1
|
Wei Y, Zhang Y, Sun J, Li W, Zhao X, Tian N, Cao Y, Xie J. Modulation of the receptor for advanced glycation end products pathway by natural polyphenols: A therapeutic approach to neurodegenerative diseases. FOOD BIOSCI 2024; 62:105511. [DOI: 10.1016/j.fbio.2024.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Sarkar S. Pathological role of RAGE underlying progression of various diseases: its potential as biomarker and therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03595-6. [PMID: 39589529 DOI: 10.1007/s00210-024-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor with several structural types, performing a myriad of molecular mechanisms. The RAGE-ligand interactions play important roles in maintaining latent chronic inflammation, and oxidative damage underlying various pathological conditions like metabolic syndrome (MetS), neurodegenerative diseases, stroke, cardiovascular disorders, pulmonary disorders, cancer and infections. RAGE is thoroughly explored in knockout animals and human trials, targeted by small molecule inhibitors, peptides, diet, and natural compounds. But it is yet to be incorporated in the mainstream management of any ailment. This review performs an appraisal of the pathological mechanisms influenced by RAGE to uncover its prospects as a biomarker while also assessing its power to become a promising therapeutic target.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be-University, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Fan J, Gillespie KP, Mesaros C, Blair IA. HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1. Commun Biol 2024; 7:1234. [PMID: 39354146 PMCID: PMC11445383 DOI: 10.1038/s42003-024-06930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu. We previously showed that cisplatin-mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin-mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is required for the CRT translocation. Furthermore, CT-HMGB2 is three orders of magnitude more potent at inducing CRT translocation than oxaliplatin.
Collapse
Affiliation(s)
- Jingqi Fan
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin P Gillespie
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Connolly DM, Madden LA, Edwards VC, Lee VM. Brain and Lung Biomarker Responses to Hyperoxic Hypobaric Decompression. Aerosp Med Hum Perform 2024; 95:667-674. [PMID: 39169490 DOI: 10.3357/amhp.6391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
INTRODUCTION: Biomarker responses to intensive decompression indicate systemic proinflammatory responses and possible neurological stress. To further investigate responses, 12 additional brain and lung biomarkers were assayed.METHODS: A total of 15 healthy men (20 to 50 yr) undertook consecutive same-day ascents to 25,000 ft (7620 m), following denitrogenation, breathing 100% oxygen. Venous blood was sampled at baseline (T0), after the second ascent (T8), and next morning (T24). Soluble protein markers of brain and lung insult were analyzed by enzyme-linked immunosorbent assay with plasma microparticles quantified using flow cytometry.RESULTS: Levels of monocyte chemoattractant protein-1 and high mobility group box protein 1 were elevated at T8, by 36% and 16%, respectively, before returning to baseline. Levels of soluble receptor for advanced glycation end products fell by 8%, recovering by T24. Brain-derived neurotrophic factor rose by 80% over baseline at T24. Monocyte microparticle levels rose by factors of 3.7 at T8 and 2.7 at T24 due to early and late responses in different subjects. Other biomarkers were unaffected or not detected consistently.DISCUSSION: The elevated biomarkers at T8 suggest a neuroinflammatory response, with later elevation of brain-derived neurotrophic factor at T24 indicating an ongoing neurotrophic response and incomplete recovery. A substantial increase at T8 in the ratio of high mobility group box protein 1 to soluble receptor for advanced glycation end products suggests this axis may mediate the systemic inflammatory response to decompression. The mechanism of neuroinflammation is unclear but elevation of monocyte microparticles and monocyte chemoattractant protein-1 imply a key role for activated monocytes and/or macrophages.Connolly DM, Madden LA, Edwards VC, Lee VM. Brain and lung biomarker responses to hyperoxic hypobaric decompression. Aerosp Med Hum Perform. 2024; 95(9):667-674.
Collapse
|
5
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
6
|
Wu TJ, Jing X, Teng M, Pritchard KA, Day BW, Naylor S, Teng RJ. Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:889. [PMID: 39199135 PMCID: PMC11351552 DOI: 10.3390/antiox13080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22-36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor-AZD4831-failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD.
