1
|
Docshin P, Panshin D, Malashicheva A. Molecular Interplay in Cardiac Fibrosis: Exploring the Functions of RUNX2, BMP2, and Notch. Rev Cardiovasc Med 2024; 25:368. [PMID: 39484128 PMCID: PMC11522771 DOI: 10.31083/j.rcm2510368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac fibrosis, characterized by the excessive deposition of extracellular matrix proteins, significantly contributes to the morbidity and mortality associated with cardiovascular diseases. This article explores the complex interplay between Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and Notch signaling pathways in the pathogenesis of cardiac fibrosis. Each of these pathways plays a crucial role in the regulation of cellular functions and interactions that underpin fibrotic processes in the heart. Through a detailed review of current research, we highlight how the crosstalk among RUNX2, BMP2, and Notch not only facilitates our understanding of the fibrotic mechanisms but also points to potential biomolecular targets for intervention. This article delves into the regulatory networks, identifies key molecular mediators, and discusses the implications of these signaling pathways in cardiac structural remodeling. By synthesizing findings from recent studies, we provide insights into the cellular and molecular mechanisms that could guide future research directions, aiming to uncover new therapeutic strategies to manage and treat cardiac fibrosis effectively.
Collapse
Affiliation(s)
- Pavel Docshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Daniil Panshin
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Wang Y, Ge H, Zhang Y, Wang P, Zhao H, Wang L, Fan Z. Antitumor effect of polyphyllin I (PPI) on colorectal cancer: Evidence from patient-derived organoids and Notch signaling suppression. Heliyon 2024; 10:e37226. [PMID: 39315206 PMCID: PMC11417558 DOI: 10.1016/j.heliyon.2024.e37226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with a high incidence, ranking first among gastrointestinal malignancies. We investigated the impact of polyphyllin I (PPI), a natural compound found in Paris polyphylla, on CRC. PPI has been documented to exhibit anticancer activity against various tumors. This study aimed to assess the effects of PPI on colorectal cancer and explore its potential mechanisms. Our research demonstrated that PPI inhibited proliferation, promoted apoptosis, and induced G2 cell-cycle arrest in a dose-dependent manner. Additionally, our results indicated that PPI suppressed Notch signaling by downregulating the Notch1 receptor, its ligand Jagged1, and the downstream target Hes1 expression. Furthermore, we confirmed the antitumor effect of PPI on patient-derived organoids. In conclusion, our study indicates that PPI impedes the growth of colon cancer by suppressing the Notch signaling pathway.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anorectal Medicine, Liyang Hospital of Chinese Medicine, Changzhou, 213300, China
| | - Hao Ge
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210038, China
| | - Yi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Pei Wang
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Haoran Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210038, China
| | - Lu Wang
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Zhimin Fan
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| |
Collapse
|
3
|
Wang P, Yang L, Dong J, Liu W, Xie F, Lu Y, Li W. The sEVs miR-487a/Notch2/GATA3 axis promotes osteosarcoma lung metastasis by inducing macrophage polarization toward the M2-subtype. Cancer Cell Int 2024; 24:301. [PMID: 39217351 PMCID: PMC11365232 DOI: 10.1186/s12935-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication between tumor cells and their surrounding environment. Furthermore, the mechanisms by which miRNAs carried in tumor sEVs regulate macrophage polarization remain largely unknown. To concentrate sEVs, we used the traditional ultracentrifugation method. Western blot, NanoSight, and transmission electron microscopy were used to identify sEVs. To determine the function of sEVs-miR-487a, we conducted in vivo and in vitro investigations. The intercellular communication mechanism between osteosarcoma cells and M2 macrophages, mediated by sEVs carrying miR-487a, was validated using luciferase reporter assays, transwell assays, and Western blot analysis. In vitro, sEVs enriched in miR-487a and delivered miR-487a to macrophages, promoting macrophage polarization toward an M2-like type, which promotes proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. In vivo, sEVs enriched in miR-487a facilitate lung metastasis of osteosarcoma. Moreover, plasma miR-487a in sEVs was shown to be a potential biomarker applicable for osteosarcoma diagnosis. In summary, miR-487a derived from osteosarcoma cells can be transferred to macrophages via sEVs, then promote macrophage polarization towards an M2-like type by targeting Notch2 and activating the GATA3 pathway. In a feedback loop, the activation of macrophages accelerates epithelial-mesenchymal transition (EMT), which in turn promotes the migration, invasion, and lung metastasis of osteosarcoma cells. This reciprocal interaction between activated macrophages and osteosarcoma cells contributes to the progression of the disease. Our data demonstrate a new mechanism that osteosarcoma tumor cells derived exosomal-miR-487a which is involved in osteosarcoma development by regulating macrophage polarization in tumor microenvironment (TME).
Collapse
Affiliation(s)
- Piaopiao Wang
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Lei Yang
- Department of Orthopedics, Taizhou School of Clinical Medicine, Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 225300, Taizhou, Jiangsu, China
| | - Jing Dong
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Wenjing Liu
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Fan Xie
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Yan Lu
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Wenyan Li
- Department of Clinical Pharmacy, Gongli Hospital of Shanghai Pudong New Area, 219, Miaopu Road, Pudong New Area, 200135, Shanghai, China.
| |
Collapse
|
4
|
Powell S, Kulakova K, Hanratty K, Khan R, Casserly P, Crown J, Walsh N, Kennedy S. Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma. Cancers (Basel) 2024; 16:2868. [PMID: 39199639 PMCID: PMC11353050 DOI: 10.3390/cancers16162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Adenoid cystic carcinoma (ACC) of head and neck origin is associated with slow but relentless progression and systemic metastasis, resulting in poor long-term survival rates. ACC does not respond to conventional chemotherapy. Determination of molecular drivers may provide a rational basis for personalized therapy. Herein, we investigate the clinical and detailed molecular genomic features of a cohort of patients treated in Ireland and correlate the site of origin, molecular features, and outcomes. Clinical and genomic landscapes of all patients diagnosed with ACC over a twenty-year period (2002-2022) in a single unit in Ireland were examined and analyzed using fluorescence in situ hybridization, DNA sequencing, and bioinformatic analysis. Fourteen patients were included for analysis. Eleven patients had primary salivary gland ACC and three primary lacrimal gland ACC; 76.9% of the analyzed tumors displayed evidence of NFIB-MYB rearrangement at the 6q23.3 locus; 35% had mutations in NOTCH pathway genes; 7% of patients had a NOTCH1 mutation, 14.3% NOTCH2 mutation, and 14.3% NOTCH3 mutation. The presence of epigenetic modifications in ACC patients significantly correlated with worse overall survival. Our study identifies genetic mutations and signaling pathways that drive ACC pathogenesis, representing potential molecular and therapeutic targets.
