1
|
Guan Z, Wang Y, Yang J. The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development. J Genet Genomics 2025:S1673-8527(25)00003-7. [PMID: 39798667 DOI: 10.1016/j.jgg.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts. Despite their recognized importance, the specific roles of mTERF proteins in maize remain largely unexplored. Here, we clone and functionally characterize maize mTERF18 gene. Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos, resulting in abortive phenotypes. Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18. We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests. mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein. Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene, leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity. Furthermore, transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects. Collectively, these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
Collapse
Affiliation(s)
- Zhengwei Guan
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Marzano N, Johnston B, Paudel BP, Schmidberger J, Jergic S, Böcking T, Agostino M, Small I, van Oijen AM, Bond CS. Single-molecule visualization of sequence-specific RNA binding by a designer PPR protein. Nucleic Acids Res 2024; 52:14154-14170. [PMID: 39530228 DOI: 10.1093/nar/gkae984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Pentatricopeptide repeat proteins (PPR) are a large family of modular RNA-binding proteins, whereby each module can be modified to bind to a specific ssRNA nucleobase. As such, there is interest in developing 'designer' PPRs (dPPRs) for a range of biotechnology applications, including diagnostics or in vivo localization of ssRNA species; however, the mechanistic details regarding how PPRs search for and bind to target sequences is unclear. To address this, we determined the structure of a dPPR bound to its target sequence and used two- and three-color single-molecule fluorescence resonance energy transfer to interrogate the mechanism of ssRNA binding to individual dPPRs in real time. We demonstrate that dPPRs are slower to bind longer ssRNA sequences (or could not bind at all) and that this is, in part, due to their propensity to form stable secondary structures that sequester the target sequence from dPPR. Importantly, dPPR binds only to its target sequence (i.e. it does not associate with non-target ssRNA sequences) and does not 'scan' longer ssRNA oligonucleotides for the target sequence. The kinetic constraints imposed by random 3D diffusion may explain the long-standing conundrum of why PPR proteins are abundant in organelles, but almost unknown outside them (i.e. in the cytosol and nucleus).
Collapse
Affiliation(s)
- Nicholas Marzano
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Brady Johnston
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bishnu P Paudel
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Jason Schmidberger
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Slobodan Jergic
- University of Wollongong, School of Chemistry and Molecular Bioscience, Molecular Horizons, Northfields Avenue, Wollongong, NSW 2500, Australia
| | - Till Böcking
- University of New South Wales, Department of Molecular Medicine, EMBL Australia Node in Single Molecule Science, Gate 11, Botany St, Sydney, NSW 2052, Australia
| | - Mark Agostino
- Curtin University, Curtin Medical School, Curtin Health Innovation Research Institute, and Curtin Institute for Computation, Kent St, Bentley, WA 6102, Australia
| | - Ian Small
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Antoine M van Oijen
- University of Sydney, Faculty of Medicine and Health, G02 Jane Foss Russell Building, Sydney, NSW 2006, Australia
| | - Charles S Bond
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Ocaña-Gallegos C, Liang M, McGinty E, Zhang Z, Murphy KM, Hauvermale AL. Preharvest Sprouting in Quinoa: A New Screening Method Adapted to Panicles and GWAS Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1297. [PMID: 38794368 PMCID: PMC11124833 DOI: 10.3390/plants13101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The introduction of quinoa into new growing regions and environments is of interest to farmers, consumers, and stakeholders around the world. Many plant breeding programs have already started to adapt quinoa to the environmental and agronomic conditions of their local fields. Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy out of Washington State University. Preharvest sprouting appeared as the primary obstacle to increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions, and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines in future breeding programs aiming to incorporate tolerance to PHS.
Collapse
Affiliation(s)
| | | | | | | | - Kevin M. Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| | - Amber L. Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA; (C.O.-G.); (M.L.); (E.M.); (Z.Z.)
| |
Collapse
|
5
|
Wu X, Hu Z, Zhang Y, Li M, Liao N, Dong J, Wang B, Wu J, Wu X, Wang Y, Wang J, Lu Z, Yang Y, Sun Y, Dong W, Zhang M, Li G. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat Genet 2024; 56:992-1005. [PMID: 38649710 DOI: 10.1038/s41588-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.
