1
|
Song JK, Lee S, Kim YJ, Kim HK, Ha JW, Choi EY, Park SW, Park SJ, Park YH, Park JH, Yang DH, Kim KH, Yang DH, Han S, Chae SY, Lee JS, Song JM, Cho GY. Effect of Evogliptin on the Progression of Aortic Valvular Calcification. J Am Coll Cardiol 2024; 84:1064-1075. [PMID: 39260927 DOI: 10.1016/j.jacc.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Medical therapy for aortic stenosis (AS) remains an elusive goal. OBJECTIVES This study sought to establish whether evogliptin, a dipeptidyl peptidase-4 inhibitor, could reduce AS progression. METHODS A total of 228 patients (age 67 ± 11 years; 33% women) with AS were randomly assigned to receive placebo (n = 75), evogliptin 5 mg (n = 77), or evogliptin 10 mg (n = 76). The primary endpoint was the 96-week change in aortic valve calcium volume (AVCV) on computed tomography. Secondary endpoints included the 48-week change in active calcification volume measured using 18F-sodium fluoride positron emission tomography (18F-NaF PET). RESULTS There were no significant differences in the 96-week changes in AVCV between evogliptin 5 mg and placebo (-5.27; 95% CI: -55.36 to 44.82; P = 0.84) or evogliptin 10 mg and placebo (-18.83; 95% CI: -32.43 to 70.10; P = 0.47). In the placebo group, the increase in AVCV between 48 weeks and 96 weeks was higher than that between baseline and 48 weeks (136 mm3; 95% CI: 108-163 vs 102 mm3; 95% CI: 75-129; P = 0.0485). This increasing trend in the second half of the study was suppressed in both evogliptin groups. The 48-week change in active calcification volume on 18F-NaF PET was significantly lower in both the evogliptin 5 mg (-1,325.6; 95% CI: -2,285.9 to -365.4; P = 0.008) and 10-mg groups (-1,582.2; 95% CI: -2,610.8 to -553.5; P = 0.0038) compared with the placebo group. CONCLUSIONS This exploratory study did not demonstrate the protective effect of evogliptin on AV calcification. Favorable 18F-NaF PET results and possible suppression of aortic valve calcification with longer medication use in the evogliptin groups suggest the need for larger confirmatory trials. (A Multicenter, Double-blind, Placebo-controlled, Stratified-randomized, Parallel, Therapeutic Exploratory Clinical Study to Evaluate the Efficacy and Safety of DA-1229 in Patients With Calcific Aortic Valve Disease; NCT04055883).
Collapse
Affiliation(s)
- Jae-Kwan Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sahmin Lee
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Jin Kim
- Division of Cardiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyung-Kwan Kim
- Division of Cardiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong-Won Ha
- Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Young Choi
- Division of Cardiology, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Seung-Woo Park
- Division of Cardiology, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung-Ji Park
- Division of Cardiology, Samsung Medical Center, Seoul, Republic of Korea
| | - Yong-Hyun Park
- Division of Cardiology, Pusan National University Yangsan Hospital, Busan, Republic of Korea
| | - Jae-Hyeong Park
- Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Dong Heon Yang
- Division of Cardiology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kye Hun Kim
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, Seoul, Republic of Korea
| | - Sangwon Han
- Department of Nuclear Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sun Young Chae
- Department of Nuclear Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Min Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Goo-Yeong Cho
- Division of Cardiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Chen SY, Kong XQ, Zhang JJ. Pathological Mechanism and Treatment of Calcified Aortic Stenosis. Cardiol Rev 2024; 32:320-327. [PMID: 38848535 DOI: 10.1097/crd.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Calcified aortic stenosis (AS) is one of the most common valvular heart diseases worldwide, characterized by progressive fibrocalcific remodeling and thickening of the leaflets, which ultimately leads to obstruction of blood flow. Its pathobiology is an active and complicated process, involving endothelial cell dysfunction, lipoprotein deposition and oxidation, chronic inflammation, phenotypic transformation of valve interstitial cells, neovascularization, and intravalvular hemorrhage. To date, no targeted drug has been proven to slow down or prevent disease progression. Aortic valve replacement is still the optimal treatment of AS. This article reviews the etiology, diagnosis, and management of calcified aortic stenosis and proposes novel potential therapeutic targets.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
3
|
Sengupta PP, Kluin J, Lee SP, Oh JK, Smits AIPM. The future of valvular heart disease assessment and therapy. Lancet 2024; 403:1590-1602. [PMID: 38554727 DOI: 10.1016/s0140-6736(23)02754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 04/02/2024]
