1
|
Grinberg M, Ilin N, Nemtsova Y, Sarafanov F, Ivanova A, Dolinin A, Pirogova P, Vodeneev V, Mareev E. Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. PLANT SIGNALING & BEHAVIOR 2024; 19:2294425. [PMID: 38147417 PMCID: PMC10761032 DOI: 10.1080/15592324.2023.2294425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (Triticum aestivum L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.
Collapse
Affiliation(s)
- Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Nikolay Ilin
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Yulia Nemtsova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Fedor Sarafanov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Angelina Ivanova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Dolinin
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Polina Pirogova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Evgeny Mareev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Mshenskaya NS, Grinberg MA, Kalyasova EA, Vodeneev VA, Ilin NV, Slyunyaev NN, Mareev EA, Sinitsyna YV. The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:826. [PMID: 36840174 PMCID: PMC9963552 DOI: 10.3390/plants12040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth-ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with a frequency of 14.3 Hz (which corresponds to the second Schumann harmonic) on the transpiration and photosynthesis of wheat plants under the influence of drought. The activity of photosynthesis processes, the crop water stress index, relative water content and leaf area were determined during drought intensification. At the end of the experiment, on the 12th day of drought, the length, and fresh and dry weight of wheat shoots were measured. The results obtained indicate a protective effect of the magnetic field on plants in unfavorable drought conditions; the magnetic field delayed the development of harmful changes in the transpiration and photosynthesis processes for several days. At the same time, in the absence of the stressor (drought), the effect of the electromagnetic field was not detected, except for a decrease in relative transpiration. In favorable conditions, there were only minimal modifications of the photosynthetic processes and transpiration by the magnetic field.
Collapse
Affiliation(s)
- N. S. Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - M. A. Grinberg
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - E. A. Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - V. A. Vodeneev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - N. V. Ilin
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - N. N. Slyunyaev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - E. A. Mareev
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| | - Y. V. Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Grinberg M, Mudrilov M, Kozlova E, Sukhov V, Sarafanov F, Evtushenko A, Ilin N, Vodeneev V, Price C, Mareev E. Effect of extremely low-frequency magnetic fields on light-induced electric reactions in wheat. PLANT SIGNALING & BEHAVIOR 2022; 17:2021664. [PMID: 34994282 PMCID: PMC9176247 DOI: 10.1080/15592324.2021.2021664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic field oscillations resulting from atmospheric events could have an effect on growth and development of plants and on the responsive reactions of plants to other environmental factors. In the current work, extremely low-frequency magnetic field (14.3 Hz) was shown to modulate light-induced electric reactions of wheat (Triticum aestivum L.). Blue light-induced electric reaction in wheat leaf comprises depolarization and two waves of hyperpolarization resulting in an increase of the potential to a higher level compared to the dark one. Fluorescent and inhibitory analysis demonstrate a key role of calcium ions and calcium-dependent H+-ATPase of the plasma membrane in the development of the reaction. Activation of H+-ATPase by the increased calcium influx is suggested as a mechanism of the influence of magnetic field on light-induced electric reaction.
Collapse
Affiliation(s)
- Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Maxim Mudrilov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Elizaveta Kozlova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Fedor Sarafanov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Andrey Evtushenko
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Nikolay Ilin
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
- CONTACT Vladimir Vodeneev Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod603950, Russia; Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod 603600, Russia
| | - Colin Price
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Evgeny Mareev
- Department of Geophysical Electrodynamics, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaRussia
| |
Collapse
|
4
|
Brestic M, Allakhverdiev SI. Photosynthesis under Biotic and Abiotic Environmental Stress. Cells 2022; 11:cells11243953. [PMID: 36552717 PMCID: PMC9777213 DOI: 10.3390/cells11243953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Photosynthesis is a unique process that has shaped life on our planet and created the conditions for all known life forms [...].
Collapse
Affiliation(s)
- Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: (M.B.); (S.I.A.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Correspondence: (M.B.); (S.I.A.)
| |
Collapse
|
5
|
González-Vidal A, Mercado-Sáenz S, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Growth alteration of Allium cepa L. roots exposed to 1.5 mT, 25 Hz pulsed magnetic field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2471-2483. [PMID: 34474627 DOI: 10.1080/09603123.2021.1972090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The response of plants to magnetic fields (MF) is not fully understood. This work studies the effects of pulsed MF on the germination and growth of Allium cepa roots. Onions were exposed to 25Hz, 1.5mT, 33h. Pulsed MF was generated by a Helmholtz-type equipment that generated rectangular voltage pulses. The results showed that fewer roots grew in the specimens exposed to pulsed MF (14±6 roots on day 1 to 21±8 on day 4) than in the control groups (32±17 to 48±23) (p<0.05 Friedman). Control specimens showed a root mean length of 7±4 mm (day 1) and 24±10 mm (day 4). The specimens treated with pulsed MF showed a length of 4±2 mm (day 1), reaching 18±9 mm on day 4 (p<0.001 ANOVA). In conclusion, the exposure of Allium cepa specimens to 25Hz, 1.5mT pulsed MF during 33h produces a decrease in the germination and growth of roots.
