1
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Karim A. Unveiling the Potential of Probiotics in Osteoarthritis Management. Curr Rheumatol Rep 2024; 27:2. [PMID: 39579259 DOI: 10.1007/s11926-024-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA), a highly prevalent degenerative joint disease, is of increasing concern due to its debilitating nature and negative impact on quality of life. Recent investigations have explored the therapeutic potential of probiotics to alleviate OA. This review summarizes the emerging evidence for the potential role of probiotics in managing OA symptoms and disease progression. The link between gut dysbiosis and chronic inflammation, a key player in OA progression is discussed in this review. RECENT FINDINGS Probiotics may modulate gut microbiota composition, potentially reducing systemic inflammation and alleviating OA symptoms, including joint pain and function. Possible mechanisms through which probiotics may exert these effects, including dampening inflammatory pathways and enhancing intestinal barrier integrity have been highlighted. Promising results from preclinical and clinical studies investigating the specific beneficial effects of specific probiotic strain(s) for OA management have been highlighted. Finally, limitations in current research and future directions, emphasizing the need for well-designed, large-scale clinical trials to definitively establish the therapeutic potential of probiotics in OA treatment have been discussed.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Iron Biology Research Group, Sharjah Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Kuo CL, Hsin-Hsien Yeh S, Chang TM, I-Chin Wei A, Chen WJ, Chu HF, Tseng AL, Lin PY, Lin ZC, Peng KT, Liu JF. Bacillus coagulans BACO-17 ameliorates in vitro and in vivo progression of Rheumatoid arthritis. Int Immunopharmacol 2024; 141:112863. [PMID: 39146779 DOI: 10.1016/j.intimp.2024.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes persistent inflammation involving the joints, cartilage, and synovium. In individuals with RA, alterations in the composition of intestinal bacteria suggest the vital role of gut microbiota in immune dysfunction. Multiple therapies commonly used to treat RA can also alter the diversity of gut microbiota, further suggesting the modulation of gut microbiota as a prevention or treatment for RA. Therefore, a better understanding of the changes in the gut microbiota that accompany RA should facilitate the development of novel therapeutic approaches. In this study, B. coagulans BACO-17 not only significantly reduced paw swelling, arthritis scores, and hind paw and forepaw thicknesses but also protected articular cartilage and the synovium against RA degeneration, with a corresponding downregulation of TNF-α expression. The inhibition or even reversing of RA progression highlights B. coagulans BACO-17 as a novel therapeutic for RA worth investigating.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Department of Surgery, Tri-Service General Hospital Keelung Branch, Keelung, Taiwan; Department of Orthopedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Skye Hsin-Hsien Yeh
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan; Graduate Institute of Management, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Hui-Fang Chu
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Ai-Lun Tseng
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Pai-Yin Lin
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Chen LC, Lin YY, Tsai YS, Chen CC, Chang TC, Chen HT, Hsu CJ, Tang CH. Live and Dead Clostridium butyricum GKB7 Diminish Osteoarthritis Pain and Progression in Preclinical Animal Model. ENVIRONMENTAL TOXICOLOGY 2024; 39:4927-4935. [PMID: 38923690 DOI: 10.1002/tox.24367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease primarily affecting the elderly. It is characterized by the progressive decline of joint cartilage and alterations in the underlying bone. Several probiotic strains have exhibited immunomodulatory and anti-inflammatory properties. Here, we examined the functions of live and dead Clostridium butyricum GKB7 (GKB7-L and GKB7-D) in a preclinical anterior cruciate ligament transection (ACLT)-enhanced OA procedure. Oral administration of GKB7-L and GKB7-D ameliorated ACLT-induced bone pain as assessed by weight-bearing behavioral testing but did not affect body weight. Micro-computed tomography (CT) results showed that GKB7-L and GKB7-D diminished ACLT-induced bone destruction and loss. GKB7-L and GKB7-D-enriched therapies also reduced ACLT-induced production of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, as well as the chondrolytic factor matrix metalloproteinase (MMP)-3, leading to inhibition of aggrecan and collagen type II degradation and thereby blocking cartilage breakdown. We therefore suggest that oral supplementation with GKB7-L or GKB7-D can be beneficial in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ching Chang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
5
|