Collapse
Affiliation(s)
- Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr, Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr, Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
7
|
Tian H, Chen H, Yin X, Lv M, Wei L, Zhang Y, Jia S, Li J, Song H. CORM-3 Inhibits the Inflammatory Response of Human Periodontal Ligament Fibroblasts Stimulated by LPS and High Glucose. J Inflamm Res 2024; 17:4845-4863. [PMID: 39070135 PMCID: PMC11277920 DOI: 10.2147/jir.s460954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Diabetes has been recognized as an independent risk factor for periodontitis. Increasing evidences indicate that hyperglycemia aggravates inflammatory response of human periodontal ligament cells (hPDLCs). Carbon monoxide-releasing molecule-3 (CORM-3) is a water-soluble compound that can release carbon monoxide (CO) in a controllable manner. CORM-3 has been shown the anti-inflammatory effect in different cell lineages. Methods We stimulated periodontal ligament cells with LPS and high glucose. The expression of inflammatory cytokine was detected by ELISA. RT-qPCR, Western blot and immunofluorescence were used to detect the expression of TLR2, TLR4, RAGE and the activation of NF-κB pathway. We performed silencing and overexpression treatment of RAGE targeting the role of RAGE. We performed the immunostaining of paraffin sections of the periodontitis model in diabetes rats. Results The results showed that CORM-3 significantly inhibited the expression of inflammatory cytokine in hPDLCs stimulated with LPS and high glucose. CORM-3 also inhibited LPS and high glucose-induced expression of RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway. Silence of RAGE resulted in significantly decreased expression of proteins above. Overexpression of RAGE significantly enhanced the expression of these factors. CORM-3 abrogated the effect of RAGE partially. In animal model, CORM-3 suppressed the inflammatory response of periodontal tissues in experimental periodontitis of diabetic rats. Discussion Our research proved CORM-3 reduced the inflammatory response via RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway in the process of high glucose exacerbated periodontitis. These findings demonstrated the role of RAGE in the process of high glucose exacerbated periodontitis and suggested that CORM3 be a potential therapeutic strategy for the treatment of diabetes patients with periodontitis.
Collapse
Affiliation(s)
- Haoyang Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Xiaochun Yin
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Meiyi Lv
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Lingling Wei
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Yuna Zhang
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shuhan Jia
- Department of Stomatology, Yancheng NO. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Jingyuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People’s Republic of China
| |
Collapse
|
8
|
Qi H, Li Y, Geng Y, Wan X, Cai X. Nanoparticle-mediated immunogenic cell death for cancer immunotherapy. Int J Pharm 2024; 656:124045. [PMID: 38561134 DOI: 10.1016/j.ijpharm.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.
Collapse
Affiliation(s)
- Haolong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yingjie Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
9
|
Lv G, Yang M, Gai K, Jia Q, Wang Z, Wang B, Li X. Multiple functions of HMGB1 in cancer. Front Oncol 2024; 14:1384109. [PMID: 38725632 PMCID: PMC11079206 DOI: 10.3389/fonc.2024.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual role in cancer, acting as an oncogene and a tumor suppressor. This protein regulates nucleosomal structure, DNA damage repair, and genomic stability within the cell, while also playing a role in immune cell functions. This review comprehensively evaluates the biological and clinical significance of HMGB1 in cancer, including its involvement in cell death and survival, its potential as a therapeutic target and cancer biomarker, and as a prosurvival signal for the remaining cells after exposure to cytotoxic anticancer treatments. We highlight the need for a better understanding of the cellular markers and mechanisms involved in the involvement of HMGB1in cancer, and aim to provide a deeper understanding of its role in cancer progression.
Collapse
Affiliation(s)
- Guangyao Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Menglin Yang
- Quality Management Department, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Keke Gai
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiong Jia
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhenzhen Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bin Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xueying Li
- School of Health, Binzhou Polytechnic, Binzhou, China
| |
Collapse
|
10
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
11
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
12
|
De C, Xuan L, jingjing Z, Honghong Z, Kun Z, Song D, Yaqi S, Ying J, Cheng C, Jian L. Analysis of changes in high-mobility group box 1, receptor for advanced glycation endproducts, and T helper 17/regulatory T balance in severe preeclampsia with acute heart failure. J Clin Hypertens (Greenwich) 2024; 26:431-440. [PMID: 38523455 PMCID: PMC11007805 DOI: 10.1111/jch.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/26/2024]
Abstract
We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor β (TGF-β), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-β and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.
Collapse
Affiliation(s)
- Chen De
- First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Liang Xuan
- Department of AllergyGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Zhang jingjing
- Medical Genetics CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Zhang Honghong
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Zuo Kun
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Du Song
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Song Yaqi
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Jiang Ying
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Cheng Cheng
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| | - Liu Jian
- First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Emergency Medical CenterGansu Provincial Maternity and Child‐care HospitalLanzhouChina
| |
Collapse
|
13
|
Huang H. Immunotherapeutic approaches for systemic lupus erythematosus: early overview and future potential. MEDICAL REVIEW (2021) 2023; 3:452-464. [PMID: 38282801 PMCID: PMC10808868 DOI: 10.1515/mr-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/16/2023] [Indexed: 01/30/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Current SLE therapies include immunosuppressants, antimalarial drugs, non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, but these treatments can cause substantial toxicities to organs and may not be effective for all patients. In recent years, significant progress has been made in the treatment of SLE using immunotherapy, including Benlysta and Saphnelo. These advances in immunotherapy hold promise for SLE patients, providing new therapeutic options that may offer better clinical benefit and effectiveness. Simultaneously, several new biological therapies focusing on cytokines, peptides, targeted antibodies, and cell-based approaches are under clinical evaluation and have shown immense potential for the treatment of SLE. However, the complexity of SLE immunopathogenesis and disease heterogeneity present significant challenges in the development of effective immunological therapies. This review aims to discuss past experiences and understanding of diverse immunological targeting therapies for SLE and highlight future perspectives for the development of novel immunological therapies.