Abstract
Valvular heart disease (VHD) is becoming more prevalent in an ageing population, leading to challenges in diagnosis and management. This two-part Series offers a comprehensive review of changing concepts in VHD, covering diagnosis, intervention timing, novel management strategies, and the current state of research. The first paper highlights the remarkable progress made in imaging and transcatheter techniques, effectively addressing the treatment paradox wherein populations at the highest risk of VHD often receive the least treatment. These advances have attracted the attention of clinicians, researchers, engineers, device manufacturers, and investors, leading to the exploration and proposal of treatment approaches grounded in pathophysiology and multidisciplinary strategies for VHD management. This Series paper focuses on innovations involving computational, pharmacological, and bioengineering approaches that are transforming the diagnosis and management of patients with VHD. Artificial intelligence and digital methods are enhancing screening, diagnosis, and planning procedures, and the integration of imaging and clinical data is improving the classification of VHD severity. The emergence of artificial intelligence techniques, including so-called digital twins-eg, computer-generated replicas of the heart-is aiding the development of new strategies for enhanced risk stratification, prognostication, and individualised therapeutic targeting. Various new molecular targets and novel pharmacological strategies are being developed, including multiomics-ie, analytical methods used to integrate complex biological big data to find novel pathways to halt the progression of VHD. In addition, efforts have been undertaken to engineer heart valve tissue and provide a living valve conduit capable of growth and biological integration. Overall, these advances emphasise the importance of early detection, personalised management, and cutting-edge interventions to optimise outcomes amid the evolving landscape of VHD. Although several challenges must be overcome, these breakthroughs represent opportunities to advance patient-centred investigations.
Collapse
Affiliation(s)
- Partho P Sengupta
- Division of Cardiovascular Diseases and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Cardiovascular Services, Robert Wood Johnson University Hospital, New Brunswick, NJ, USA.
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus MC Rotterdam, Thorax Center, Rotterdam, Netherlands
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, South Korea
| | - Jae K Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
4
|
Park S, Jeong HE, Oh IS, Hong S, Yu SH, Lee CB, Shin JY. Cardiovascular safety of evogliptin dual and triple therapy in patients with type 2 diabetes: a nationwide cohort study. BMJ Open 2024; 14:e077084. [PMID: 38626972 PMCID: PMC11029454 DOI: 10.1136/bmjopen-2023-077084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE To investigate the risk of cardiovascular events associated with commonly used dual and triple therapies of evogliptin, a recently introduced dipeptidyl peptidase-4 inhibitor (DPP4i), for managing type 2 diabetes in routine clinical practice. DESIGN A retrospective cohort study. SETTING Korean Health Insurance Review and Assessment database. PARTICIPANTS Patients who initiated metformin-based dual therapy and metformin+sulfonylurea-based triple therapy in South Korea from 2014 to 2018. INTERVENTIONS Initiation of combination therapy with evogliptin. PRIMARY AND SECONDARY OUTCOME MEASURES Hazards of cardiovascular events, a composite endpoint of myocardial infarction, heart failure and cerebrovascular events, and its individual components. Cox proportional hazards model with propensity score-based inverse probability of treatment weighting were used to estimate HRs and 95% CIs. RESULTS From the dual and triple therapy cohorts, 5830 metformin+evogliptin users and 2198 metformin+sulfonylurea+evogliptin users were identified, respectively. Metformin+evogliptin users, as compared with metformin+non-DPP4i, had a 29% reduced risk of cardiovascular events (HR 0.71, 95% CI 0.62 to 0.82); HRs for individual outcomes were cerebrovascular events (0.71, 95% CI 0.53 to 0.95), heart failure (0.70, 95% CI 0.59 to 0.82), myocardial infarction (0.89, 95% CI 0.60 to 1.31). Metformin+sulfonylurea+evogliptin users, compared with metformin+sulfonylurea+non-DPP4i, had a 24% reduced risk of cardiovascular events (0.76, 95% CI 0.59 to 0.97); HRs for individual outcomes were myocardial infarction (0.57, 95% CI 0.27 to 1.19), heart failure (0.74, 95% CI 0.55 to 1.01), cerebrovascular events (0.96, 95% CI 0.61 to 1.51). CONCLUSIONS These findings suggest that dual or triple therapies of evogliptin for the management of type 2 diabetes in routine clinical practice present no cardiovascular harms, but could alternatively offer cardiovascular benefits in this patient population.
