11050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Photocatalytic processes have shown great potential as a low-cost, green-chemical, and sustainable technology able to address energy and environmental issues [...]
Collapse
|
10
|
Li X, Chen D, Li N, Xu Q, Li H, He J, Lu J. Efficient reduction of Cr(VI) by a BMO/Bi 2S 3 heterojunction via synergistic adsorption and photocatalysis under visible light. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123243. [PMID: 32593026 DOI: 10.1016/j.jhazmat.2020.123243] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The development of efficient visible light driven photocatalyst is the premise of the progress of photocatalytic technology. In this paper, a well-designed orthorhombic Bi2MoO6/Bi2S3 (BMO/Bi2S3) composite was obtained by a two-step fabrication route. Using MoO3 nanobelt as a sacrificial template, BMO nanosheet-based framework was prepared by refluxing process. Through anion exchange reaction of the synthesized BMO to introduce Bi2S3 nanosheets, and BMO/Bi2S3 heterojunction was successfully constructed. Simultaneously, the Bi2S3 loading percentage of BMO/Bi2S3 was controlled by tuning the anion exchange time. The intimate interfacial contact between the BMO framework and Bi2S3 nanosheets endows the nanocomposites with high adsorption and photocatalytic removal of Cr(VI). Photocatalytic tests show that BMO/Bi2S3-1 composite possess the highest activity with 100 % removal rate of Cr(VI) in 15 min. The dramatically enhanced adsorption and photocatalytic capacity of BMO/Bi2S3 photocatalysts can be ascribed to the frame structure, large surface area and numerous nanochannels. In addition, the BMO/Bi2S3 photocatalyst is highly stable during the reaction and can be used repeatedly. These features indicate that the BMO/Bi2S3 composite could be used for environmental remediation and wastewater treatment.
Collapse
Affiliation(s)
- Xueqing Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|