Collapse
Affiliation(s)
- Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
6
|
Mshenskaya N, Sinitsyna Y, Kalyasova E, Valeria K, Zhirova A, Karpeeva I, Ilin N. Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas. PLANTS 2022; 11:plants11151955. [PMID: 35956432 PMCID: PMC9370302 DOI: 10.3390/plants11151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose of the study is to characterize the possible role of the plant cell redox metabolism regulating system in the Schumann Resonances EMF perception. Activity of catalase and superoxide dismutase, their isoenzyme structure, content of malondialdehyde, composition of polar lipids in leaf extracts of wheat and pea plants treated with short-time (30 min) and long-time (18 days) ELF EMF with a frequency of 7.8 Hz, 14.3 Hz, 20.8 Hz have been investigated. Short-time exposure ELF EMF caused more pronounced bio effects than long-time exposure. Wheat catalase turned out to be the most sensitive parameter to magnetic fields. It is assumed that the change in the activity of wheat catalase after a short-term ELF EMF may be associated with the ability of this enzyme to perceive the action of a weak EMF through calcium calmodulin and/or cryptochromic signaling systems.
Collapse
Affiliation(s)
- Natalia Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
- Correspondence:
| | - Yulia Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Ekaterina Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Koshcheeva Valeria
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Anastasia Zhirova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Irina Karpeeva
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
| |
Collapse
|
7
|
Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095144. [PMID: 35564539 PMCID: PMC9099453 DOI: 10.3390/ijerph19095144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
Natural and anthropogenic electromagnetic fields (EMFs) are ubiquitous in the environment and interfere with all biological organisms including plants. Particularly the quality and quantity of alternating EMFs from anthropogenic sources are increasing due to the implementation of novel technologies. There is a significant interest in exploring the impact of EMFs (similar to those emitted from battery chargers of electric cars) on plants. The model plant Arabidopsis thaliana was exposed to a composite alternating EMF program for 48 h and scrutinized for molecular alterations using photosynthetic performance, metabolite profiling, and RNA sequencing followed by qRT-PCR validation. Clear differences in the photosynthetic parameters between the treated and control plants indicated either lower nonphotochemical quenching or higher reduction of the plastoquinone pool or both. Transcriptome analysis by RNA sequencing revealed alterations in transcript amounts upon EMF exposure; however, the gene ontology groups of, e.g., chloroplast stroma, thylakoids, and envelope were underrepresented. Quantitative real-time PCR validated deregulation of some selected transcripts. More profound were the readjustments in metabolite pool sizes with variations in photosynthetic and central energy metabolism. These findings together with the invariable phenotype indicate efficient adjustment of the physiological state of the EMF-treated plants, suggesting testing for more challenging growth conditions in future experiments.
Collapse
|
8
|
Sukhova E, Gromova E, Yudina L, Kior A, Vetrova Y, Ilin N, Mareev E, Vodeneev V, Sukhov V. Change in H + Transport across Thylakoid Membrane as Potential Mechanism of 14.3 Hz Magnetic Field Impact on Photosynthetic Light Reactions in Seedlings of Wheat ( Triticum aestivum L.). PLANTS 2021; 10:plants10102207. [PMID: 34686016 PMCID: PMC8537839 DOI: 10.3390/plants10102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Anastasiia Kior
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Yana Vetrova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Evgeny Mareev
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (E.S.); (E.G.); (L.Y.); (A.K.); (Y.V.); (V.V.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia; (N.I.); (E.M.)
- Correspondence: ; Tel.: +7-909-292-8653
| |
Collapse
|
9
|
Ismail MA, Amin MA, Eid AM, Hassan SED, Mahgoub HAM, Lashin I, Abdelwahab AT, Azab E, Gobouri AA, Elkelish A, Fouda A. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021; 10:cells10051059. [PMID: 33946942 PMCID: PMC8146795 DOI: 10.3390/cells10051059] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial endophytes organize symbiotic relationships with the host plant, and their excretions contain diverse plant beneficial matter such as phytohormones and bioactive compounds. In the present investigation, six bacterial and four fungal strains were isolated from the common bean (Phaseolus vulgaris L.) root plant, identified using molecular techniques, and their growth-promoting properties were reviewed. All microbial isolates showed varying activities to produce indole-3-acetic acid (IAA) and different hydrolytic enzymes such as amylase, cellulase, protease, pectinase, and xylanase. Six bacterial endophytic isolates displayed phosphate-solubilizing capacity and ammonia production. We conducted a field experiment to evaluate the promotion activity of the metabolites of the most potent endophytic bacterial (Bacillus thuringiensis PB2 and Brevibacillus agri PB5) and fungal (Alternaria sorghi PF2 and, Penicillium commune PF3) strains in comparison to two exogenously applied hormone, IAA, and benzyl adenine (BA), on the growth and biochemical characteristics of the P. vulgaris L. Interestingly, our investigations showed that bacterial and fungal endophytic metabolites surpassed the exogenously applied hormones in increasing the plant biomass, photosynthetic pigments, carbohydrate and protein contents, antioxidant enzyme activity, endogenous hormones and yield traits. Our findings illustrate that the endophyte Brevibacillus agri (PB5) provides high potential as a stimulator for the growth and productivity of common bean plants.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Mohamed A. Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| | - Hany A. M. Mahgoub
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Islam Lashin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Biology, Faculty of Science and Arts, Al Mandaq, Albaha University, Al-Baha 1988, Saudi Arabia
| | - Abdelrhman T. Abdelwahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Botany Science, Faculty of Science, Northern Border University, Arar 73211, Saudi Arabia
| | - Ehab Azab
- Department of Nutrition and Food Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Elkelish
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41511, Egypt; or
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| |
Collapse
|