Collapse
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Affiliation(s)
- Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - Santiago Beltrán
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| |
Collapse
|
15
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
16
|
Ma J, Da M. High-Mobility Group Box 1 Overexpression Predicts a Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Gastric Cancer by Activating TLR4/NF-κB Signaling. Oncology 2023; 101:786-798. [PMID: 37666221 DOI: 10.1159/000533927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION The molecular mechanism of high-mobility group box 1 (HMGB1) promoting the epithelial-mesenchymal transition (EMT) of gastric cancer (GC) has not been known well. This study aimed to explore the clinical effects of HMGB1 expression levels on the clinicopathological characteristics of patients with GC and to uncover the potential molecular mechanism which promotes tumor progression. METHODS The expression levels of HMGB1 in 125 patients with GC were detected by immunohistochemistry and Western blotting. Univariate and multivariate analyses were performed to evaluate the relationship between HMGB1 expression and clinical characteristics of patients with GC. Stable overexpression (over-HMGB1) and knockdown (sh-HMGB1) GC cell lines (AGS and MKN-45) were used to determine the effects of HMGB1 on the activation of TLR4/NF-κB signaling. Differences were considered statistically significant at p < 0.05 in two sides. RESULTS HMGB1 is highly expressed in GC tissues and cell lines. High HMGB1 expression (HR = 1.89, 95% CI: 1.44-2.39, p = 0.001) was an independent risk factor for overall survival in patients with GC. Downregulation of HMGB1 resulted in downregulation of TLR4 and NF-κB subunit (p-p65 and p-IκBα) expression, whereas the upregulated expression of HMGB1 led to increased expression of TLR4 and NF-κB subunits. Overexpression of HMGB1 promotes the upregulation of EMT-TF expression, which enhances the proliferation and migration abilities of GC cell lines. CONCLUSION HMGB1 is highly expressed in GC tissues and is associated with a poorer prognosis in patients with GC. HMGB1 activates the TLR4/NF-κB signaling pathway to promote EMT progression in GC cell lines. HMGB1 may be a critical molecule in prognosis prediction and a therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Jichun Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China,
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
17
|
Liu L, de Leeuw K, Arends S, Doornbos-van der Meer B, Bulthuis MLC, van Goor H, Westra J. Biomarkers of Oxidative Stress in Systemic Lupus Erythematosus Patients with Active Nephritis. Antioxidants (Basel) 2023; 12:1627. [PMID: 37627622 PMCID: PMC10451241 DOI: 10.3390/antiox12081627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress plays an important role in systemic lupus erythematosus (SLE) and especially in lupus nephritis (LN). The aim of this study was to compare redox-related biomarkers between patients with active LN, quiescent SLE (Q-SLE) and healthy controls (HC) and to explore their association with clinical characteristics such as disease activity in patients. We investigated levels of plasma free thiols (R-SH, sulfhydryl groups), levels of soluble receptor for advanced glycation end products (sRAGE) and levels of malondialdehyde (MDA) in SLE patients with active LN (n = 23), patients with quiescent SLE (n = 47) and HC (n = 23). Data of LN patients who previously participated in Dutch lupus nephritis studies and longitudinal samples up to 36 months were analyzed. Thiol levels were lower in active LN at baseline and Q-SLE patients compared to HC. In generalized estimating equation (GEE) modelling, free thiol levels were negatively correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) over time (p < 0.001). sRAGE and MDA were positively correlated with the SLEDAI over time (p = 0.035 and p = 0.016, respectively). These results indicate that oxidative stress levels in LN patients are increased compared to HC and associated with SLE disease activity. Therefore, interventional therapy to restore redox homeostasis may be useful as an adjunctive therapy in the treatment of oxidative damage in SLE.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| | - Marian L. C. Bulthuis
- Department of Pathology and Medical Biology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (M.L.C.B.); (H.v.G.)
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (M.L.C.B.); (H.v.G.)
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; (L.L.); (K.d.L.); (S.A.); (B.D.-v.d.M.)