Collapse
Affiliation(s)
- Sarah Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland
| | - Karina Kulakova
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland; (K.K.); (S.K.)
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Katie Hanratty
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland; (K.K.); (S.K.)
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Rizwana Khan
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland
| | - Paula Casserly
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland
| | - John Crown
- St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Naomi Walsh
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland; (K.K.); (S.K.)
- St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| |
Collapse
|
5
|
Paredes de la Fuente R, Sucre S, Ponce C, Rattani AAA, Peters MLB. Somatic Mutation Profile as a Predictor of Treatment Response and Survival in Unresectable Pancreatic Ductal Adenocarcinoma Treated with FOLFIRINOX and Gemcitabine Nab-Paclitaxel. Cancers (Basel) 2024; 16:2734. [PMID: 39123462 PMCID: PMC11312283 DOI: 10.3390/cancers16152734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: Pancreatic ductal adenocarcinoma (PDAC) has low survival rates despite treatment advancements. Aim: This study aims to show how molecular profiling could possibly guide personalized treatment strategies, which may help improve survival outcomes in patients with PDAC. (2) Materials and Methods: A retrospective analysis of 142 PDAC patients from a single academic center was conducted. Patients underwent chemotherapy and next-generation sequencing for molecular profiling. Key oncogenic pathways were identified using the Reactome pathway database. Survival analysis was performed using Kaplan-Meier curves and Cox Proportional Hazards Regression. (3) Results: Patients mainly received FOLFIRINOX (n = 62) or gemcitabine nab-paclitaxel (n = 62) as initial chemotherapy. The median OS was 13.6 months. Longer median OS was noted in patients with NOTCH (15 vs. 12.3 months, p = 0.007) and KIT pathway mutations (21.3 vs. 12.12 months, p = 0.04). Combinatorial pathway analysis indicated potential synergistic effects on survival. In the PFS, PI3K pathway (6.6 vs. 5.7 months, p = 0.03) and KIT pathway (10.3 vs. 6.2 months, p = 0.03) mutations correlated with improved PFS within the gemcitabine nab-paclitaxel subgroup. (4) Conclusions: Molecular profiling could play a role in PDAC for predicting outcomes and responses to therapies like FOLFIRINOX and gemcitabine nab-paclitaxel. Integrating genomic data into clinical decision-making can benefit PDAC treatment, though further validation is needed to fully utilize precision oncology in PDAC management.
Collapse
Affiliation(s)
| | - Santiago Sucre
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Cristina Ponce
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Ahmed Anwer Ali Rattani
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| | - Mary Linton B. Peters
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA (A.A.A.R.)
| |
Collapse
|
6
|
Yang C, Quan G, Zhang S, Jiang J. SSH3 promotes pancreatic cancer proliferation and migration by activating the notch signaling pathway. Am J Cancer Res 2024; 14:1815-1830. [PMID: 38726290 PMCID: PMC11076266 DOI: 10.62347/dazv7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
Recent studies have indicated that the dual-specificity phosphatases (DUSP) family may play a role in the advancement of pancreatic cancer. Exploring the role of the DUSP family in pancreatic cancer development and discovering novel therapeutic targets are crucial for pancreatic cancer therapy. A critical subset of 20 genes exhibiting differential expression was identified, with particular emphasis on four key genes: DUSP10, PTP4A2, SSH3, and CDKN3 by multivariate Cox proportional hazards analysis. These genes were integral to developing a novel risk model for PC, which has been independently validated as a prognostic factor for patients. To provide help for clinical treatment, we performed tumor immune analysis and predicted potential chemical drugs. Notably, our research unveiled elevated expression levels of SSH3 in human PC cells and tissues. Intriguingly, SSH3 expression correlates with the patient grade, staging, and T stage in PC. Additional studies reveal SSH3's role in enhancing PC cell proliferation and migration, intricately linked to the activation of the Notch signaling pathway. These insights provide a deeper understanding of PC pathophysiology and pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Chengxiao Yang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital) Dongguan, Guangdong, China
| | - Gang Quan
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital) Dongguan, Guangdong, China
| | - Shihang Zhang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital) Dongguan, Guangdong, China
| | - Jianxin Jiang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital) Dongguan, Guangdong, China
| |
Collapse
|
7
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
8
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Anameriç A, Czerwonka A, Nees M. Optimization of a Three-Dimensional Culturing Method for Assessing the Impact of Cisplatin on Notch Signaling in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:5320. [PMID: 38001580 PMCID: PMC10670464 DOI: 10.3390/cancers15225320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, with cisplatin being a primary treatment approach. However, drug resistance and therapy failure pose a significant challenge, affecting nearly 50% of patients over time. This research had two aims: (1) to optimize a 3D cell-culture method for assessing the interplay between tumor cells and cancer-associated fibroblasts (CAFs) in vitro; and (2) to study how cisplatin impacts the Notch pathway, particularly considering the role of CAFs. Using our optimized "3D sheet model" approach, we tested two HNSCC cell lines with different cisplatin sensitivities and moderate, non-mutated NOTCH1 and -3 expressions. Combining cisplatin with a γ-secretase inhibitor (crenigacestat) increased sensitivity and induced cell death in the less sensitive cell line, while cisplatin alone was more effective in the moderately sensitive line and sensitivity decreased with the Notch inhibitor. Cisplatin boosted the expression of core Notch signaling proteins in 3D monocultures of both lines, which was counteracted by crenigacestat. In contrast, the presence of patient-derived CAFs mitigated effects and protected both cell lines from cisplatin toxicity. Elevated NOTCH1 and NOTCH3 protein levels were consistently correlated with reduced cisplatin sensitivity and increased cell survival. Additionally, the Notch ligand JAG2 had additional, protective effects reducing cell death from cisplatin exposure. In summary, we observed an inverse relationship between NOTCH1 and NOTCH3 levels and cisplatin responsiveness, overall protective effects by CAFs, and a potential link between JAG2 expression with tumor cell survival.