Collapse
Affiliation(s)
- Sohee Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
- Aston Pharmacy School, Aston University, Birmingham, UK
| | - Han Eol Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - In-Sun Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Departments of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
5
|
Yan YF, Feng Y, Wang SM, Fang F, Chen HY, Zhen MX, Ji YQ, Wu SD. Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells in vitro and in vivo. Heliyon 2024; 10:e28021. [PMID: 38524547 PMCID: PMC10958412 DOI: 10.1016/j.heliyon.2024.e28021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 μg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and β-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/β-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.
Collapse
Affiliation(s)
- Yin-Fang Yan
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yue Feng
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Si-Min Wang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Fei Fang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Hong-Yan Chen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Ming-Xia Zhen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Song-Di Wu
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Yoon D, Choi B, Kim JE, Kim EY, Chung SH, Min HJ, Sung Y, Chang EJ, Song JK. Autotaxin inhibition attenuates the aortic valve calcification by suppressing inflammation-driven fibro-calcific remodeling of valvular interstitial cells. BMC Med 2024; 22:122. [PMID: 38486246 PMCID: PMC10941471 DOI: 10.1186/s12916-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-β signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.
Collapse
Affiliation(s)
- Dohee Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Bongkun Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jae-Kwan Song
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
7
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Cho PG, Jang JH, Ko S, Shin DA, Chung S, Chang MC. The Effect of Evogliptin Tartrate on Controlling Inflammatory Pain. Biomedicines 2023; 11:2990. [PMID: 38001990 PMCID: PMC10669149 DOI: 10.3390/biomedicines11112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Evogliptin tartrate inhibits dipeptidyl peptidase-4 (DPP-4), boosting glucagon-like peptide 1 (GLP-1) secretion and improving insulin release and glucose tolerance, while also exerting anti-inflammatory effects. We investigated its anti-inflammatory and analgesic effects. Methods: Forty male Sprague Dawley rats were divided into (N = 10 in each): (1) naïve, (2) complete Freund's adjuvant (CFA) inflammation + evogliptin tartrate (once for 10 mg/kg) (CFAE), (3) CFA + vehicle (same volume with normal saline with evogliptin tartrate/once) (CFAV), and (4) CFA + indomethacin (5 mg/mL/kg/1 time) (CFAI) groups. CFA was injected subcutaneously into rat plantar regions, and medications (evogliptin tartrate, vehicle, and indomethacin) were administered orally for 5 days. Post treatment, blood from the heart and plantar inflammatory tissue were collected to assess inflammatory cytokines. Evogliptin tartrate effects on controlling inflammation and pain were evaluated by measuring rat plantar paw thickness, paw withdrawal threshold, dorsal root ganglion (DRG) resting membrane potential, DRG action potential firing, and cytokine (TNF-α and IL-1β) levels. Results: Compared with the naïve group, plantar paw thickness, cytokine (TNF-α and IL-1β) levels, DRG resting membrane potential, and DRG action potential firing increased, whereas the paw withdrawal threshold decreased in all CFA groups. However, CFAE and CFAI rats showed recovery. The degree of CFAE recovery resembled that observed in the CFAI group. Conclusions: Evogliptin tartrate mirrored the anti-inflammatory pain relief of indomethacin. We aim to broaden its use as an anti-inflammatory drug or pain relief drug.