Collapse
Affiliation(s)
- Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongyuan Hu
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Mao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Nanqiao Liao
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Junyang Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Baogen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Xiaohua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongfu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Yuyan Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Wenqi Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Mingfang Zhang
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, P. R. China.
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China.
| | - Guojing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
| |
Collapse
|
6
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
8
|
Bychkov IA, Andreeva AA, Vankova R, Lacek J, Kudryakova NV, Kusnetsov VV. Modified Crosstalk between Phytohormones in Arabidopsis Mutants for PEP-Associated Proteins. Int J Mol Sci 2024; 25:1586. [PMID: 38338865 PMCID: PMC10855609 DOI: 10.3390/ijms25031586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. A block of chloroplast biogenesis in Arabidopsis pap mutants specifying highly altered metabolism in white tissues induced dramatic fluctuations in the content of major phytohormones and their metabolic genes, whereas hormone signaling circuits mostly remained functional. Reprogramming of the expression of biosynthetic and metabolic genes contributed to a greatly increased content of salicylic acid (SA) and a concomitant decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) and oxophytodienoic acid (OPDA), precursors of ethylene and jasmonic acid, respectively, in parallel to reduced levels of abscisic acid (ABA). The lack of differences in the free levels of indole-3-acetic acid (IAA) between the pap mutants and wild-type plants was accompanied by fluctuations in the contents of IAA precursors and conjugated forms as well as multilayered changes in the expression of IAA metabolic genes. Along with cytokinin (CK) overproduction, all of these compensatory changes aim to balance plant growth and defense systems to ensure viability under highly modulated conditions.
Collapse
Affiliation(s)
- Ivan A. Bychkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia; (I.A.B.); (A.A.A.); (V.V.K.)
| | - Aleksandra A. Andreeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia; (I.A.B.); (A.A.A.); (V.V.K.)
| | - Radomira Vankova
- Institute of Experimental Botany, Academy of Sciences CR, Rozvojova 263, 165 02 Prague, Czech Republic; (R.V.); (J.L.)
| | - Jozef Lacek
- Institute of Experimental Botany, Academy of Sciences CR, Rozvojova 263, 165 02 Prague, Czech Republic; (R.V.); (J.L.)
| | - Natalia V. Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia; (I.A.B.); (A.A.A.); (V.V.K.)
| | - Victor V. Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia; (I.A.B.); (A.A.A.); (V.V.K.)
| |
Collapse
|
9
|
Bychkov IA, Pojidaeva ES, Doroshenko AS, Khripach VA, Kudryakova NV, Kusnetsov VV. Phytohormones as Regulators of Mitochondrial Gene Expression in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16924. [PMID: 38069246 PMCID: PMC10707152 DOI: 10.3390/ijms242316924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The coordination of activities between nuclei and organelles in plant cells involves information exchange, in which phytohormones may play essential roles. Therefore, the dissection of the mechanisms of hormone-related integration between phytohormones and mitochondria is an important and challenging task. Here, we found that inputs from multiple hormones may cause changes in the transcript accumulation of mitochondrial-encoded genes and nuclear genes encoding mitochondrial (mt) proteins. In particular, treatments with exogenous hormones induced changes in the GUS expression in the reporter line possessing a 5'-deletion fragment of the RPOTmp promoter. These changes corresponded in part to the up- or downregulation of RPOTmp in wild-type plants, which affects the transcription of mt-encoded genes, implying that the promoter fragment of the RPOTmp gene is functionally involved in the responses to IAA (indole-3-acetic acid), ACC (1-aminocyclopropane-1-carboxylic acid), and ABA (abscisic acid). Hormone-dependent modulations in the expression of mt-encoded genes can also be mediated through mitochondrial transcription termination factors 15, 17, and 18 of the mTERF family and genes for tetratricopeptide repeat proteins that are coexpressed with mTERF genes, in addition to SWIB5 encoding a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein. These genes specifically respond to hormone treatment, displaying both negative and positive regulation in a context-dependent manner. According to bioinformatic resources, their promoter region possesses putative cis-acting elements involved in responses to phytohormones. Alternatively, the hormone-related transcriptional activity of these genes may be modulated indirectly, which is especially relevant for brassinosteroids (BS). In general, the results of this study indicate that hormones are essential mediators that are able to cause alterations in the transcript accumulation of mt-related nuclear genes, which, in turn, trigger the expression of mt genes.