Collapse
Affiliation(s)
| | | | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.A.); (A.C.)
| |
Collapse
|
10
|
Czerwonka A, Kałafut J, Nees M. Modulation of Notch Signaling by Small-Molecular Compounds and Its Potential in Anticancer Studies. Cancers (Basel) 2023; 15:4563. [PMID: 37760535 PMCID: PMC10526229 DOI: 10.3390/cancers15184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (M.N.)
| | | | | |
Collapse
|
11
|
Powell SK, Kulakova K, Kennedy S. A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland. Int J Mol Sci 2023; 24:13755. [PMID: 37762061 PMCID: PMC10530759 DOI: 10.3390/ijms241813755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has a worldwide incidence of three to four cases per million population. Although more cases occur in the minor and major salivary glands, it is the most common lacrimal gland malignancy. ACC has a low-grade, indolent histological appearance, but is relentlessly progressive over time and has a strong proclivity to recur and/or metastasise. Current treatment options are limited to complete surgical excision and adjuvant radiotherapy. Intra-arterial systemic therapy is a recent innovation. Recurrent/metastatic disease is common due to perineural invasion, and it is largely untreatable as it is refractory to conventional chemotherapeutic agents. Given the rarity of this tumour, the molecular mechanisms that govern disease pathogenesis are poorly understood. There is an unmet, critical need to develop effective, personalised targeted therapies for the treatment of ACC in order to reduce morbidity and mortality associated with the disease. This review details the evidence relating to the molecular underpinnings of ACC of the lacrimal gland, including the MYB-NFIB chromosomal translocations, Notch-signalling pathway aberrations, DNA damage repair gene mutations and epigenetic modifications.
Collapse
Affiliation(s)
- Sarah Kate Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
| | - Karina Kulakova
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- Department of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland
| |
Collapse
|
12
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
13
|
Mukherjee M, Levine H. The alternate ligand Jagged enhances the robustness of Notch signaling patterns. SOFT MATTER 2023. [PMID: 37323020 DOI: 10.1039/d2sm01508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Notch pathway, an example of juxtacrine signaling, is an evolutionary conserved cell-cell communication mechanism. It governs emergent spatiotemporal patterning in tissues during development, wound healing and tumorigenesis. Communication occurs when Notch receptors of one cell bind to either of its ligands, Delta/Jagged of the neighboring cell. In general, Delta-mediated signaling drives neighboring cells to have an opposite fate (lateral inhibition) whereas Jagged-mediated signaling drives cells to maintain similar fates (lateral induction). Here, by deriving and solving a reduced set of 12 coupled ordinary differential equations for the Notch-Delta-Jagged system on a hexagonal grid of cells, we determine the allowed states across different parameter sets. We also show that Jagged (at low dose) acts synergistically with Delta to enable more robust pattern formation by making the neighboring cell states more distinct from each other, despite its lateral induction property. Our findings extend our understanding of the possible synergistic role of Jagged with Delta which had been previously proposed through experiments and models in the context of chick inner ear development. Finally, we show how Jagged can help to expand the bistable (both uniform and hexagon phases are stable) region, where a local perturbation can spread over time in an ordered manner to create a biologically relevant, perfectly ordered lateral inhibition pattern.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
- Depts. of Physics and Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
14
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
15
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
16
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
17
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Matysiak N, Kucharzewski M, Łos MJ. The Clinical Application of Immunohistochemical Expression of Notch4 Protein in Patients with Colon Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24087502. [PMID: 37108670 PMCID: PMC10138794 DOI: 10.3390/ijms24087502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Notch signalling pathway is one of the most conserved and well-characterised pathways involved in cell fate decisions and the development of many diseases, including cancer. Among them, it is worth noting the Notch4 receptor and its clinical application, which may have prognostic value in patients with colon adenocarcinoma. The study was performed on 129 colon adenocarcinomas. Immunohistochemical and fluorescence expression of Notch4 was performed using the Notch4 antibody. The associations between the IHC expression of Notch4 and clinical parameters were analysed using the Chi2 test or Chi2Yatesa test. The Kaplan-Meier analysis and the log-rank test were used to verify the relationship between the intensity of Notch4 expression and the 5-year survival rate of patients. Intracellular localisation of Notch4 was detected by the use of the immunogold labelling method and TEM. 101 (78.29%) samples had strong Notch4 protein expression, and 28 (21.71%) samples were characterised by low expression. The high expression of Notch4 was clearly correlated with the histological grade of the tumour (p < 0.001), PCNA immunohistochemical expression (p < 0.001), depth of invasion (p < 0.001) and angioinvasion (p < 0.001). We can conclude that high expression of Notch4 is correlated with poor prognosis of colon adenocarcinoma patients (log-rank, p < 0.001).
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed- Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Kucharzewski
- Faculty of Health Sciences, Jan Dlugosz University of Czestochowa, 42-200 Czestochowa, Poland
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
18
|
Zhou MJ, Yang JJ, Ma TY, Feng GX, Wang XL, Wang LY, Ge YZ, Gao R, Liu HL, Shan L, Kong L, Chen XH. Increased retinoic acid signaling decreases lung metastasis in salivary adenoid cystic carcinoma by inhibiting the noncanonical Notch1 pathway. Exp Mol Med 2023; 55:597-611. [PMID: 36879115 PMCID: PMC10073150 DOI: 10.1038/s12276-023-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 03/08/2023] Open
Abstract
MYB-NFIB fusion and NOTCH1 mutation are common hallmark genetic events in salivary gland adenoid cystic carcinoma (SACC). However, abnormal expression of MYB and NOTCH1 is also observed in patients without MYB-NFIB fusion and NOTCH1 mutation. Here, we explore in-depth the molecular mechanisms of lung metastasis through single-cell RNA sequencing (scRNA-seq) and exome target capture sequencing in two SACC patients without MYB-NFIB fusion and NOTCH1 mutation. Twenty-five types of cells in primary and metastatic tissues were identified via Seurat clustering and categorized into four main stages ranging from near-normal to cancer-based on the abundance of each cell cluster in normal tissue. In this context, we identified the Notch signaling pathway enrichment in almost all cancer cells; RNA velocity, trajectory, and sub-clustering analyses were performed to deeply investigate cancer progenitor-like cell clusters in primary tumor-associated lung metastases, and signature genes of progenitor-like cells were enriched in the "MYC_TARGETS_V2" gene set. In vitro, we detected the NICD1-MYB-MYC complex by co-immunoprecipitation (Co-IP) and incidentally identified retinoic acid (RA) as an endogenous antagonist of genes in the "MYC_TARGETS_V2" gene set. Following this, we confirmed that all-trans retinoic acid (ATRA) suppresses the lung metastasis of SACC by correcting erroneous cell differentiation mainly caused by aberrant NOTCH1 or MYB expression. Bioinformatic, RNA-seq, and immunohistochemical (IHC) analyses of primary tissues and metastatic lung tissues from patients with SACC suggested that RA system insufficiency partially promotes lung metastasis. These findings imply the value of the RA system in diagnosis and treatment.