Collapse
Affiliation(s)
- Pyung Goo Cho
- Department of Neurosurgery, Ajou University Medical Center, Suwon-si 16499, Republic of Korea;
| | - Jun Ho Jang
- BnH Research Co., Ltd., Goyang-si 10594, Gyeonggi-do, Republic of Korea;
| | - Sukjin Ko
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Seungsoo Chung
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min Cheol Chang
- Department of Physical Medicine & Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
9
|
Sharma A, De Blasio M, Ritchie R. Current challenges in the treatment of cardiac fibrosis: Recent insights into the sex-specific differences of glucose-lowering therapies on the diabetic heart: IUPHAR Review 33. Br J Pharmacol 2023; 180:2916-2933. [PMID: 35174479 PMCID: PMC10952904 DOI: 10.1111/bph.15820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
A significant cardiac complication of diabetes is cardiomyopathy, a form of ventricular dysfunction that develops independently of coronary artery disease, hypertension and valvular diseases, which may subsequently lead to heart failure. Several structural features underlie the development of diabetic cardiomyopathy and eventual diabetes-induced heart failure. Pathological cardiac fibrosis (interstitial and perivascular), in addition to capillary rarefaction and myocardial apoptosis, are particularly noteworthy. Sex differences in the incidence, development and presentation of diabetes, heart failure and interstitial myocardial fibrosis have been identified. Nevertheless, therapeutics specifically targeting diabetes-associated cardiac fibrosis remain lacking and treatment approaches remain the same regardless of patient sex or the co-morbidities that patients may present. This review addresses the observed anti-fibrotic effects of newer glucose-lowering therapies and traditional cardiovascular disease treatments, in the diabetic myocardium (from both preclinical and clinical contexts). Furthermore, any known sex differences in these treatment effects are also explored. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
| | - Miles De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
| | - Rebecca Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
- Department of MedicineMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
10
|
Song JH, Liu MY, Ma YX, Wan QQ, Li J, Diao XO, Niu LN. Inflammation-associated ectopic mineralization. FUNDAMENTAL RESEARCH 2023; 3:1025-1038. [PMID: 38933004 PMCID: PMC11197766 DOI: 10.1016/j.fmre.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
Ectopic mineralization refers to the deposition of mineralized complexes in the extracellular matrix of soft tissues. Calcific aortic valve disease, vascular calcification, gallstones, kidney stones, and abnormal mineralization in arthritis are common examples of ectopic mineralization. They are debilitating diseases and exhibit excess mortality, disability, and morbidity, which impose on patients with limited social or financial resources. Recent recognition that inflammation plays an important role in ectopic mineralization has attracted the attention of scientists from different research fields. In the present review, we summarize the origin of inflammation in ectopic mineralization and different channels whereby inflammation drives the initiation and progression of ectopic mineralization. The current knowledge of inflammatory milieu in pathological mineralization is reviewed, including how immune cells, pro-inflammatory mediators, and osteogenic signaling pathways induce the osteogenic transition of connective tissue cells, providing nucleating sites and assembly of aberrant minerals. Advances in the understanding of the underlying mechanisms involved in inflammatory-mediated ectopic mineralization enable novel strategies to be developed that may lead to the resolution of these enervating conditions.
Collapse
Affiliation(s)
| | | | | | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Ou Diao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
11
|
Gu W, Wei Y, Tang Y, Zhang S, Li S, Shi Y, Tang F, Awad AM, Zhang X, Tang F. Supplement of exogenous inorganic pyrophosphate inhibits atheromatous calcification in Apolipoprotein E knockout mice. Heliyon 2023; 9:e19214. [PMID: 37654451 PMCID: PMC10465865 DOI: 10.1016/j.heliyon.2023.e19214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is the endogenous inhibitor for vascular calcification (VC). The present study was to investigate the effects of adenosine disodium triphosphate (ADTP) and alendronate sodium (AL), two exogenous PPi sources, on the atheromatous calcification (AC) in Apolipoprotein E knockout (ApoE KO) mice. ApoE KO mice were randomly divided into five groups: ApoE KO group, ApoE KO + ADTP (Low) group, ApoE KO + ADTP (High) group, ApoE KO + AL (Low) group and ApoE KO + AL (High) group. The mice in ApoE KO + ADTP (Low) group and ApoE KO + ADTP (High) group were intraperitoneally injected with ADTP with dose of 0.5 and 1.0 mg/kg/day for 2 months respectively. The mice in ApoE KO + AL (Low) group and ApoE KO + AL (High) group were intraperitoneally injected with AL with dose of 0.6 and 1.2 mg/kg/day for 2 months respectively. The age matched C57 mice were used as control group. All ApoE KO and C57 mice were fed with normal chow throughout the experiment. The calcification was evaluated using von Kossa method. The contents of PPi, triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ) and interleukin-10 (IL-10) as well as the activity of alkaline phosphatase (ALP) in serum were measured. The results showed that compared with C57 mice, ApoE KO mice developed severe AC accompanied with high levels of TC, TG, LDL, IL-6, TNF-α and IFN-γ in serum and with low levels of PPi and IL-10 in serum. Both ADTP and AL dose-dependently reduced the AC in ApoE KO mice compared with that of ApoE mice, without affecting the contents of lipid profiles. In addition, ADTP and AL increased the contents of PPi and IL-10 while decreased the contents of TNF-α, IL-6 and IFN-γ in serum of ApoE KO mice, having no affection on ALP activity. The results suggested that ADTP and AL reduced AC in ApoE KO mice by increasing the PPi level and regulating the inflammation.