| |
Collapse
|
18
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Li J, Zhu CS, He L, Qiang X, Chen W, Wang H. A two-decade journey in identifying high mobility group box 1 (HMGB1) and procathepsin L (pCTS-L) as potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:575-591. [PMID: 37477229 PMCID: PMC10530501 DOI: 10.1080/14728222.2023.2239495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Microbial infections and resultant sepsis are leading causes of death in hospitals, representing approximately 20% of total deaths worldwide. Despite the difficulties in translating experimental insights into effective therapies for often heterogenous patient populations, an improved understanding of the pathogenic mechanisms underlying experimental sepsis is still urgently needed. Sepsis is partly attributable to dysregulated innate immune responses manifested by hyperinflammation and immunosuppression at different stages of microbial infections. AREAS COVERED Here we review our recent progress in searching for late-acting mediators of experimental sepsis and propose high mobility group box 1 (HMGB1) and procathepsin-L (pCTS-L) as potential therapeutic targets for improving outcomes of lethal sepsis and other infectious diseases. EXPERT OPINION It will be important to evaluate the efficacy of HMGB1- or pCTS-L-targeting agents for the clinical management of human sepsis and other infectious diseases in future studies.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Li He
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| |
Collapse
|
20
|
Atzeni IM, Al-Adwi Y, Doornbos-van der Meer B, Roozendaal C, Stel A, van Goor H, Gan CT, Dickinson M, Timens W, Smit AJ, Westra J, Mulder DJ. The soluble receptor for advanced glycation end products is potentially predictive of pulmonary arterial hypertension in systemic sclerosis. Front Immunol 2023; 14:1189257. [PMID: 37409127 PMCID: PMC10318928 DOI: 10.3389/fimmu.2023.1189257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) are the leading causes of death in systemic sclerosis (SSc). Until now, no prospective biomarker to predict new onset of SSc-ILD or SSc-PAH in patients with SSc has reached clinical application. In homeostasis, the receptor for advanced glycation end products (RAGE) is expressed in lung tissue and involved in cell-matrix adhesion, proliferation and migration of alveolar epithelial cells, and remodeling of the pulmonary vasculature. Several studies have shown that sRAGE levels in serum and pulmonary tissue vary according to the type of lung-related complication. Therefore, we investigated levels of soluble RAGE (sRAGE) and its ligand high mobility group box 1 (HMGB1) in SSc and their abilities to predict SSc-related pulmonary complications. Methods One hundred eighty-eight SSc patients were followed retrospectively for the development of ILD, PAH, and mortality for 8 years. Levels of sRAGE and HMGB1 were measured in serum by ELISA. Kaplan-Meier survival curves were performed to predict lung events and mortality and event rates were compared with a log-rank test. Multiple linear regression analysis was performed to examine the association between sRAGE and important clinical determinants. Results At baseline, levels of sRAGE were significantly higher in SSc-PAH-patients (median 4099.0 pg/ml [936.3-6365.3], p = 0.011) and lower in SSc-ILD-patients (735.0 pg/ml [IQR 525.5-1988.5], p = 0.001) compared to SSc patients without pulmonary involvement (1444.5 pg/ml [966.8-2276.0]). Levels of HMGB1 were not different between groups. After adjusting for age, gender, ILD, chronic obstructive pulmonary disease, anti-centromere antibodies, the presence of puffy fingers or sclerodactyly, use of immunosuppression, antifibrotic therapy, or glucocorticoids, and use of vasodilators, higher sRAGE levels remained independently associated with PAH. After a median follow-up of 50 months (25-81) of patients without pulmonary involvement, baseline sRAGE levels in the highest quartile were predictive of development of PAH (log-rank p = 0.01) and of PAH-related mortality (p = 0.001). Conclusions High systemic sRAGE at baseline might be used as a prospective biomarker for patients with SSc at high risk to develop new onset of PAH. Moreover, high sRAGE levels could predict lower survival rates due to PAH in patients with SSc.
Collapse
Affiliation(s)
- Isabella M. Atzeni
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - C. Tji Gan
- Department of Pulmonary Diseases and Tuberculosis, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Michael Dickinson
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Andries J. Smit
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
22
|
Watanabe H, Kubo M, Taniguchi A, Asano Y, Hiramatsu-Asano S, Ohashi K, Zeggar S, Katsuyama E, Katsuyama T, Sunahori-Watanabe K, Sada KE, Matsumoto Y, Yamamoto Y, Yamamoto H, Son M, Wada J. Amelioration of nephritis in receptor for advanced glycation end-products (RAGE)-deficient lupus-prone mice through neutrophil extracellular traps. Clin Immunol 2023; 250:109317. [PMID: 37015317 PMCID: PMC10234279 DOI: 10.1016/j.clim.2023.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor that regulates inflammation, cell migration, and cell fate. Systemic lupus erythematosus (SLE) is a chronic multiorgan autoimmune disease. To understand the function of RAGE in SLE, we generated RAGE-deficient (Ager-/-) lupus-prone mice by backcrossing MRL/MpJ-Faslpr/J (MRL-lpr) mice with Ager-/- C57BL/6 mice. In 18-week-old Ager-/- MRL-lpr, the weights of the spleen and lymph nodes, as well as the frequency of CD3+CD4-CD8- cells, were significantly decreased. Ager-/- MRL-lpr mice had significantly reduced urine albumin/creatinine ratios and markedly improved renal pathological scores. Moreover, neutrophil infiltration and neutrophil extracellular trap formation in the glomerulus were significantly reduced in Ager-/- MRL-lpr. Our study is the first to reveal that RAGE can have a pathologic role in immune cells, particularly neutrophils and T cells, in inflammatory tissues and suggests that the inhibition of RAGE may be a potential therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Masataka Kubo
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumie Hiramatsu-Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiji Ohashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsue Sunahori-Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Komatsu University, Komatsu, Japan