Di J, Xi Y, Wu Y, Di Y, Xing X, Zhang Z, Xiang C. Gut microbiota metabolic pathways: Key players in knee osteoarthritis development. Exp Gerontol 2024; 196:112566. [PMID: 39226947 DOI: 10.1016/j.exger.2024.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To confirm the causality of gut microbiota pathway abundance and knee osteoarthritis (KOA). METHODS Microbial metabolic pathways were taken as exposures, with data from the Dutch Microbiome Project (DMP). Data on KOA from the UK Biobank were utilized as endpoints. In addition, we extracted significant and independent single nucleotide polymorphisms as instrumental variables. Two-sample Mendelian randomization (MR) analysis was applied to explore the causal relationship between gut microbiota pathway abundance and KOA, and MR-Egger and weighted median were used as additional validation of the MR results. Meanwhile, Cochran Q, MR-Egger intercept, MR-PRESSO, and leave-one-out were used to perform sensitivity analyses on the MR results. RESULTS MR results showed that enterobactin biosynthesis, diacylglycerol biosynthesis I, Clostridium acetobutylicum acidogenic fermentation, glyoxylate bypass and tricarboxylic acid cycle were the risk factors for KOA. (OR = 1.13,95%CI = 1.04-1.23;OR = 1.12,95%CI = 1.04-1.20;OR = 1.14,95%CI = 1.04-1.26; OR = 1.06,95%CI = 1.00-1.12) However, adenosylcobalamin salvage from cobinamide I, hexitol fermentation to lactate formate ethanol and acetate, purine nucleotides degradation II aerobic, L tryptophan biosynthesis and inosine 5 phosphate biosynthesis III pathway showed significant protection against KOA. (OR = 0.93,95%CI = 0.86-1.00;OR = 0.94,95%CI = 0.88-1.00;OR = 0.91,95%CI = 0.86-0.97;OR = 0.95,95%CI = 0.92-0.99; OR = 0.91, 95%CI = 0.85-0.98) Further multiplicity and sensitivity analyses demonstrated the robustness of the results. CONCLUSION Our study identified specific metabolic pathways in gut microbiota that promote or inhibit KOA, which provides the most substantial evidence-based medical evidence for the pathogenesis and prevention of KOA.
Collapse
Affiliation(s)
- Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujia Xi
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yawen Wu
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yijing Di
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinglong Xing
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhibo Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Bautista A, Lee J, Delfino S, LaPreze D, Abd-Elsayed A. The Impact of Nutrition on Pain: A Narrative Review of Recent Literature. Curr Pain Headache Rep 2024; 28:1059-1066. [PMID: 38874851 DOI: 10.1007/s11916-024-01275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Pain is a complex phenomenon that affects millions of individuals worldwide and poses a significant burden on public health. While pain management typically focuses on pharmacological and physical interventions, emerging research suggests that nutrition plays a crucial role in pain modulation. This narrative review aims to explore the relationship between nutrition and pain, providing a comprehensive overview of recent literature. The review covers various dietary factors, including macronutrients, micronutrients, dietary patterns, and specific dietary interventions. Additionally, the potential mechanisms underlying the impact of nutrition on pain are discussed. The findings highlight the potential for dietary interventions to complement traditional pain management approaches and provide valuable insights for future research and clinical practice. RECENT FINDINGS Literature suggested the impact of healthy nutrition on improvement in pain and that certain types of food may increase and worsen different pain conditions. Nutrition plays an important role in modulating pain. It is important to counsel patients in pain on best diet for their pain condition to alleviate pain. Our article summarizes very well the issue of nutrition and pain and provides a guide to all practitioners caring for patients with chronic pain.
Collapse
Affiliation(s)
- Alexander Bautista
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA.
| | - Jordan Lee
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA
| | - Spender Delfino
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA
| | - Dani LaPreze
- Kornhauser Health Sciences Library, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
7
|
Wang M, Fan Y, Song J, Liu Y, Liu B, Zhao X, Wu W. Preventive effects of Chinese Xinjiang naturally fermented yogurt separated from Lactobacillus rhamnosusAFY02 on acute gouty arthritis in mice. Food Sci Nutr 2024; 12:6389-6397. [PMID: 39554315 PMCID: PMC11561792 DOI: 10.1002/fsn3.4268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 11/19/2024] Open
Abstract
Lactobacillus rhamnosus AFY02 (LR-AFY02) is a newly discovered strain isolated and identified from naturally fermented yogurt in Xinjiang, China. This research aims to investigate the mechanism of action of LR-AFY02 in mice with acute gouty arthritis. We examined the degree of foot swelling, pain threshold, blood biochemical indicators, histopathological changes, and mRNA expression. LR-AFY02 can decrease the severity of mouse foot edema and raise the pain threshold. LR-AFY02 can increase the enzyme activity of superoxide dismutase (SOD) and the level of glutathione (GSH) while lowering the enzyme activity of myeloperoxidase (MPO) and the level of malondialdehyde (MDA) in mice with acute arthritis. Interleukin-6 (IL-6), IL-10, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the blood of mice with acute arthritis are also decreased by LR-AFY02. Histopathological findings demonstrated that LR-AFY02 reduced tissue damage in the mouse foot and ankle joints. LR-AFY02 may suppress the mRNA expression of extracellular signal-regulated kinase 1/2 (ERK1/2), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), IL-6, interferon gamma (IFN-γ), and TNF-α in the tissues of the ankle joints of mice with acute arthritis. Additionally, LR-AFY02 has the ability to increase the expression of catalase (CAT), manganese superoxide dismutase (Mn-SOD), and copper/zinc superoxide dismutase (Cu/Zn-SOD). As a result, it is clear that L. rhamnosus AFY02 is more effective than glucosamine sulfate at preventing acute gouty arthritis.