Collapse
Affiliation(s)
- Wenjiao Gu
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yujie Wei
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yu Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shining Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shuangyi Li
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youming Shi
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fenxia Tang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ali Mohamed Awad
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaowei Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Futian Tang
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
12
|
Pham TK, Nguyen THT, Yi JM, Kim GS, Yun HR, Kim HK, Won JC. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice. Exp Mol Med 2023; 55:767-778. [PMID: 37009790 PMCID: PMC10167305 DOI: 10.1038/s12276-023-00958-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs for type 2 diabetes mellitus (T2DM). We investigated whether evogliptin® (EVO), a DPP-4 inhibitor, could protect against diabetic cardiomyopathy (DCM) and the underlying mechanisms. Eight-week-old diabetic and obese db/db mice were administered EVO (100 mg/kg/day) daily by oral gavage for 12 weeks. db/db control mice and C57BLKS/J as wild-type (WT) mice received equal amounts of the vehicle. In addition to the hypoglycemic effect, we examined the improvement in cardiac contraction/relaxation ability, cardiac fibrosis, and myocardial hypertrophy by EVO treatment. To identify the mechanisms underlying the improvement in diabetic cardiomyopathy by EVO treatment, its effect on lipotoxicity and the mitochondrial damage caused by lipid droplet accumulation in the myocardium were analyzed. EVO lowered the blood glucose and HbA1c levels and improved insulin sensitivity but did not affect the body weight or blood lipid profile. Cardiac systolic/diastolic function, hypertrophy, and fibrosis were improved in the EVO-treated group. EVO prevented cardiac lipotoxicity by reducing the accumulation of lipid droplets in the myocardium through suppression of CD36, ACSL1, FABP3, PPARgamma, and DGAT1 and enhancement of the phosphorylation of FOXO1, indicating its inhibition. The EVO-mediated improvement in mitochondrial function and reduction in damage were achieved through activation of PGC1a/NRF1/TFAM, which activates mitochondrial biogenesis. RNA-seq results for the whole heart confirmed that EVO treatment mainly affected the differentially expressed genes (DEGs) related to lipid metabolism. Collectively, these findings demonstrate that EVO improves cardiac function by reducing lipotoxicity and mitochondrial injury and provides a potential therapeutic option for DCM.
Collapse
Affiliation(s)
- Trong Kha Pham
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
- University of Science, Vietnam National University, Hanoi, Vietnam
| | - To Hoai T Nguyen
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, South Korea
| | - Gwang Sil Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University, Seoul, South Korea
| | - Hyeong Rok Yun
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea.
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Seoul, South Korea
| |
Collapse
|
13
|
Xie D, Song L, Xiang D, Gao X, Zhao W. Salvianolic acid A alleviates atherosclerosis by inhibiting inflammation through Trc8-mediated 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154694. [PMID: 36804757 DOI: 10.1016/j.phymed.2023.154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Atherosclerosis is the most prevalent cardiovascular disease and remains the major contributor to death and mortality globally. Salvianolic acid A (SalA) is a water-soluble phenolic acid that benefits atherosclerosis. However, the mechanisms of SalA protecting against atherosclerosis remain unclear. PURPOSE We aimed to determine whether SalA prevents atherosclerosis by modulating 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) degradation via the ubiquitin-proteasomal pathway. METHODS The animal and cellular models of atherosclerosis were established by subjecting apolipoprotein E (ApoE) knockout mice to a high-fat diet (HFD) and exposing human umbilical vein endothelial cells (HUVECs) to oxidized low-density lipoprotein (ox-LDL), respectively. RESULTS Our results showed that similar to atorvastatin, SalA suppressed atherosclerotic plaque formation, improved serum lipid accumulation, and reduced cholesterol levels in HFD-fed ApoE-/- mice. Moreover, SalA protected HUVECs from ox-LDL-caused cell viability reduction and lipid accumulation. The mechanism study revealed that SalA reduced the production of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and augmented the generation of the anti-inflammatory cytokine IL-10 in ApoE-/- mice and HUVECs, accompanied by increased HMGCR ubiquitination and degradation via translocation in renal carcinoma on chromosome 8 (Trc8), insulin-induced gene (Insig)1 and Insig2. Furthermore, the knockdown of Trc8 abolished the SalA-induced HMGCR degradation and anti-atherosclerosis activity. CONCLUSION SalA rescues atherosclerosis by inhibiting inflammation through the Trc8-regulated degradation of HMGCR. These findings underscore Trc8 as a potential target of atherosclerosis.