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, Abdulle AE, van Roon AM, Stel A, van Goor H, Smit AJ, Westra J, Mulder DJ. Release of High-Mobility Group Box-1 after a Raynaud's Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:antiox12040794. [PMID: 37107169 PMCID: PMC10134976 DOI: 10.3390/antiox12040794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Raynaud's Phenomenon (RP) leading to repetitive ischemia and reperfusion (IR) stress, is the first recognizable sign of systemic sclerosis (SSc) leading to increased oxidative stress. High-mobility group box-1 (HMGB1) is a nuclear factor released by apoptotic and necrotic cells after oxidative stress. Since HMGB1 can signal through the receptor for advanced glycation end products (RAGE), we investigated whether an RP attack promotes the release of HMGB1, leading to fibroblast activation and the upregulation of interferon (IFN)-inducible genes. A cold challenge was performed to simulate an RP attack in patients with SSc, primary RP (PRP), and healthy controls. We measured levels of HMGB1 and IFN gamma-induced Protein 10 (IP-10) at different time points in the serum. Digital perfusion was assessed by photoplethysmography. In vitro, HMGB1 or transforming growth factor (TGF-β1) (as control) was used to stimulate healthy human dermal fibroblasts. Inflammatory, profibrotic, and IFN-inducible genes, were measured by RT-qPCR. In an independent cohort, sera were obtained from 20 patients with SSc and 20 age- and sex-matched healthy controls to determine HMGB1 and IP-10 levels. We found that HMGB1 levels increased significantly 30 min after the cold challenge in SSc compared to healthy controls. In vitro stimulation with HMGB1 resulted in increased mRNA expression of IP-10, and interleukin-6 (IL-6) while TGF-β1 stimulation promoted IL-6 and Connective Tissue Growth Factor (CTGF). In serum, both HMGB1 and IP-10 levels were significantly higher in patients with SSc compared to healthy controls. We show that cold challenge leads to the release of HMGB1 in SSc patients. HMGB1 induces IP-10 expression in dermal fibroblasts partly through the soluble RAGE (sRAGE) axis suggesting a link between RP attacks, the release of HMGB1 and IFN-induced proteins as a putative early pathogenetic mechanism in SSc.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Isabella M Atzeni
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amaal Eman Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anniek M van Roon
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Alja Stel
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Andries J Smit
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
24
|
Zhu CS, Qiang X, Chen W, Li J, Lan X, Yang H, Gong J, Becker L, Wang P, Tracey KJ, Wang H. Identification of procathepsin L (pCTS-L)-neutralizing monoclonal antibodies to treat potentially lethal sepsis. SCIENCE ADVANCES 2023; 9:eadf4313. [PMID: 36735789 PMCID: PMC9897667 DOI: 10.1126/sciadv.adf4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 06/01/2023]
Abstract
Antibody-based strategies have been attempted to antagonize early cytokines of sepsis, but not yet been tried to target inducible late-acting mediators. Here, we report that the expression and secretion of procathepsin-L (pCTS-L) was induced by serum amyloid A (SAA) in innate immune cells, contributing to its late and systemic accumulation in experimental and clinical sepsis. Recombinant pCTS-L induced interleukin-6 (IL-6), IL-8, GRO-α/KC, GRO-β/MIP-2, and MCP-1 release in innate immune cells and moderately correlated with blood concentrations of these cytokines/chemokines in clinical sepsis. Mechanistically, pCTS-L interacted with Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) to induce cytokines/chemokines. Pharmacological suppression of pCTS-L with neutralizing polyclonal and monoclonal antibodies attenuated pCTS-L-mediated inflammation by impairing its interaction with TLR4 and RAGE receptors, and consequently rescued animals from lethal sepsis. Our findings have suggested a possibility of developing antibody strategies to prevent dysregulated immune responses mediated by late-acting cytokines.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Xiqian Lan
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Jonathan Gong
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Lance Becker
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, NY 11549, USA
| |
Collapse
|
25
|
Zhu B, Zhang C, Shen X, Chen C, Chen X, Lu Y, Chen Y, Guo M. Protective Effects of Resveratrol Against Adenomyosis in a Mouse Model. Dose Response 2023; 21:15593258231164055. [PMID: 36959835 PMCID: PMC10028632 DOI: 10.1177/15593258231164055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Adenomyosis is a uterine condition in which endometrial glands and stroma are commonly pathologically observed in the myometrium. In this study, we sought to determine the effect of resveratrol on the progression of adenomyosis. Adenomyosis was induced in mice given tamoxifen neonatally. All mice were subjected to body weight measurement and hotplate testing every four weeks beginning four weeks after birth. All mice with adenomyosis were randomly separated into 3 groups at 16 weeks: untreated, low-dose resveratrol (25 mg/kg), and high-dose resveratrol (50 mg/kg). After 3 weeks of treatment, final hotplate test and body weight measurement were performed, and the uterine horn blood samples were collected. Adenomyosis in mice caused body weight loss and uterine weight gain, reduced hotplate latency, and progression of endometrial fibrosis. The underlying biological process could be coupled with the overexpression of many cells' proliferation and immune-regulation-related genes. Resveratrol treatment could slow the progression of adenomyosis by enhancing hotplate latency, lowering endometrial fibrosis, and restoring cell proliferation- and immune-regulation-associated gene expression levels in endometrium and plasma. However, resveratrol treatment also reduced the body weight and uterine weight. In conclusion, Resveratrol might be a potential compound for treating patients with adenomyosis.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Chenhui Zhang
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Shen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Cong Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Xuanyu Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Yiyi Lu
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Yumei Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
- Yumei Chen, Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical Institute
of Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai
District, Wenzhou 325000, China.
