1
|
Flôr AFL, Duarte-Maia S, Fernandes-Costa F, Pessoa de Souza RM, Braga VDA, Amaral SL, Mascarenhas SR, Brito-Alves JL, Colombari DSA, Cruz JC. Chronic cannabidiol treatment induces cardiovascular improvement in renovascular hypertensive rats. J Hypertens 2025; 43:98-108. [PMID: 39351852 DOI: 10.1097/hjh.0000000000003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Cannabidiol (CBD) is increasingly studied for its therapeutic potential in neurodegenerative diseases. Previous research on acute CBD administration has demonstrated cardiovascular benefits in hypertensive rats, including reduced mean blood pressure and oxidative stress. AIM To investigate the long-term cardiovascular effects of chronic CBD treatment in renovascular hypertension induced by the 2-kidney-1-clip (2K1C) model. METHODS Male Wistar rats (180-200 g, 8 weeks old) underwent 2K1C or SHAM surgery. Six weeks later, rats received chronic CBD treatment (20 mg/kg, twice daily for 14 days). A combination of ex vivo, in vitro, and in vivo methods was used to assess CBD's cardiovascular effects in 2K1C hypertensive rats. RESULTS Chronic CBD treatment significantly reduced blood pressure and the depressor response to hexamethonium (a ganglionic blocker). It also normalized variability in low-frequency (LF) power and LF/high-frequency (HF) ratio. CBD enhanced vasodilation and reduced vasoconstriction in the mesenteric artery of 2K1C rats, accompanied by decreased expression of aortic reactive oxygen species (ROS). CONCLUSION Our findings suggest that chronic CBD treatment exerts antihypertensive effects by improving baroreflex sensitivity and vascular function while decreasing arterial ROS levels and sympathetic nerve activity. These results underscore CBD's potential therapeutic role in managing cardiovascular complications associated with renovascular hypertension.
Collapse
Affiliation(s)
| | - Samuel Duarte-Maia
- Biotechnology Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Francineide Fernandes-Costa
- Graduate Program in Bioactive Synthetic and Natural Products, Center for Health Sciences, Federal University of Paraiba, João Pessoa
| | | | | | - Sandra Lia Amaral
- Department of Physical Education, School of Science, São Paulo State University, UNESP, Bauru, SP
| | | | - José Luiz Brito-Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa
| | | | | |
Collapse
|
2
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
3
|
Vass Z, Shenker-Horváth K, Bányai B, Vető KN, Török V, Gém JB, Nádasy GL, Kovács KB, Horváth EM, Jakus Z, Hunyady L, Szekeres M, Dörnyei G. Investigating the Role of Cannabinoid Type 1 Receptors in Vascular Function and Remodeling in a Hypercholesterolemic Mouse Model with Low-Density Lipoprotein-Cannabinoid Type 1 Receptor Double Knockout Animals. Int J Mol Sci 2024; 25:9537. [PMID: 39273484 PMCID: PMC11395437 DOI: 10.3390/ijms25179537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acetylcholine/pharmacology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/etiology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/genetics
- Hypercholesterolemia/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, LDL/deficiency
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Zsolt Vass
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Kinga Shenker-Horváth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
- Center for Sports Nutrition Science, Hungarian University of Sports Science, 42-48 Alkotás Street, 1123 Budapest, Hungary
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Kinga Nóra Vető
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Viktória Török
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Zoltán Jakus
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| |
Collapse
|
4
|
Nádasy GL, Balla A, Szekeres M. From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt-The Biological Roller Coaster to Which the Renin-Angiotensin System Has Had to Adapt: An Editorial. Biomedicines 2023; 11:3004. [PMID: 38002004 PMCID: PMC10669630 DOI: 10.3390/biomedicines11113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Angiotensin II (Ang II) is a hormone with much more complex actions than is typical for other agonists with heterotrimeric G protein-coupled receptors (GPCRs) [...].
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.)
- Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary
| |
Collapse
|
5
|
Bányai B, Répás C, Miklós Z, Johnsen J, Horváth EM, Benkő R. Delta 9-tetrahydrocannabinol conserves cardiovascular functions in a rat model of endotoxemia: Involvement of endothelial molecular mechanisms and oxidative-nitrative stress. PLoS One 2023; 18:e0287168. [PMID: 37327228 PMCID: PMC10275432 DOI: 10.1371/journal.pone.0287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
In endotoxemic models, the inflammatory parameters are altered to a favorable direction as a response to activation of cannabinoid receptors 1 and 2. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) is an agonist/partial antagonist of both cannabinoid receptors. This report targets the effects of THC on the cardiovascular system of endotoxemic rats. In our 24-hour endotoxemic rat model (E. coli derived lipopolysaccharide, LPS i.v. 5mg/kg) with THC treatment (LPS+THC 10 mg/kg i.p.), we investigated cardiac function by echocariography and endothelium-dependent relaxation of the thoracic aorta by isometric force measurement compared to vehicle controls. To evaluate the molecular mechanism, we measured endothelial NOS and COX-2 density by immunohistochemistry; and determined the levels of cGMP, the oxidative stress marker 4-hydroxynonenal, the nitrative stress marker 3-nitrotyrosine, and poly(ADP-ribose) polymers. A decrease in end-systolic and end-diastolic ventricular volumes in the LPS group was observed, which was absent in LPS+THC animals. Endothelium-dependent relaxation was worsened by LPS but not in the LPS+THC group. LPS administration decreased the abundance of cannabinoid receptors. Oxidative-nitrative stress markers showed an increment, and cGMP, eNOS staining showed a decrement in response to LPS. THC only decreased the oxidative-nitrative stress but had no effect on cGMP and eNOS density. COX-2 staining was reduced by THC. We hypothesize that the reduced diastolic filling in the LPS group is a consequence of vascular dysfunction, preventable by THC. The mechanism of action of THC is not based on its local effect on aortic NO homeostasis. The reduced oxidative-nitrative stress and the COX-2 suggest the activation of an anti-inflammatory pathway.
Collapse
Affiliation(s)
- Bálint Bányai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Csaba Répás
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- Albert Schweitzer Hospital, Hatvan, Hungary
- Hungarian National Ambulance Service, Salgótarján, Hungary
| | - Zsuzsanna Miklós
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Johnny Johnsen
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Eszter M. Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Role of the Endocannabinoid System in Metabolic Control Processes and in the Pathogenesis of Metabolic Syndrome: An Update. Biomedicines 2023; 11:biomedicines11020306. [PMID: 36830844 PMCID: PMC9952954 DOI: 10.3390/biomedicines11020306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic syndrome is a complex disease state, which appears mostly as a consequence of an unhealthy, sedentary lifestyle. Metabolic complications include insulin resistance (IR), diabetes, dyslipidemia, hypertension, and atherosclerosis, impairing life standards and reducing life expectancy. The endocannabinoid system (ECS) has an important role in signalization processes, not only in the central nervous system, but also in the peripheral tissues. Several physiological functions are affected, and overexpression or downregulation contributes to several diseases. A better understanding of the functions of cannabinoid (CB) receptors may propose potential therapeutic effects by influencing receptor signaling and enzymes involved in downstream pathways. In this review, we summarize recent information regarding the roles of the ECS and the CB1 receptor signaling in the physiology and pathophysiology of energy and metabolic homeostasis, in the development of obesity by enhancing food intake, upregulating energy balance and fat accumulation, increasing lipogenesis and glucose production, and impairing insulin sensitivity and secretion. By analyzing the roles of the ECS in physiological and pathophysiological mechanisms, we introduce some recently identified signaling pathways in the mechanism of the pathogenesis of metabolic syndrome. Our review emphasizes that the presence of such recently identified ECS signaling steps raises new therapeutic potential in the treatment of complex metabolic diseases such as diabetes, insulin resistance, obesity, and hypertension.