Collapse
Affiliation(s)
- Dan Xie
- Emergency Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, China
| | - Lijun Song
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Dongyang Xiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Xiangyu Gao
- Emergency Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, China.
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
14
|
Seo HY, Lee SH, Han E, Hwang JS, Han S, Kim MK, Jang BK. Evogliptin Directly Inhibits Inflammatory and Fibrotic Signaling in Isolated Liver Cells. Int J Mol Sci 2022; 23:ijms231911636. [PMID: 36232933 PMCID: PMC9569597 DOI: 10.3390/ijms231911636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic liver inflammation can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Kupffer cells (KC) secrete proinflammatory and fibrogenic cytokines in response to lipopolysaccharide (LPS), and so play an important role in liver inflammation, where they induce hepatocellular damage. LPS also activates hepatic stellate cells and induces extracellular matrix deposition. In this study, we used isolated primary KC, primary hepatocytes, and primary hepatic stellate cells (HSC) to investigate whether evogliptin directly inhibits inflammatory and fibrotic signaling. We found that evogliptin inhibited LPS-induced secretion of inducible nitric oxide synthase and transforming growth factor β (TGF-β) from KC. Moreover, evogliptin inhibited inflammatory mediator release from hepatocytes and hepatic stellate cell activation that were induced by KC-secreted cytokines. In hepatocytes, evogliptin also inhibited LPS-induced expression of proinflammatory cytokines and fibrotic TGF-β. In addition, evogliptin inhibited TGF-β-induced increases in connective tissue growth factor levels and HSC activation. These findings indicate that evogliptin inhibits inflammatory and fibrotic signaling in liver cells. We also showed that the inhibitory effect of evogliptin on inflammatory and fibrotic signaling is associated with the induction of autophagy.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Eugene Han
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Jae Seok Hwang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
| | - Sol Han
- Department of Physiology, University of Washington, Seattle, WA 98195, USA
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: (M.K.K.); (B.K.J.); Tel.: +82-53-258-7730 (M.K.K.); +82-53-258-7720 (B.K.J.)
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: (M.K.K.); (B.K.J.); Tel.: +82-53-258-7730 (M.K.K.); +82-53-258-7720 (B.K.J.)
| |
Collapse
|
15
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Chen SY, Kong XQ, Zhang KF, Luo S, Wang F, Zhang JJ. DPP4 as a Potential Candidate in Cardiovascular Disease. J Inflamm Res 2022; 15:5457-5469. [PMID: 36147690 PMCID: PMC9488155 DOI: 10.2147/jir.s380285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of cardiovascular disease has become a global health concern. The occurrence of cardiovascular disease is the result of long-term interaction of many risk factors, one of which is diabetes. As a novel anti-diabetic drug, DPP4 inhibitor has been proven to be cardiovascular safe in five recently completed cardiovascular outcome trials. Accumulating studies suggest that DPP4 inhibitor has potential benefits in a variety of cardiovascular diseases, including hypertension, calcified aortic valve disease, coronary atherosclerosis, and heart failure. On the one hand, in addition to improving blood glucose control, DPP4 inhibitor is involved in controlling cardiovascular risk factors. On the other hand, DPP4 inhibitor directly regulates the occurrence and progression of cardiovascular diseases through a variety of mechanisms. In this review, we summarize the recent advances of DPP4 in cardiovascular disease, aiming to discuss DPP4 inhibitor as a potential option for cardiovascular therapy.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| | - Ke-Fan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
18
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
19
|
Zou P, Guo M, Hu J. Evogliptin for the treatment of type 2 diabetes: an update of the literature. Expert Rev Clin Pharmacol 2022; 15:747-757. [DOI: 10.1080/17512433.2022.2100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Pin Zou
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 16 Gusaoshu Road, Wuhan, 430000, China
| | - Mingxing Guo
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 16 Gusaoshu Road, Wuhan, 430000, China
| | - Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
20
|
Stevens TW, Khalaf FK, Soehnlen S, Hegde P, Storm K, Meenakshisundaram C, Dworkin LD, Malhotra D, Haller ST, Kennedy DJ, Dube P. Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines 2022; 10:1579. [PMID: 35884884 PMCID: PMC9312498 DOI: 10.3390/biomedicines10071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest public health concerns and is the leading cause of morbidity and mortality in the United States and worldwide. CVD is a broad yet complex term referring to numerous heart and vascular conditions, all with varying pathologies. Macrophages are one of the key factors in the development of these conditions. Macrophages play diverse roles in the maintenance of cardiovascular homeostasis, and an imbalance of these mechanisms contributes to the development of CVD. In the current review, we provide an in-depth analysis of the diversity of macrophages, their roles in maintaining tissue homeostasis within the heart and vasculature, and the mechanisms through which imbalances in homeostasis may lead to CVD. Through this review, we aim to highlight the potential importance of macrophages in the identification of preventative, diagnostic, and therapeutic strategies for patients with CVD.