| | - Min Guo
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
- Yumei Chen, Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical Institute
of Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai
District, Wenzhou 325000, China.
| |
Collapse
|
26
|
Wang H. Regulation of HMGB1 Release in Health and Diseases. Cells 2022; 12:cells12010046. [PMID: 36611839 PMCID: PMC9818800 DOI: 10.3390/cells12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Almost a half century ago, a group of nuclear proteins were co-purified with histones from calf thymus and termed as "high mobility group" (HMG) proteins because of their relative rapid mobility on SDS-PAGE gels [...].
Collapse
Affiliation(s)
- Haichao Wang
- The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
27
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
28
|
Shelke V, Kale A, Anders HJ, Gaikwad AB. Epigenetic regulation of Toll-like receptors 2 and 4 in kidney disease. J Mol Med (Berl) 2022; 100:1017-1026. [PMID: 35704060 DOI: 10.1007/s00109-022-02218-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Kidney disease affects more than 10% of the worldwide population and causes significant morbidity and mortality. Epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) play a pivotal role in the progression of kidney disease. These epigenetic mechanisms are reversible and majorly involved in regulating gene expression of inflammatory, fibrotic, and apoptotic proteins. Emerging data suggest that the Toll-like receptor 2 and Toll-like receptor 4 (TLR2 and TLR4) are expressed by almost all types of kidney cells and known for promoting inflammation by recognizing damage-associated molecular proteins (DAMPs). Epigenetic mechanisms regulate TLR2 and TLR4 signaling in various forms of kidney disease where different histone modifications promote the transcription of the TLR2 and TLR4 gene and its ligand high mobility group box protein 1 (HMGB1). Moreover, numerous long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) modulate TLR2 and TLR4 signaling in kidney disease. However, the precise mechanisms behind this regulation are still enigmatic. Studying the epigenetic mechanisms involved in the regulation of TLR2 and TLR4 signaling in the development of kidney disease may help in understanding and finding novel therapeutic strategies. This review discusses the intricate relationship of epigenetic mechanisms with TLR2 and TLR4 in different forms of kidney diseases. In addition, we discuss the different lncRNAs and miRNAs that regulate TLR2 and TLR4 as potential therapeutic targets in kidney disease.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
29
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
30
|
CgHMGB1 functions as a broad-spectrum recognition molecule to induce the expressions of CgIL17-5 and Cgdefh2 via MAPK or NF-κB signaling pathway in Crassostrea gigas. Int J Biol Macromol 2022; 211:289-300. [PMID: 35525493 DOI: 10.1016/j.ijbiomac.2022.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4-cell and 8-cell stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.
Collapse
|
31
|
Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022; 13:869720. [PMID: 35572583 PMCID: PMC9095977 DOI: 10.3389/fimmu.2022.869720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Our immune system responds to infectious (PAMPs) and tissue damage (DAMPs) signals. The complement system and alarmin High-Mobility Group Box 1 (HMGB1) are two powerful soluble actors of human host defense and immune surveillance. These systems involve molecular cascades and amplification loops for their signaling or activation. Initially activated as alarm raising systems, their function can be finally switched towards inflammation resolution, where they sustain immune maturation and orchestrate repair mechanisms, opening the way back to homeostasis. However, when getting out of control, these defense systems can become deleterious and trigger serious cellular and tissue damage. Therefore, they can be considered as double-edged swords. The close interaction between the complement and HMGB1 pathways is described here, as well as their traditional and non-canonical roles, their functioning at different locations and their independent and collective impact in different systems both in health and disease. Starting from these systems and interplay at the molecular level (when elucidated), we then provide disease examples to better illustrate the signs and consequences of their roles and interaction, highlighting their importance and possible vicious circles in alarm raising and inflammation, both individually or in combination. Although this integrated view may open new therapeutic strategies, future challenges have to be faced because of the remaining unknowns regarding the molecular mechanisms underlying the fragile molecular balance which can drift towards disease or return to homeostasis, as briefly discussed at the end.