Collapse
Affiliation(s)
- Meng-Jiao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Jia-Jie Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Ting-Yao Ma
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ge-Xuan Feng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Xue-Lian Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Yong Wang
- The Central Laboratory for Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Yu-Ze Ge
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Hong-Liang Liu
- SHANDONG Longfine PHARMACEUTICAL CO., LTD, Shandong, 272622, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.
| | - Xiao-Hong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
19
|
Li R, Xu H, Gao X. The ceRNA network regulates epithelial-mesenchymal transition in colorectal cancer. Heliyon 2023; 9:e14143. [PMID: 36950593 PMCID: PMC10025087 DOI: 10.1016/j.heliyon.2023.e14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that transforms epithelial cells into a mesenchymal phenotype, conferring cell migration and invasion capabilities. EMT is involved in the progression and metastasis of colorectal cancer (CRC). Recently, emerging evidence has shown dysregulation of non-coding RNA (ncRNA) was linked to EMT. ncRNAs, including long non-coding RNA (lncRNA), regulate the transcription of downstream target genes (mRNA) through interaction with microRNAs (miRNAs); these are termed competitive endogenous RNA (ceRNA) networks. CeRNA dysregulation-induced EMT, which is linked to the progression and prognosis of CRC, has attracted wide attention. However, understanding the role of the regulation of the ceRNA network in the EMT of CRC remains limited. We discuss the molecular functions of lncRNA, the ceRNA networks related to miRNAs and mRNAs in EMT, as well as EMT transcription factors, such as the zinc finger E-box binding homeobox 1/2 (ZEB1/2), SNAIL, SLUG, and TWIST1/2. In addition, miRNAs and lncRNAs that directly target genes, thereby initiating different signaling pathways to promote EMT in CRC, were summarized. Clarifying the role of these molecules in EMT is critical for understanding molecular mechanisms and exploring the potential therapeutic targets of CRC.
Collapse
Affiliation(s)
- Ruina Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hui Xu
- The Center of Clinical Laboratory, Hainan General Hospital, Haikou 570100, China
| | - Xiaoling Gao
- The Center of Clinical Laboratory, Hainan General Hospital, Haikou 570100, China
- Corresponding author.
| |
Collapse
|
20
|
Liu Q, Gu L, Qiu J, Qian J. Elevated NDC1 expression predicts poor prognosis and correlates with immunity in hepatocellular carcinoma. J Gastrointest Oncol 2023; 14:245-264. [PMID: 36915467 PMCID: PMC10007937 DOI: 10.21037/jgo-22-1166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Background NDC1 was identified to be a tumor-promoting factor in non-small cell lung cancer and cervical cancer. However, no report had clarified the relationship between NDC1 and hepatocellular carcinoma (HCC). In this paper, we explored the expression and potential functions of NDC1 in HCC for the first time through the rational application of bioinformatics and relevant basic experiments. Methods NDC1-related expression profiles and clinical data of HCC patients were collected from The Cancer Genome Atlas (TCGA) database, which were verified via quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Univariate and multivariate Cox regression analyses were used to identify NDC1 as an independent factor for HCC prognosis, and NDC1-related signaling pathways were determined by gene set enrichment analysis (GSEA). Furthermore, we deeply probed the potential links of NDC1 to immunity and immune response. Finally, the bioeffects and underlying mechanisms of ectopic NDC1 overexpression and depletion were determined in HepG2 cells by immunoblotting, flow cytometry, Cell-Counting-Kit-8 (CCK-8), and EDU (5-Ethynyl-2'-deoxyuridine). Results Up-regulated expression of NDC1 was detected by means of the TCGA database, which was consistent with the results obtained from further qRT-PCR, immunohistochemistry and the CPTAC database. Kaplan-Meier (K-M) survival analysis revealed a worse prognosis in HCC patients with high NDC1 expression. Besides, NDC1 was certified to be closely linked to tumor histologic grade, clinical stage and T stage. Moreover, univariate and multivariate Cox regression analyses defined NDC1 as an independent element for HCC prognosis. NDC1-related signaling pathways, utilizing GSEA analysis, were subsequently found out. What's more, NDC1 expression was detected to be enormously associated with microsatellite instability (MSI), immune cell infiltration, immune checkpoint molecules and immune cell pathways. As for immunotherapy, we discovered that different risk groups tended to have different immune checkpoint inhibitor responses, which indicated crucial implication value of NDC1 for HCC immunotherapy. More interestingly, we observed that the overexpression of NDC1 could promote the migration and invasion of HCC cells. Conclusions Our article demonstrated that NDC1 might serve as a valuable predictor in the prognosis and immunotherapy of HCC. NDC1 played an oncogenic role in HCC.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Liugen Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Jianwei Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Junbo Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
21
|
Regulation of the Epithelial to Mesenchymal Transition in Osteosarcoma. Biomolecules 2023; 13:biom13020398. [PMID: 36830767 PMCID: PMC9953423 DOI: 10.3390/biom13020398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by an associated change in cell markers. EMT is highly complex and regulated via multiple signaling pathways. While the importance of EMT is classically described for carcinomas-cancers of epithelial origin-it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS), a primary bone cancer predominantly affecting children and young adults. Recent studies examining EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and components of the tumor micro-environment. This review serves to summarize these experimental findings, identify key families of regulatory molecules, and identify potential therapeutic targets specific to the EMT process in OS.