Collapse
Affiliation(s)
- Travis W. Stevens
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Sophia Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prajwal Hegde
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Kyle Storm
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Chandramohan Meenakshisundaram
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Lance D. Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| |
Collapse
|
21
|
Bian W, Wang Z, Sun C, Zhang DM. Pathogenesis and Molecular Immune Mechanism of Calcified Aortic Valve Disease. Front Cardiovasc Med 2022; 8:765419. [PMID: 35004882 PMCID: PMC8734655 DOI: 10.3389/fcvm.2021.765419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Calcified aortic valve disease (CAVD) was previously regarded as a passive process associated with valve degeneration and calcium deposition. However, recent studies have shown that the occurrence of CAVD is an active process involving complex changes such as endothelial injury, chronic inflammation, matrix remodeling, and neovascularization. CAVD is the ectopic accumulation of calcium nodules on the surface of the aortic valve, which leads to aortic valve thickening, functional stenosis, and ultimately hemodynamic disorders. CAVD has become an important cause of death from cardiovascular disease. The discovery of therapeutic targets to delay or block the progression of CAVD and the clinical application of transcatheter aortic valve implantation (TAVI) provide new ideas for the prevention and treatment of CAVD. This article summarizes the pathogenesis of CAVD and provides insight into the future directions of CAVD diagnosis and treatment.
Collapse
Affiliation(s)
- Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chongxiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Mazur P, Kopytek M, Ząbczyk M, Undas A, Natorska J. Towards Personalized Therapy of Aortic Stenosis. J Pers Med 2021; 11:1292. [PMID: 34945764 PMCID: PMC8708539 DOI: 10.3390/jpm11121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic stenosis (CAS) is the most common cause of acquired valvular heart disease in adults with no available pharmacological treatment to inhibit the disease progression to date. This review provides an up-to-date overview of current knowledge of molecular mechanisms underlying CAS pathobiology and the related treatment pathways. Particular attention is paid to current randomized trials investigating medical treatment of CAS, including strategies based on lipid-lowering and antihypertensive therapies, phosphate and calcium metabolism, and novel therapeutic targets such as valvular oxidative stress, coagulation proteins, matrix metalloproteinases, and accumulation of advanced glycation end products.
Collapse
Affiliation(s)
- Piotr Mazur
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN 55902, USA;
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
| | - Magdalena Kopytek
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
23
|
Kang SM, Park JH. Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211051698. [PMID: 34733107 PMCID: PMC8558587 DOI: 10.1177/11795514211051698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are oral anti-diabetic medications that block the activity of the ubiquitous enzyme DPP-4. Inhibition of this enzyme increases the level of circulating active glucagon-like peptide (GLP)-1 secreted from L-cells in the small intestine. GLP-1 increases the glucose level, dependent on insulin secretion from pancreatic β-cells; it also decreases the abnormally increased level of glucagon, eventually decreasing the blood glucose level in patients with type 2 diabetes. DPP-4 is involved in many physiological processes other than the degradation of GLP-1. Therefore, the inhibition of DPP-4 may have numerous effects beyond glucose control. In this article, we review the pleiotropic effects of DPP-4 inhibitors beyond glucose control, including their strong beneficial effects on the stress induced accelerated senescence of vascular cells, and the possible clinical implications of these effects.