Collapse
Affiliation(s)
| | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratoire d’Immunologie, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France
| | | |
Collapse
|
32
|
Rouillard ME, Hu J, Sutter PA, Kim HW, Huang JK, Crocker SJ. The Cellular Senescence Factor Extracellular HMGB1 Directly Inhibits Oligodendrocyte Progenitor Cell Differentiation and Impairs CNS Remyelination. Front Cell Neurosci 2022; 16:833186. [PMID: 35573828 PMCID: PMC9095917 DOI: 10.3389/fncel.2022.833186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
HMGB1 is a highly conserved, ubiquitous protein in eukaryotic cells. HMGB1 is normally localized to the nucleus, where it acts as a chromatin associated non-histone binding protein. In contrast, extracellular HMGB1 is an alarmin released by stressed cells to act as a danger associated molecular pattern (DAMP). We have recently determined that progenitor cells from multiple sclerosis patients exhibit a cellular senescent phenotype and release extracellular HMGB1 which directly impaired the maturation of oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes (OLs). Herein, we report that administration of recombinant HMGB1 into the spinal cord at the time of lysolecithin administration resulted in arrest of OPC differentiation in vivo, and a profound impairment of remyelination. To define the receptor by which extracellular HMGB1 mediates its inhibitory influence on OPCs to impair OL differentiation, we tested selective inhibitors against the four primary receptors known to mediate the effects of HMGB1, the toll-like receptors (TLRs)-2, -4, -9 or the receptor for advanced glycation end-products (RAGE). We found that inhibition of neither TLR9 nor RAGE increased OL differentiation in the presence of HMGB1, while inhibition of TLR4 resulted in partial restoration of OL differentiation and inhibiting TLR2 fully restored differentiation of OLs in the presence of HMGB1. Analysis of transcriptomic data (RNAseq) from OPCs identified an overrepresentation of NFκB regulated genes in OPCs when in the presence of HMGB1. We found that application of HMGB1 to OPCs in culture resulted in a rapid and concentration dependent shift in NFκB nuclear translocation which was also attenuated with coincident TLR2 inhibition. These data provide new information on how extracellular HMGB1 directly affects the differentiation potential of OPCs. Recent and past evidence for elevated HMGB1 released from senescent progenitor cells within demyelinated lesions in the MS brain suggests that a greater understanding of how this molecule acts on OPCs may unfetter the endogenous remyelination potential in MS.
Collapse
Affiliation(s)
- Megan E. Rouillard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Jingwen Hu
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Hee Won Kim
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Jeffrey K. Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
33
|
Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. Int Immunopharmacol 2022; 104:108502. [PMID: 35063743 PMCID: PMC8730710 DOI: 10.1016/j.intimp.2021.108502] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Background SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. Aim To evaluate the role of oxidative stress-related molecules in COVID-19. Method An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. Results We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. Conclusion SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.
Collapse
|
34
|
Chen S, Gou M, Chen W, Xiu M, Fan H, Tan Y, Tian L. Alterations in innate immune defense distinguish first-episode schizophrenia patients from healthy controls. Front Psychiatry 2022; 13:1024299. [PMID: 36311523 PMCID: PMC9606407 DOI: 10.3389/fpsyt.2022.1024299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Innate immune components involved in host defense have been implicated in schizophrenia (SCZ). However, studies exploring their clinical utility in SCZ diagnosis are limited. The main purpose of this study was to evaluate whether circulating endotoxin, high mobility group box 1 protein (HMGB1) and complement component 4 (C4) could act as peripheral biomarkers to distinguish first-episode schizophrenia (FES, n = 42) patients from healthy controls (HCs, n = 35) in associations with psychopathological symptoms and cognitive dysfunctions. Also, their changes after 8-week antipsychotic treatment were investigated. The Positive and Negative Syndrome Scale (PANSS), Psychotic Symptom Rating Scale (PSYRATS), and MATRICS Consensus Cognitive Battery (MCCB) were administered. Receiver operating characteristic (ROC) curves were conducted to evaluate the diagnostic effectiveness of the three biological indicators. Compared to HCs, levels of endotoxin, HMGB1, and C4 were remarkably increased in FES patients after controlling for age, gender, body mass index (BMI) and education years, and the combination of the three biomarkers demonstrated desirable diagnostic performance (AUC = 0.933). Moreover, the endotoxin level was positively correlated with the severity of auditory hallucinations. After 8 weeks of treatment, HMGB1 was decreased significantly in patients but still higher than that in HCs, whereas endotoxin and C4 did not change statistically. The baseline levels of endotoxin, HMGB1, and C4, as well as their changes were not associated with changes in any PANSS subscale score and total score. Our preliminary results suggest that a composite peripheral biomarker of endotoxin, HMGB1, and C4 may have accessory diagnostic value to distinguish SCZ patients from HCs. Additionally, endotoxin might be implicated in the pathogenesis of auditory hallucinations.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Hongzhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
35
|