Collapse
|
22
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
23
|
Yang C, Li D, Zang S, Zhang L, Zhong Z, Zhou Y. Mechanisms of carcinogenic activity triggered by lysine-specific demethylase 1A. Front Pharmacol 2022; 13:955218. [PMID: 36059955 PMCID: PMC9428822 DOI: 10.3389/fphar.2022.955218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetics has emerged as a prime focus area in the field of cancer research. Lysine-specific demethylase 1A (LSD1), the first discovered histone demethylase, is mainly responsible for catalysing demethylation of histone 3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is abnormally expressed in various cancers and participates in cancer proliferation, apoptosis, metastasis, invasion, drug resistance and other processes by interacting with regulatory factors. Therefore, it may serve as a potential therapeutic target for cancer. This review summarises the major oncogenic mechanisms mediated by LSD1 and provides a reference for developing novel and efficient anticancer strategies targeting LSD1.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohong Zang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Zhangfeng Zhong, ; Yingtang Zhou,
| |
Collapse
|
24
|
Xu K, Fei W, Huo Z, Wang S, Li Y, Yang G, Hong Y. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med 2022; 12:1673-1684. [PMID: 35848121 PMCID: PMC9883585 DOI: 10.1002/cam4.5025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osteosarcoma, a common primary malignant tumor, occurs in children and adolescents with a poor prognosis. The current treatment methods are various, while the five-year survival rate of patients has not been significantly improved. As a member of the programmed death factor (PDCD) family, programmed death factor 10 (PDCD10) plays a role in regulating cell apoptosis. Several studies of PDCD10 in CCM and cancers have been reported before. However, there are no relevant research reports on the effects of PDCD10 on osteosarcoma. METHODS We used bioinformatics analysis, IHC, and clinical data to confirm the expression of PDCD10 and its correlation with prognosis in osteosarcoma. Then, we used shRNAs and cDNA to knock down or overexpress PDCD10 in U2OS and MG63 cell lines. A series of function assays such as CCK8, Wound healing test, Plate cloning formation assay, and Transwell were done to confirm how PDCD10 affects osteosarcoma. Animal assays were done to confirm the conclusions in cell lines. At last, WB was used to measure the protein expression levels of apoptosis and the EMT pathway. RESULTS PDCD10 was highly expressed in patients with osteosarcoma and correlated with prognosis; PDCD10 knockdown inhibited osteosarcoma growth, proliferation, migration, and invasion; PDCD10 overexpression promoted osteosarcoma growth, proliferation, migration, and invasion. In vivo experiments confirmed the conclusions in cell lines; PDCD10 inhibited apoptosis and activated the EMT pathway. CONCLUSIONS In this study, it was found that PDCD10 was highly expressed in patients with osteosarcoma, and it was closely related to patient prognosis. PDCD10 inhibited tumor cell apoptosis and promoted tumor progression by activating the EMT pathway. These findings may provide a potential target for gene therapy of osteosarcoma.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Ziqi Huo
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Shuoer Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina,Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| |
Collapse
|
25
|
Lei K, Wang X, Liu Y, Sun T, Xie W. Global research hotspots and trends of the Notch signaling pathway in the field of cancer: a bibliometric study. Am J Transl Res 2022; 14:4918-4930. [PMID: 35958476 PMCID: PMC9360898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To analyze the development status, research hotspots, research frontiers and future development trends of the Notch signaling pathway in cancer through bibliometric analysis. METHODS Publications related to the Notch signaling pathway in cancer were obtained from the Web of Science Core Collection (WoSCC), and information was extracted from the articles using Microsoft Excel 2020, CiteSpace V and VOSviewer software for visual analysis. RESULTS The country and institution with the most publications are the USA and Harvard University, respectively. PLoS One is the most published journal, and Cancer Research is the most cocited journal. The author with the most published articles was L Miele, and the most cocited author was ZW Wang. The top 3 keywords were activation, differentiation and growth. Metastasis, epithelial-mesenchymal transition (EMT), invasion, target and resistance are the current research hotspots and frontiers in this field. CONCLUSIONS Research related to the Notch signaling pathway in cancer is currently booming, and the USA has made the greatest contribution to this field. At present, the research hotspots and research frontiers in this field mainly focus on the regulatory role of the Notch signaling pathway in tumor invasion and metastasis, the regulation of the Notch signaling pathway in tumor progression through EMT, and the participation of the Notch signaling pathway in the regulation of chemotherapy or immunotherapy resistance to tumors.
Collapse
Affiliation(s)
- Kunyang Lei
- Department of Urology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xu Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
26
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
27
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
28
|
Kałafut J, Czapiński J, Przybyszewska-Podstawka A, Czerwonka A, Odrzywolski A, Sahlgren C, Rivero-Müller A. Optogenetic control of NOTCH1 signaling. Cell Commun Signal 2022; 20:67. [PMID: 35585598 PMCID: PMC9118860 DOI: 10.1186/s12964-022-00885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | | | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland.
| |
Collapse
|
29
|
Identification of Potential RBPJ-Specific Inhibitors for Blocking Notch Signaling in Breast Cancer Using a Drug Repurposing Strategy. Pharmaceuticals (Basel) 2022; 15:ph15050556. [PMID: 35631382 PMCID: PMC9146688 DOI: 10.3390/ph15050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is a key parameter in regulating cell fate during tissue homeostasis, and an aberrant Notch pathway can result in mammary gland carcinoma and has been associated with poor breast cancer diagnosis. Although inhibiting Notch signaling would be advantageous in the treatment of breast cancer, the currently available Notch inhibitors have a variety of side effects and their clinical trials have been discontinued. Thus, in search of a more effective and safer Notch inhibitor, inhibiting recombinant signal binding protein for immunoglobin kappaJ region (RBPJ) specifically makes sense, as RBPJ forms a transcriptional complex that activates Notch signaling. From our established database of more than 10,527 compounds, a drug repurposing strategy-combined docking study and molecular dynamic simulation were used to identify novel RBPJ-specific inhibitors. The compounds with the best performance were examined using an in vitro cellular assay and an in vivo anticancer investigation. Finally, an FDA-approved antibiotic, fidaxomicin, was identified as a potential RBPJ inhibitor, and its ability to block RBPJ-dependent transcription and thereby inhibit breast cancer growth was experimentally verified. Our study demonstrated that fidaxomicin suppressed Notch signaling and may be repurposed for the treatment of breast cancer.