Collapse
|
7
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E, Malinowska B. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. Int J Mol Sci 2022; 23:6350. [PMID: 35683028 PMCID: PMC9181166 DOI: 10.3390/ijms23116350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| |
Collapse
|
8
|
Mińczuk K, Schlicker E, Malinowska B. Cross-Talk between CB 1, AT 1, AT 2 and Mas Receptors Responsible for Blood Pressure Control in the Paraventricular Nucleus of Hypothalamus in Conscious Spontaneously Hypertensive Rats and Their Normotensive Controls. Cells 2022; 11:1542. [PMID: 35563848 PMCID: PMC9101384 DOI: 10.3390/cells11091542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that in urethane-anaesthetized rats, intravenous injection of the angiotensin II (Ang II) AT1 receptor antagonist losartan reversed the pressor effect of the cannabinoid CB1 receptor agonist CP55940 given in the paraventricular nucleus of hypothalamus (PVN). The aim of our study was to determine the potential interactions in the PVN between CB1 receptors and AT1 and AT2 receptors for Ang II and Mas receptors for Ang 1-7 in blood pressure regulation in conscious spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. The pressor effects of Ang II, Ang 1-7 and CP55940 microinjected into the PVN were stronger in SHRs than in WKYs. Increases in blood pressure in response to Ang II were strongly inhibited by antagonists of AT1 (losartan), AT2 (PD123319) and CB1 (AM251) receptors, to Ang 1-7 by a Mas antagonist (A-779) and AM251 and to CP55940 by losartan, PD123319 and A-779. Higher (AT1 and CB1) and lower (AT2 and Mas) receptor expression in the PVN of SHR compared to WKY may partially explain the above differences. In conclusion, blood pressure control in the PVN depends on the mutual interaction of CB1, AT1, AT2 and Mas receptors in conscious spontaneously hypertensive rats and their normotensive controls.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland;
| |
Collapse
|
9
|
Why Do Marijuana and Synthetic Cannabimimetics Induce Acute Myocardial Infarction in Healthy Young People? Cells 2022; 11:cells11071142. [PMID: 35406706 PMCID: PMC8997492 DOI: 10.3390/cells11071142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
The use of cannabis preparations has steadily increased. Although cannabis was traditionally assumed to only have mild vegetative side effects, it has become evident in recent years that severe cardiovascular complications can occur. Cannabis use has recently even been added to the risk factors for myocardial infarction. This review is dedicated to pathogenetic factors contributing to cannabis-related myocardial infarction. Tachycardia is highly important in this respect, and we provide evidence that activation of CB1 receptors in brain regions important for cardiovascular regulation and of presynaptic CB1 receptors on sympathetic and/or parasympathetic nerve fibers are involved. The prototypical factors for myocardial infarction, i.e., thrombus formation and coronary constriction, have also been considered, but there is little evidence that they play a decisive role. On the other hand, an increase in the formation of carboxyhemoglobin, impaired mitochondrial respiration, cardiotoxic reactions and tachyarrhythmias associated with the increased sympathetic tone are factors possibly intensifying myocardial infarction. A particularly important factor is that cannabis use is frequently accompanied by tobacco smoking. In conclusion, additional research is warranted to decipher the mechanisms involved, since cannabis use is being legalized increasingly and Δ9-tetrahydrocannabinol and its synthetic analogue nabilone are indicated for the treatment of various disease states.
Collapse
|
10
|
Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021; 32:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 has spread swiftly throughout the world posing a global health emergency. The significant numbers of deaths attributed to this pandemic have researchers battling to understand this new, dangerous virus. Researchers are looking to find possible treatment regimens and develop effective therapies. This study aims to provide an overview of published scientific information on potential treatments, emphasizing angiotensin-converting enzyme II (ACE2) inhibitors as one of the most important drug targets. SARS-CoV-2 receptor-binding domain (RBD); as a viral attachment or entry inhibitor against SARS-CoV-2, human recombinant soluble ACE2; as a genetically modified soluble form of ACE2 to compete with membrane-bound ACE2, and microRNAs (miRNAs); as a negative regulator of the expression of ACE2/TMPRSS2 to inhibit SARS-CoV2 entry into cells, are the potential therapeutic approaches discussed thoroughly in this article. This review provides the groundwork for the ongoing development of therapeutic agents and effective treatments against SARS-COV-2.
Collapse
Affiliation(s)
- Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, New Year, USA
| |
Collapse
|
11
|
Aragão LGHS, Oliveira JT, Temerozo JR, Mendes MA, Salerno JA, Pedrosa CSG, Puig-Pijuan T, Veríssimo CP, Ornelas IM, Torquato T, Vitória G, Sacramento CQ, Fintelman-Rodrigues N, da Silva Gomes Dias S, Cardoso Soares V, Souza LRQ, Karmirian K, Goto-Silva L, Biagi D, Cruvinel EM, Dariolli R, Furtado DR, Bozza PT, Borges HL, Souza TML, Guimarães MZP, Rehen SK. WIN 55,212-2 shows anti-inflammatory and survival properties in human iPSC-derived cardiomyocytes infected with SARS-CoV-2. PeerJ 2021; 9:e12262. [PMID: 34707939 PMCID: PMC8504461 DOI: 10.7717/peerj.12262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.
Collapse
Affiliation(s)
| | - Júlia T. Oliveira
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mayara A. Mendes
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Alexandre Salerno
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina S. G. Pedrosa
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Puig-Pijuan
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla P. Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis M. Ornelas
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thayana Torquato
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen da Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia R. Q. Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Karmirian
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Biagi
- Pluricell Biotech, São Paulo, São Paulo, Brazil
| | | | - Rafael Dariolli
- Pluricell Biotech, São Paulo, São Paulo, Brazil
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Daniel R. Furtado
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L. Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago M. L. Souza
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marília Zaluar P. Guimarães
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|