Collapse
Affiliation(s)
- Seon Mee Kang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
24
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
25
|
Oh H, Nguyen HD, Yoon IM, Kim MS. Efficacy and Tolerability of Evogliptin in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis with Bayesian Inference Through a Quality-management System. Clin Ther 2021; 43:1336-1355. [PMID: 34304912 DOI: 10.1016/j.clinthera.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Evogliptin is one of the latest dipeptidyl peptidase-4 (DPP-4) inhibitor, and a number of clinical trials have been performed following its development, including several randomized controlled trials (RCTs) performed to evaluate its efficacy and tolerability. In our study, we performed a systematic review and meta-analysis of its efficacy and tolerability by collecting RCTs and confirmed the results with Bayesian inference. Moreover, an updated quality-management system was integrated into the study process of systematic review. METHODS PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched for literature published between May 1990 and November 2020. We selected 6 homogeneous RCTs in 1017 subjects for efficacy and 1070 subjects for tolerability analysis. Regarding the efficacy profile, the mean differences from baseline (95% CIs) in hemoglobin (Hb) A1c and fasting plasma glucose (FPG) were generated as end points and derived from each study. Regarding the tolerability profile, risk ratios of adverse events (AEs), serious AEs, adverse drug reactions, and hypoglycemia were generated from baseline to outcome measurements as derived from each study. A subsequent meta-analysis was performed with Bayesian inference. FINDINGS For HbA1c and FPG, the results suggested a statistically significant improvement with evogliptin versus placebo (HbA1c, -0.44 [95% CI, -0.54 to -0.34; P < 0.00001] and posterior median, -0.38 [95% CI, -0.51 to -0.24]; FPG, -0.61 [95% CI, -0.90 to -0.31; P < 0.0001] and posterior median, -0.48 [95% CI, -0.90 to -0.16]), but no statistically significant difference with evogliptin versus other DPP-4 inhibitors (HbA1c, -0.01 [95% CI, -0.14 to 0.12] and posterior median, -0.06 [95% CI, -0.25 to 0.12]; FPG, 0.17 [95% CI, -0.10 to 0.44] and posterior median, 0.27 [95% CI, -0.12 to 0.65]). In terms of tolerability, the overall prevalence of adverse events, including hypoglycemia, was similar between evogliptin and other DPP-4 inhibitors and placebo. IMPLICATIONS Evogliptin appears more efficacious in terms of changes in HbA1c and FPG compared with placebo, with an efficacy comparable to those of other DPP-4 inhibitors, although with the limited data studied and the minuscule sample sizes, the predictions of posterior medians, mean differences, and risk ratios of HbA1c, FPG, and AEs by Bayesian inference were consistent with our findings through our quality-management system.
Collapse
Affiliation(s)
- Hojin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| | - Hai Duc Nguyen
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - In Mo Yoon
- Unimedi Plastic Surgery Clinic, Seoul, Republic of Korea
| | - Min-Sun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
26
|
LncRNA AFAP1-AS1 promotes M1 polarization of macrophages and osteogenic differentiation of valve interstitial cells. J Physiol Biochem 2021; 77:461-468. [PMID: 34043161 DOI: 10.1007/s13105-021-00821-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Little is known about the biological functions and underlying mechanisms of long non-coding RNA AFAP1-AS1 in degenerative calcified aortic valve disease (DCAVD). This study aims to explore whether AFAP1-AS1 regulates macrophage polarization in aortic valve calcification. Macrophage polarization and AFAP1-AS1 expression were detected in normal and calcified aortic valves of DCAVD patients. To explore the effect of AFAP1-AS1 on macrophage polarization, gain and loss of function were performed in THP-1 cells, and the percentage of M1 and M2 and the expressions of M1 and M2 markers were analyzed. Meanwhile, osteogenic differentiation was examined in valve interstitial cells (VICs). Compared with normal valves, there were more M1, less M2, and high AFAP1-AS1 expressions in calcified aortic valves, which may indicate a relationship between AFAP1-AS1 and macrophage polarization. AFAP1-AS1 overexpression promoted M1 polarization in lipopolysaccharide (LPS) and interferon gamma (IFN-γ)-treated THP-1 cells but inhibited M2 polarization, as well as augmented VIC osteogenic differentiation. On the contrary, the silence of AFAP1-AS1 could induce macrophage to M2-type and inhibit VIC osteogenic differentiation. These results elucidate that AFAP1-AS1 can promote M1 macrophages polarization to aggravate VIC osteogenic differentiation, playing a role in aortic valve calcification.
Collapse
|