Collapse
|
30
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
31
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
32
|
A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers (Basel) 2022; 14:cancers14040992. [PMID: 35205740 PMCID: PMC8869877 DOI: 10.3390/cancers14040992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Adenoid cystic carcinoma (ACC) is a salivary malignancy known for slow growth, a propensity for perineural spread, local recurrence following resection, and indolent distant metastases. Current treatments in recurrent/metastatic (R/M) ACC are generally of limited impact and often palliative in nature. Herein, we review the preclinical and clinical literature on molecular alterations in ACC with the potential for targeted therapeutics. We further review other molecular targets of ongoing investigation and active clinical trials for patients with ACC, offering a contemporary summary and insight into future therapeutic strategies. Abstract ACC is a rare malignant tumor of the salivary glands. In this contemporary review, we explore advances in identification of targetable alterations and clinical trials testing these druggable targets. A search of relevant articles and abstracts from national meetings and three databases, including PubMed, Medline, and Web of Science, was performed. Following keyword search analysis and double peer review of abstracts to ensure appropriate fit, a total of 55 manuscripts were included in this review detailing advances in molecular targets for ACC. The most researched pathway associated with ACC is the MYB–NFIB translocation, found to lead to dysregulation of critical cellular pathways and thought to be a fundamental driver in a subset of ACC disease pathogenesis. Other notable molecular targets that have been studied include the cKIT receptor, the EGFR pathway, and NOTCH1, all with limited efficacy in clinical trials. The ongoing investigation of molecular abnormalities underpinning ACC that may be responsible for carcinogenesis is critical to identifying and developing novel targeted therapies.
Collapse
|
33
|
Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci 2022; 23:ijms23010573. [PMID: 35008996 PMCID: PMC8745084 DOI: 10.3390/ijms23010573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.
Collapse
|
34
|
Zhang Y, Liu Q, Yang S, Liao Q. Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma. Mol Ther Oncolytics 2021; 23:51-64. [PMID: 34632050 PMCID: PMC8479295 DOI: 10.1016/j.omto.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory and fatal human malignancies. Leucine-rich repeat neuronal protein-1 (LRRN1) plays a crucial role in the development of the nervous system. However, the clinical implications and biological functions of LRRN1 in PDAC remain unclear. We found that LRRN1 expression was upregulated in PDAC tissues compared with paracancerous tissues and normal pancreatic tissues through the different public databases, tissue microarray-based immunohistochemistry, and dimethylbenzanthracene-induced PDAC murine model. The expression level of LRRN1 was closely related to the overall survival and disease-free survival of PDAC patients. Cox multivariate analysis indicated that LRRN1 was an independent adverse prognostic factor. The small hairpin RNA (shRNA)-mediated LRRN1 knockdown remarkably restrained the proliferative, migratory, and invasive capacities, as well as promoted cell apoptosis and increased G0/G1 arrest in PDAC cells. The xenograft murine subcutaneous bearing model and metastasis model verified that silencing of LRRN1 effectively dampened tumor growth and metastasis in vivo. Specifically, LRRN1 exerted its biological functions through the HIF-1α/Notch signaling pathway, and LRRN1 knockdown could dampen Jagged 1-mediated Notch pathway activation. Therefore, LRRN1 could serve as the potential therapeutic or prognostic target for PDAC.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
35
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
36
|
Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021; 13:cancers13215532. [PMID: 34771695 PMCID: PMC8582651 DOI: 10.3390/cancers13215532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma’s (PDAC) dismal prognosis is associated with its aggressive biological behavior and resistance to chemotherapy. Epithelial to mesenchymal transition (EMT) has been recognized as a key driver of PDAC progression and development of drug resistance. EMT is a transient and reversible process leading to transdifferentiation of epithelial cells into a more mesenchymal phenotype. It is regulated by multiple signaling pathways that control the activity of a transcription factors network. Activation of EMT in pre-invasive stages of PDAC has been accused for early dissemination. Furthermore, it contributes to the development of intratumoral heterogeneity and drug resistance. This review summarizes the available data regarding signaling networks regulating EMT and describes the integral role of EMT in different aspects of PDAC pathogenesis. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, characterized by aggressive biological behavior and a lack of response to currently available chemotherapy. Emerging evidence has identified epithelial to mesenchymal transition (EMT) as a key driver of PDAC progression and a central regulator in the development of drug resistance. EMT is a reversible transdifferentiation process controlled by complex interactions between multiple signaling pathways such as TGFb, Wnt, and Notch, which converge to a network of specific transcription factors. Activation of EMT transcriptional reprogramming converts cancer cells of epithelial differentiation into a more mesenchymal phenotypic state. EMT occurrence in pre-invasive pancreatic lesions has been implicated in early PDAC dissemination. Moreover, cancer cell phenotypic plasticity driven by EMT contributes to intratumoral heterogeneity and drug tolerance and is mechanistically associated with the emergence of cells exhibiting cancer stem cells (CSCs) phenotype. In this review we summarize the available data on the signaling cascades regulating EMT and the molecular isnteractions between pancreatic cancer and stromal cells that activate them. In addition, we provide a link between EMT, tumor progression, and chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kostas Palamaris
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Felekouras
- 1ST Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stratigoula Sakellariou
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
37
|
Zhang W, Yu F, Weng J, Zheng Y, Lin J, Qi T, Wei Y, Wang D, Zeng H. SOX12 Promotes Stem Cell-Like Phenotypes and Osteosarcoma Tumor Growth by Upregulating JAGGED1. Stem Cells Int 2021; 2021:9941733. [PMID: 34725550 PMCID: PMC8557074 DOI: 10.1155/2021/9941733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