Collapse
Affiliation(s)
- Mengwei Wang
- Collaborative Innovation Center for Child Nutrition and Health DevelopmentChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Yang Fan
- Department of NutritionChongqing University Jiangjin HospitalChongqingChina
| | - Jing Song
- Collaborative Innovation Center for Child Nutrition and Health DevelopmentChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Yanqing Liu
- Collaborative Innovation Center for Child Nutrition and Health DevelopmentChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Bihui Liu
- Collaborative Innovation Center for Child Nutrition and Health DevelopmentChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health DevelopmentChongqing University of EducationChongqingChina
| | - Wenzhong Wu
- Heilongjiang Red Cross Sengong General HospitalHarbinChina
- Harbin Medical UniversityHarbinChina
| |
Collapse
|
8
|
Corriero A, Giglio M, Soloperto R, Inchingolo F, Varrassi G, Puntillo F. Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain Ther 2024; 13:409-433. [PMID: 38678155 PMCID: PMC11111653 DOI: 10.1007/s40122-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
One of the most common musculoskeletal disorders, osteoarthritis (OA), causes worldwide disability, morbidity, and poor quality of life by degenerating articular cartilage, modifying subchondral bone, and inflaming synovial membranes. OA pathogenesis pathways must be understood to generate new preventative and disease-modifying therapies. In recent years, it has been acknowledged that gut microbiota (GM) can significantly contribute to the development of OA. Dysbiosis of GM can disrupt the "symphony" between the host and the GM, leading to a host immunological response that activates the "gut-joint" axis, ultimately worsening OA. This narrative review summarizes research supporting the "gut-joint axis" hypothesis, focusing on the interactions between GM and the immune system in its two main components, innate and adaptive immunity. Furthermore, the pathophysiological sequence of events that link GM imbalance to OA and OA-related pain is broken down and further investigated. We also suggest that diet and prebiotics, probiotics, nutraceuticals, exercise, and fecal microbiota transplantation could improve OA management and represent a new potential therapeutic tool in the light of the scarce panorama of disease-modifying osteoarthritis drugs (DMOADs). Future research is needed to elucidate these complex interactions, prioritizing how a particular change in GM, i.e., a rise or a drop of a specific bacterial strain, correlates with a certain OA subset to pinpoint the associated signaling pathway that leads to OA.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rossana Soloperto
- Department of Intensive Care, Brussels' University Hospital (HUB), Rue de Lennik 808, 1070, Brussels, Belgium
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
9
|
Korneva YS, Borisenko MV, Deev RV. Gut microbiota – a new link in the pathogenesis of osteoarthritis (literature review). THE SIBERIAN JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE 2024; 39:38-43. [DOI: 10.29001/2073-8552-2024-39-1-38-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The intestinal microbiota (IMB) can indirectly affect the course of ostearthritis (OA) at the systemic level by stimulating a chronic nonspecific inflammatory reaction in the synovial membrane and subchondral bone, the cause of which is an increase in the amount of circulating lipopolysaccharides (LPS) of the bacterial wall, as well as provoke the development of metabolic syndrome, which links the two necessary components of the pathogenesis of OA. The result of direct exposure is the formation of leaky gut syndrome with the activation of LPS of the bacterial wall of mild inflammation, provoking the production of proinflammatory cytokines, the effect of which on synoviocytes and chondrocytes leads to their activation with subsequent production of IL-6 and IL-8, which contributes to the persistence of inflammation. By correlation analysis, the relationship of three taxa with OA joint damage was proved, namely, the order Desulfovibrionales and the genus Ruminiclostridium 5 – with knee joint OA, Methanobacteriaceae – with knee joint OA, and OA of any localization, and the appearance and degree of contamination with the genus Streptococcus correlated with the severity of pain syndrome. The metabolic syndrome itself can provoke the development of dysbiosis, so it can also be its consequence. A change in the composition of the microbiota in the form of the predominance of the genus Clostridium and the species Staphylococcus aureus with a decrease in the diversity of microorganisms is associated with an increase in the amount of adipose tissue in the body, dyslipidemia, insulin resistance with impaired carbohydrate metabolism. Low levels of LPS in the blood are found in obese patients even in the absence of an obvious focus of infection due to violations in the CMB, they signal TLR-4, triggering systemic inflammation. Studies have shown a positive effect of prescribing proand prebiotics on the course of OA, which makes IMB a promising target for the treatment and prevention of OA.