Collapse
Affiliation(s)
- Ivan A. Bychkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Elena S. Pojidaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Anastasia S. Doroshenko
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Natalia V. Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Victor V. Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| |
Collapse
|
10
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
11
|
Su A, Ge S, Zhou B, Wang Z, Zhou L, Zhang Z, Yan X, Wang Y, Li D, Zhang H, Xu X, Zhao T. Analysis of the Tomato mTERF Gene Family and Study of the Stress Resistance Function of SLmTERF-13. PLANTS (BASEL, SWITZERLAND) 2023; 12:2862. [PMID: 37571015 PMCID: PMC10421145 DOI: 10.3390/plants12152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Mitochondrial transcription termination factor (mTERF) is a DNA-binding protein that is encoded by nuclear genes, ultimately functions in mitochondria and can affect gene expression. By combining with mitochondrial nucleic acids, mTERF regulates the replication, transcription and translation of mitochondrial genes and plays an important role in the response of plants to abiotic stress. However, there are few studies on mTERF genes in tomato, which limits the in-depth study and utilization of mTERF family genes in tomato stress resistance regulation. In this study, a total of 28 mTERF gene family members were obtained through genome-wide mining and identification of the tomato mTERF gene family. Bioinformatics analysis showed that all members of the family contained environmental stress or hormone response elements. Gene expression pattern analysis showed that the selected genes had different responses to drought, high salt and low temperature stress. Most of the genes played key roles under drought and salt stress, and the response patterns were more similar. The VIGS method was used to silence the SLmTERF13 gene, which was significantly upregulated under drought and salt stress, and it was found that the resistance ability of silenced plants was decreased under both kinds of stress, indicating that the SLmTERF13 gene was involved in the regulation of the tomato abiotic stress response. These results provide important insights for further evolutionary studies and contribute to a better understanding of the role of the mTERF genes in tomato growth and development and abiotic stress response, which will ultimately play a role in future studies of tomato gene function.
Collapse
Affiliation(s)
- Ao Su
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Ge
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Boyan Zhou
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziyu Wang
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Liping Zhou
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Zhang
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yan
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yu Wang
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Dalong Li
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - He Zhang
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyang Xu
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhao
- Tomato Research Institute, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (A.S.); (S.G.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
13
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
14
|
Effective Pollen-Fertility Restoration Is the Basis of Hybrid Rye Production and Ergot Mitigation. PLANTS 2022; 11:plants11091115. [PMID: 35567115 PMCID: PMC9104404 DOI: 10.3390/plants11091115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Hybrid rye breeding leads to considerably higher grain yield and a higher revenue to the farmer. The basis of hybrid seed production is the CMS-inducing Pampa (P) cytoplasm derived from an Argentinean landrace and restorer-to-fertility (Rf) genes. European sources show an oligogenic inheritance, with major and minor Rf genes, and mostly result in low-to-moderate pollen-fertility levels. This results in higher susceptibility to ergot (Claviceps purpurea) because rye pollen and ergot spores are in strong competition for the unfertilized stigma. Rf genes from non-adapted Iranian primitive rye and old Argentinean cultivars proved to be most effective. The major Rf gene in these sources was localized on chromosome 4RL, which is also a hotspot of restoration in other Triticeae. Marker-based introgression into elite rye materials led to a yield penalty and taller progenies. The Rfp1 gene of IRAN IX was fine-mapped, and two linked genes of equal effects were detected. Commercial hybrids with this gene showed a similar low ergot infection when compared with population cultivars. The task of the future is to co-adapt these exotic Rfp genes to European elite gene pools by genomic-assisted breeding.