SOX12 plays a role in promoting the growth of some tumors; however, its role in osteosarcoma remains unclear. From gene expression omnibus (GEO) and tumor alterations relevant for genomics-driven therapy (TARGET) databases, Kaplan-Meier analyses were conducted to establish relationships between SOX12 expression and osteosarcoma survival and recurrence in osteosarcoma patients. We also performed in vitro and in vivo assays to determine SOX12 function in osteosarcoma etiology. SOX12 expression was increased in osteosarcoma; high SOX12 expression levels were related to a poor prognosis and a high disease recurrence in patients. Moreover, SOX12 expression in osteosarcoma cell lines was increased, similar to osteosarcoma cancer stem cells. We also observed that SOX12 knockdown inhibited the spheroidization and expression of stemness markers in osteosarcoma cells and tumor formation in nude mice. In addition, SOX12 knockdown inhibited JAGGED1 and HES1 expression. Similarly, JAGGED1 knockdown also inhibited the formation of osteosarcoma cancer stem cells into pellets and reduced the expression of stemness markers and tumor formation capabilities in nude mice. Finally, during SOX12 knockdown, JAGGED1 overexpression rescued osteosarcoma cells from spheroidizing. SOX12 promotes stem cell-like phenotypes and osteosarcoma tumor growth by upregulating JAGGED1.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yien Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianjing Lin
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tiantian Qi
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
38
|
EP300/CBP is crucial for cAMP-PKA pathway to alleviate podocyte dedifferentiation via targeting Notch3 signaling. Exp Cell Res 2021; 407:112825. [PMID: 34506759 DOI: 10.1016/j.yexcr.2021.112825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
Podocyte injury is the hallmark of proteinuric glomerular diseases. Notch3 is neo-activated simultaneously in damaged podocytes and podocyte's progenitor cells of FSGS, indicating a unique role of Notch3. We previously showed that activation of cAMP-PKA pathway alleviated podocyte injury possibly via inhibiting Notch3 expression. However, the mechanisms are unknown. In the present study, Notch3 signaling was significantly activated in ADR-induced podocytes in vitro and in PAN nephrosis rats and patients with idiopathic FSGS in vivo, concomitantly with podocyte dedifferentiation. In cultured podocytes, pCPT-cAMP, a selective cAMP-PKA activator, dramatically blocked ADR-induced activation of Notch3 signaling as well as inhibition of cAMP-PKA pathway, thus alleviating the decreased cell viability and podocyte dedifferentiation. Bioinformatics analysis revealed EP300/CBP, a transcriptional co-activator, as a central hub for the crosstalk between these two signaling pathways. Additionally, CREB/KLF15 in cAMP-PKA pathway competed with RBP-J the major transcriptional factor of Notch3 signaling for binding to EP300/CBP. EP300/CBP siRNA significantly inhibited these two signaling transduction pathways and disrupted the interactions between the above major transcriptional factors. These data indicate a crucial role of EP300/CBP in regulating the crosstalk between cAMP-PKA pathway and Notch3 signaling and modulating the phenotypic change of podocytes, and enrich the reno-protective mechanisms of cAMP-PKA pathway.
Collapse
|
39
|
Bainrauch A, Šisl D, Markotić A, Ostojić A, Gašparov S, Bralić Lang V, Kovačić N, Grčević D, Mrzljak A, Kelava T. NOTCH3 rs1043996 Polymorphism Is Associated with the Occurrence of Alcoholic Liver Cirrhosis Independently of PNPLA3 and TM6SF2 Polymorphisms. J Clin Med 2021; 10:jcm10194621. [PMID: 34640639 PMCID: PMC8509578 DOI: 10.3390/jcm10194621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver cirrhosis (ALC) is the most common indication for liver transplantation (LT) in Croatia and presents a risk factor for the development of hepatocellular carcinoma (HCC). However, genetic susceptibility has not yet been systematically studied. We aimed to investigate the contribution of the risk polymorphisms PNPLA3 rs738409, EGF rs4444903, TM6SF2 rs58542926, MTHFR rs1801133, previously identified in other populations and, additionally, the contribution of Notch-related polymorphisms (NOTCH1 rs3124591, NOTCH3 rs1043996 and rs1044116, NOTCH4 rs422951). The study included 401 patients. The ALC group consisted of 260 LT candidates, 128 of whom had histopathologically confirmed HCC, and 132 of whom were without HCC. The control group included 141 patients without liver disease. Genotyping was performed by PCR using Taqman assays. The patients' susceptibility to ALC was significantly associated with PNPLA3 rs738409, TM6SF2 rs58542926, and NOTCH3 rs1043996 polymorphisms. These polymorphisms remained significantly associated with ALC occurrence in a logistic regression model, even after additional model adjustment for sex and age. Cirrhotic patients with the PNPLA3 GG genotype demonstrated higher activity of ALT aminotransferases than patients with CC or CG genotypes. The susceptibility to the development of HCC in ALC was significantly associated with PNPLA3 rs738409 and EGF rs4444903 polymorphisms, and logistic regression confirmed these polymorphisms as independent predictors.
Collapse
Affiliation(s)
- Ana Bainrauch
- Department of Internal Medicine, Merkur University Hospital, 10000 Zagreb, Croatia;
| | - Dino Šisl
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (N.K.); (D.G.)
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Markotić
- Department of Physiology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Center for Clinical Pharmacology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Ana Ostojić
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Slavko Gašparov
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | | | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (N.K.); (D.G.)
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (N.K.); (D.G.)
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence: (A.M.); (T.K.); Tel.: +385-1-238-8888 (A.M.); +385-1-456-6945 (T.K.)
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, 10000 Zagreb, Croatia; (D.Š.); (N.K.); (D.G.)
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (A.M.); (T.K.); Tel.: +385-1-238-8888 (A.M.); +385-1-456-6945 (T.K.)
| |
Collapse
|
40
|
Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/Differentiation Program. Front Oncol 2021; 11:707066. [PMID: 34504787 PMCID: PMC8421684 DOI: 10.3389/fonc.2021.707066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from lysosomes and causing inappropriate proteolysis. Our study found that CSTB was downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells compared with normal controls. Immunohistochemical analysis showed that CSTB was mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity was related to the grade classification. A correlation analysis between CSTB and clinical prognosis was performed using gene expression data and clinical information acquired from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of CSTB had shorter disease-free survival times and poorer clinicopathological features (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed based on the TCGA data to explore potential mechanisms, and CSTB appeared to correlate with squamous epithelial proliferation-differentiation processes, such as epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module most associated with CSTB expression (i.e., the brown module) was also the one most associated with grade classification. Upregulation of CSTB promoted the expression levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for differentiation and keratinization in vitro. Gene expression profile data of the overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq) technology. By comparing the GSEA enrichment results of RNA-seq data (from the OSCC models overexpressing CSTB) and existing public database data, three gene sets (i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the data from both sources. Overall, our study shows that CSTB is downregulated in OSCC and might regulate the malignant characteristics of OSCC via the epithelial proliferation/differentiation program.