Wu Z, Wang Z, Xie Z, Zhu H, Li C, Xie S, Zhou W, Zhang Z, Li M. Glycyrrhizic Acid Attenuates the Inflammatory Response After Spinal Cord Injury by Inhibiting High Mobility Group Box-1 Protein Through the p38/Jun N-Terminal Kinase Signaling Pathway. World Neurosurg 2021; 158:e856-e864. [PMID: 34838764 DOI: 10.1016/j.wneu.2021.11.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation is an important secondary aggravating factor in spinal cord injury (SCI). Inhibition of the inflammatory response is critical for SCI treatment. Glycyrrhizic acid (GA) is an anti-inflammatory drug, but its utility for SCI is unclear. This study aimed to evaluate the effects of GA on inflammation after SCI and the underlying mechanism. METHODS Cell counting kit-8 assays were performed to assess the viability of highly aggressively proliferating immortalized cells that had been treated with lipopolysaccharide (LPS) and/or GA. Reverse transcription quantitative polymerase chain reaction and Western blotting were performed to assess expression of high mobility group box-1 protein (HMGB1), ionized calcium binding adaptor molecule 1, and inflammatory factors in vitro and in vivo. GA (100 mg/kg) was intraperitoneally injected into rats. Anti-inflammatory effects of GA were analyzed in SCI tissues. p38/Jun N-terminal kinase signaling pathway proteins were analyzed by Western blotting. RESULTS Cell counting kit-8 assay results showed that treatment with 100 ng/mL LPS for 12 hours was optimal. After LPS treatment, highly aggressively proliferating immortalized cells were activated; messenger RNA expression levels of HMGB1 and inflammatory factors were increased. GA significantly inhibited LPS-induced HMGB1 expression and inflammatory responses, as determined by reverse transcription quantitative polymerase chain reaction and Western blotting. Transfection with an HMGB1-overexpression plasmid reversed the anti-inflammatory effects of GA. In addition, intraperitoneal injection of GA (100 mg/kg) into rats for 3 days significantly reduced expression levels of HMGB1 and inflammatory factors after SCI in vivo. GA reduced phosphorylation, but not levels, of p38 and Jun N-terminal kinase proteins. CONCLUSIONS GA attenuates the inflammatory response after SCI by inhibiting HMGB1 through the p38/JNK signaling pathway and thus has therapeutic potential for SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Wang
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiping Xie
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaxin Zhu
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengcai Li
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenke Xie
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Zhou
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
36
|
Zhang ZH, Yang HX, Jin Q, Wu YL, Cui ZY, Shang Y, Liu J, Zhan ZY, Lian LH, Nan JX. Luteolin attenuates hepatic injury in septic mice by regulating P2X7R-based HMGB1 release. Food Funct 2021; 12:10714-10727. [PMID: 34607339 DOI: 10.1039/d1fo01746b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2X7 receptor (P2X7R) and NLRP3 cooperatively participate in inflammation and hepatocyte damage during hepatic injury induced by lipopolysaccharides (LPS). High-mobility group box 1 (HMGB1) released from immune cells in response to such stimuli plays a vital role in mediating inflammation via TLR4 and the receptor for advanced glycation end products (RAGE), a receptor for HMGB1. However, the correlation among P2X7R, RAGE and TLR4 in regulating the release of HMGB1 has not been elucidated. Increasing the number of daily foods is found to be beneficial for hepatocyte damage in septic hepatic injury. Hence, we investigated the effects of luteolin, a natural flavonoid mainly existing in vegetables and fruits, on liver injury, focusing on how luteolin participates in hepatitis based on the P2X7R-RAGE-TLR4 axis by regulating the release of HMGB1. The results demonstrated that the indicators of hepatic injury such as increased ALT, AST in the serum and infiltration of immune cells were attenuated after luteolin treatment in LPS-induced mice. Luteolin could also suppress the production and release of HMGB1 and the activation of caspase 1 both in LPS-induced mice and LPS/ATP-stimulated HepG2 cells. Collectively, luteolin reversed LPS-induced hepatic injury, especially inflammation, likely by regulating the release of HMGB1 through the P2X7R-RAGE-TLR4 axis.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Quan Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Jian Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
37
|
Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021; 10:2220. [PMID: 34571869 PMCID: PMC8469563 DOI: 10.3390/cells10092220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis remains a common cause of death in intensive care units, accounting for approximately 20% of total deaths worldwide. Its pathogenesis is partly attributable to dysregulated inflammatory responses to bacterial endotoxins (such as lipopolysaccharide, LPS), which stimulate innate immune cells to sequentially release early cytokines (such as tumor necrosis factor (TNF) and interferons (IFNs)) and late mediators (such as high-mobility group box 1, HMGB1). Despite difficulties in translating mechanistic insights into effective therapies, an improved understanding of the complex mechanisms underlying the pathogenesis of sepsis is still urgently needed. Here, we review recent progress in elucidating the intricate mechanisms underlying the regulation of HMGB1 release and action, and propose a few potential therapeutic candidates for future clinical investigations.
Collapse
Affiliation(s)
- Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Wei Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Xiqian Lan
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; (C.S.Z.); (X.Q.); (W.C.); (X.L.); (J.L.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| |
Collapse
|
38
|
Ohwada K, Konno T, Kohno T, Nakano M, Ohkuni T, Miyata R, Kakuki T, Kondoh M, Takano K, Kojima T. Effects of HMGB1 on Tricellular Tight Junctions via TGF-β Signaling in Human Nasal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22168390. [PMID: 34445093 PMCID: PMC8395041 DOI: 10.3390/ijms22168390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022] Open
Abstract
The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-β1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-β signaling in HNECs.
Collapse
Affiliation(s)
- Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
| | - Masaya Nakano
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Masuo Kondoh
- Drug Discovery Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan;
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.O.); (R.M.); (T.K.); (K.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (K.O.); (T.K.); (T.K.); (M.N.)
- Correspondence:
| |
Collapse
|