Collapse
|
15
|
Melonek J, Small I. Triticeae genome sequences reveal huge expansions of gene families implicated in fertility restoration. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102166. [PMID: 35021148 DOI: 10.1016/j.pbi.2021.102166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Breakthroughs in assembly of whole-genome sequencing and targeted sequence capture data have accelerated comparative genomics analyses in cereals with big and complex genomes such as wheat. This newly acquired information has revealed unexpected expansions in two large gene families linked to restoration of fertility in species that exhibit cytoplasmic male sterility. Extreme levels of copy-number and structural variation detected within and between species illustrate the genetic diversity among the family members and reveal the evolutionary mechanisms at work. This new knowledge will greatly facilitate the development of hybrid production strategies in wheat and related species.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Xanthopoulou A, Moysiadis T, Bazakos C, Karagiannis E, Karamichali I, Stamatakis G, Samiotaki M, Manioudaki M, Michailidis M, Madesis P, Ganopoulos I, Molassiotis A, Tanou G. The perennial fruit tree proteogenomics atlas: a spatial map of the sweet cherry proteome and transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1319-1336. [PMID: 34842310 DOI: 10.1111/tpj.15612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide transcriptome analysis provides systems-level insights into plant biology. Due to the limited depth of quantitative proteomics our understanding of gene-protein-complex stoichiometry is largely unknown in plants. Recently, the complexity of the proteome and its cell-/tissue-specific distribution have boosted the research community to the integration of transcriptomics and proteomics landscapes in a proteogenomic approach. Herein, we generated a quantitative proteome and transcriptome abundance atlas of 15 major sweet cherry (Prunus avium L., cv 'Tragana Edessis') tissues represented by 29 247 genes and 7584 proteins. Additionally, 199 984 alternative splicing events, particularly exon skipping and alternative 3' splicing, were identified in 23 383 transcribed regions of the analyzed tissues. Common signatures as well as differences between mRNA and protein quantities, including genes encoding transcription factors and allergens, within and across the different tissues are reported. Using our integrated dataset, we identified key putative regulators of fruit development, notably genes involved in the biosynthesis of anthocyanins and flavonoids. We also provide proteogenomic-based evidence for the involvement of ethylene signaling and pectin degradation in cherry fruit ripening. Moreover, clusters of genes and proteins with similar and different expression and suppression trends across diverse tissues and developmental stages revealed a relatively low RNA abundance-to-protein correlation. The present proteogenomic analysis allows us to identify 17 novel sweet cherry proteins without prior protein-level annotation evidenced in the currently available databases. To facilitate use by the community, we also developed the Sweet Cherry Atlas Database (https://grcherrydb.com/) for viewing and data mining these resources. This work provides new insights into the proteogenomics workflow in plants and a rich knowledge resource for future investigation of gene and protein functions in Prunus species.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Theodoros Moysiadis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia, 2417, Cyprus
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Ioanna Karamichali
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - George Stamatakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thessaloniki-Thermi, 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| |
Collapse
|
17
|
Martins ACQ, Mota APZ, Carvalho PASV, Passos MAS, Gimenes MA, Guimaraes PM, Brasileiro ACM. Transcriptome Responses of Wild Arachis to UV-C Exposure Reveal Genes Involved in General Plant Defense and Priming. PLANTS 2022; 11:plants11030408. [PMID: 35161389 PMCID: PMC8838480 DOI: 10.3390/plants11030408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Stress priming is an important strategy for enhancing plant defense capacity to deal with environmental challenges and involves reprogrammed transcriptional responses. Although ultraviolet (UV) light exposure is a widely adopted approach to elicit stress memory and tolerance in plants, the molecular mechanisms underlying UV-mediated plant priming tolerance are not fully understood. Here, we investigated the changes in the global transcriptome profile of wild Arachis stenosperma leaves in response to UV-C exposure. A total of 5751 differentially expressed genes (DEGs) were identified, with the majority associated with cell signaling, protein dynamics, hormonal and transcriptional regulation, and secondary metabolic pathways. The expression profiles of DEGs known as indicators of priming state, such as transcription factors, transcriptional regulators and protein kinases, were further characterized. A meta-analysis, followed by qRT-PCR validation, identified 18 metaDEGs as being commonly regulated in response to UV and other primary stresses. These genes are involved in secondary metabolism, basal immunity, cell wall structure and integrity, and may constitute important players in the general defense processes and establishment of a priming state in A. stenosperma. Our findings contribute to a better understanding of transcriptional dynamics involved in wild Arachis adaptation to stressful conditions of their natural habitats.