Collapse
Affiliation(s)
- Tian-Tian Xu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xin-Hong Wang
- Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lu-Xi Yang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Luo
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
41
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
42
|
Molecular Landscape of Vulvar Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22137069. [PMID: 34209172 PMCID: PMC8269046 DOI: 10.3390/ijms22137069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with dual pathogenesis, Human papillomavirus (HPV)-associated and HPV-independent, with a poorly explored molecular landscape. We aimed to summarize the findings of the series analyzing molecular hallmarks of this neoplasm. In January 2021, we conducted a comprehensive literature search using Pubmed Medline and Scopus to identify publications focused on genomic profiling of VSCC. Observational studies, including both prospective and retrospective designs, evaluating molecular alterations in VSCC were deemed eligible. A total of 14 studies analyzing 749 VSCC were identified. The study series were heterogeneous in HPV testing and sequencing strategies, included small sets of tumors and cancer genes, and commonly lacked survival analysis. Only one extensive targeted next-generation sequencing-based study comprised a large cohort of 280 VSCC. The mutated genes, their number, and frequencies were highly variable between the series. Overall, TP53 and CDKN2A, followed by PIK3CA, HRAS, and PTEN, were the most frequently studied and mutated genes. Mutations involved in the PI3K/AKT/mTOR pathway, including TP53, HRAS, KRAS, and PIK3CA, have been consistently reported across the studies. However, the role of individual mutations or pathways in the development of VSCC remains unclear. In conclusion, heterogeneity and the small sample size of available molecular series contribute to a limited view of the molecular landscape of VSCC. Large-scale genome- or exome-wide studies with robust HPV testing are necessary to improve the molecular characterization of VSCC.
Collapse
|
43
|
Koo SC, LaHaye S, Kovari BP, Schieffer KM, Ranalli MA, Aldrink JH, Michalsky MP, Colace S, Miller KE, Bedrosian TA, Leraas KM, Voytovich K, Wheeler G, Brennan P, Fitch J, Kelly BJ, McGrath SD, Miller AR, White P, Magrini V, Wilson RK, Mardis ER, Lauwers GY, Baker PB, Cottrell CE. Gastroblastoma with a novel EWSR1-CTBP1 fusion presenting in adolescence. Genes Chromosomes Cancer 2021; 60:640-646. [PMID: 34041825 DOI: 10.1002/gcc.22973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/07/2022] Open
Abstract
Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.
Collapse
Affiliation(s)
- Selene C Koo
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bence P Kovari
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA.,Department of Pathology, University of Szeged, Szeged, Hungary
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark A Ranalli
- Division of Hematology/Oncology/Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Marc P Michalsky
- Division of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Susan Colace
- Division of Hematology/Oncology/Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kristen M Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kyle Voytovich
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patrick Brennan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Gregory Y Lauwers
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Peter B Baker
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine E Cottrell
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA.,The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers (Basel) 2021; 13:cancers13112744. [PMID: 34205978 PMCID: PMC8198587 DOI: 10.3390/cancers13112744] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Signal transduction is an essential process that regulates and coordinates fundamental cellular processes, such as development, immunity, energy metabolism, and apoptosis. Through signaling, cells are capable of perceiving their environment and adjusting to changes, and most signaling cascades ultimately lead to alterations in gene expression. Circular RNAs (circRNAs) constitute an emerging type of endogenous transcripts with regulatory roles and unique properties. They are stable and expressed in a tissue-, cell-, and developmental stage-specific manner, while they are involved in the pathogenesis of several diseases, including cancer. Aberrantly expressed circRNAs can mediate cancer progression through regulation of the activity of major signaling cascades, such as the VEGF, WNT/β-catenin, MAPK, PI3K/AKT, and Notch signaling pathways, as well as by interfering with signaling crosstalk. Deregulated signaling can then function to induce angiogenesis, promote invasion, migration, and metastasis, and, generally, modulate the hallmarks of cancer. In this review article, we summarize the most recently described and intriguing cases of circRNA-mediated signaling regulation that are involved in cancer progression, and discuss the biomarker potential of circRNAs, as well as future therapeutic applications.
Collapse
|
45
|
Zheng C, Wang J, Zhang J, Hou S, Zheng Y, Wang Q. Myelin and lymphocyte protein 2 regulates cell proliferation and metastasis through the Notch pathway in prostate adenocarcinoma. Transl Androl Urol 2021; 10:2067-2077. [PMID: 34159087 PMCID: PMC8185687 DOI: 10.21037/tau-21-244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Myelin and lymphocyte protein 2 (MAL2) is a proven oncogene in some human tumors. However, currently, little is known about the function of MAL2 in prostate adenocarcinoma (PRAD). This study sought to investigate the role of MAL2 on PRAD progression. Methods MAL2 expression in PRAD was first analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA) database. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay and Western blot assay were used to detect the expression of MAL2 in PRAD tissues and cell lines. Additionally, immunohistochemistry (IHC) straining was used to detect the expression of MAL2 in PRAD pathological tissues. The Cell Counting Kit-8 (CCK-8) assay, clone formation assay and Flow cytometry were performed to investigate the effect of MAL2 on PRAD cell proliferation and cell apoptosis. Cell migration and invasion were measured by Transwell assay. The effect of MAL2 on epithelial-mesenchymal transition (EMT) progression and the Notch signaling pathway in PRAD was also investigated. Results MAL2 was discovered to be obviously upregulated in PRAD tissues and cell lines. The upregulation of MAL2 was closely associated with tumor, nodes and metastases (TNM) stage, the Gleason score and metastasis of PRAD patients, and affected the prognosis of PRAD patients. Functionally, the depletion of MAL2 suppressed cell proliferation, migration, invasion, and EMT progression, and promoted cell apoptosis of PRAD cells. In an in vivo experiment, MAL2 knockdown significantly suppressed tumor growth in mice. Further, inhibiting the Notch pathway reversed the effect of MAL2 knockdown on PRAD progression. Conclusions In sum, MAL2 was found to be upregulated in PRAD, and appears to act as a carcinogen in PRAD. Additionally, MAL2 appears to regulate PRAD progression through the Notch signaling pathway.
Collapse
Affiliation(s)
- Chenglong Zheng
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China.,Department of Andrology, Beijing Gulou Hospital of TCM, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Jian Zhang
- Department of Preventive Treatment, Beijing Hospital of TCM, Capital Medical University, Beijing, China
| | - Shujuan Hou
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| |
Collapse
|