Collapse
Affiliation(s)
- Andressa Cunha Quintana Martins
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Ana Paula Zotta Mota
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Paula Andrea Sampaio Vasconcelos Carvalho
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- Instituto de Biociências, Department de Genética, Universidade Estadual Paulista (UNESP), Botucatu 70770-917, SP, Brazil
| | - Mario Alfredo Saraiva Passos
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Marcos Aparecido Gimenes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
| | - Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (A.C.Q.M.); (A.P.Z.M.); (P.A.S.V.C.); (M.A.S.P.); (M.A.G.); (P.M.G.)
- National Institute of Science and Technology—INCT PlantStress Biotech—EMBRAPA, Brasília 70770-917, DF, Brazil
- Correspondence:
| |
Collapse
|
18
|
Arenas-M A, Castillo FM, Godoy D, Canales J, Calderini DF. Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010059. [PMID: 35009063 PMCID: PMC8747107 DOI: 10.3390/plants11010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/14/2023]
Abstract
In a changing climate, extreme weather events such as heatwaves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum L. spp. durum wheat to short-term heat stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight (23.9%) and grain dimensions from HS treatment. Grain quality was also affected, showing a decrease in starch content (20.8%), in addition to increments in grain protein levels (14.6%), with respect to the control condition. Moreover, RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.
Collapse
Affiliation(s)
- Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Diego Godoy
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.A.-M.); (F.M.C.)
- ANID—Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Correspondence: (J.C.); (D.F.C.)
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Correspondence: (J.C.); (D.F.C.)
| |
Collapse
|
19
|
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 232:2026-2042. [PMID: 34482561 DOI: 10.1111/nph.17717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vincent Schulz
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Lea Brings
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Theresa Schoeller
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kristina Kühn
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
Vendelbo NM, Mahmood K, Sarup P, Kristensen PS, Orabi J, Jahoor A. Genomic Scan of Male Fertility Restoration Genes in a 'Gülzow' Type Hybrid Breeding System of Rye ( Secale cereale L.). Int J Mol Sci 2021; 22:ijms22179277. [PMID: 34502186 PMCID: PMC8431178 DOI: 10.3390/ijms22179277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023] Open
Abstract
Efficient and stable restoration of male fertility (Rf) is a prerequisite for large-scale hybrid seed production but remains an inherent issue in the predominant fertility control system of rye (Secale cereale L.). The ‘Gülzow’ (G)-type cytoplasmic male sterility (CMS) system in hybrid rye breeding exhibits a superior Rf. While having received little scientific attention, one major G-type Rf gene has been identified on 4RL (Rfg1) and two minor genes on 3R (Rfg2) and 6R (Rfg3) chromosomes. Here, we report a comprehensive investigation of the genetics underlying restoration of male fertility in a large G-type CMS breeding system using recent advents in rye genomic resources. This includes: (I) genome-wide association studies (GWAS) on G-type germplasm; (II) GWAS on a biparental mapping population; and (III) an RNA sequence study to investigate the expression of genes residing in Rf-associated regions in G-type rye hybrids. Our findings provide compelling evidence of a novel major G-type non-PPR Rf gene on the 3RL chromosome belonging to the mitochondrial transcription termination factor gene family. We provisionally denote the identified novel Rf gene on 3RL RfNOS1. The discovery made in this study is distinct from known P- and C-type systems in rye as well as recognized CMS systems in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). We believe this study constitutes a stepping stone towards understanding the restoration of male fertility in the G-type CMS system and potential resources for addressing the inherent issues of the P-type system.
Collapse
Affiliation(s)
- Nikolaj Meisner Vendelbo
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
- Department of Agroecology, Faculty of Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200 Slagelse, Denmark
- Correspondence:
| | - Khalid Mahmood
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Pernille Sarup
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Peter Skov Kristensen
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden
| |
Collapse
|
21
|
Li T, Pan W, Yuan Y, Liu Y, Li Y, Wu X, Wang F, Cui L. Identification, Characterization, and Expression Profile Analysis of the mTERF Gene Family and Its Role in the Response to Abiotic Stress in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684619. [PMID: 34335653 PMCID: PMC8319850 DOI: 10.3389/fpls.2021.684619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiyuan Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ying Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Licao Cui
| |
Collapse
|