Collapse
Affiliation(s)
- Yu. S. Korneva
- Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden; North-Western State Medical University named after I.I. Mechnikov; Smolensk State Medical University of the Ministry of Health of the Russian Federation
| | - M. V. Borisenko
- North-Western State Medical University named after I.I. Mechnikov
| | - R. V. Deev
- Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution “Petrovsky National Research Centre of Surgery”
| |
Collapse
|
10
|
Guan L, Hu A, Ma S, Liu J, Yao X, Ye T, Han M, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum postbiotic protects against Salmonella infection in broilers via modulating NLRP3 inflammasome and gut microbiota. Poult Sci 2024; 103:103483. [PMID: 38354474 PMCID: PMC10875300 DOI: 10.1016/j.psj.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1β, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lβ, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.
Collapse
Affiliation(s)
- Leqi Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xianci Yao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Meng Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China.
| |
Collapse
|
11
|
Levenson BM, Rossouw PE, Michelogiannakis D, Javed F. Probing the antinociceptive and therapeutic potential of probiotics in managing temporomandibular joint arthritis. J Taibah Univ Med Sci 2024; 19:372-378. [PMID: 38357582 PMCID: PMC10864793 DOI: 10.1016/j.jtumed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
This literature review explored the antinociceptive and therapeutic effects of probiotic therapy (PT) in the treatment of arthritic conditions affecting the temporomandibular joint (TMJ). Indexed databases were searched without time and language restrictions up to and including February 2023, to identify studies addressing the question: "Is PT effective for the management of TMJ arthritis?" The following keywords were used in different combinations with Boolean operators: arthritis, osteoarthritis, pain, probiotic, rheumatoid, temporomandibular disorders, and temporomandibular joint. Original clinical and experimental studies assessing the therapeutic efficacy of PT in the management of osteoarthritis were eligible for inclusion. Letters to the editor, reviews, commentaries, perspectives, and expert opinions were not sought. The structure of the current review was tailored to encapsulate relevant information. A total of 297 relevant studies were identified during the initial literature search, and the full text and reference lists of these studies were scrutinized. To date, the potential role of PT in managing osteoarthritis of the TMJ region remains uninvestigated. No clinical trials in the indexed literature have assessed the efficacy of PT in managing TMJ arthritis; however, this finding does not preclude a potential role of probiotics as antinociceptive and therapeutic agents in susceptible populations.
Collapse
Affiliation(s)
- Benjamin M. Levenson
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - P. Emile Rossouw
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Fawad Javed
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| |
Collapse
|
12
|
Prinz E, Schlupp L, Dyson G, Barrett M, Szymczak A, Velasco C, Izda V, Dunn CM, Jeffries MA. OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann Rheum Dis 2024; 83:382-393. [PMID: 37979958 PMCID: PMC10922159 DOI: 10.1136/ard-2023-224907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES The Murphy Roths Large (MRL)/MpJ 'superhealer' mouse strain is protected from post-traumatic osteoarthritis (OA), although no studies have evaluated the microbiome in the context of this protection. This study characterised microbiome differences between MRL and wild-type mice, evaluated microbiome transplantation and OA and investigated microbiome-associated immunophenotypes. METHODS Cecal material from mixed sex C57BL6/J (B6) or female MRL/MpJ (MRL) was transplanted into B6 and MRL mice, then OA was induced by disruption of the medial meniscus surgery (DMM). In other experiments, transplantation was performed after DMM and transplantation was performed into germ-free mice. Transplanted mice were bred through F2. OARSI, synovitis and osteophyte scores were determined blindly 8 weeks after DMM. 16S microbiome sequencing was performed and metagenomic function was imputed. Immunophenotypes were determined using mass cytometry. RESULTS MRL-into-B6 transplant prior to DMM showed reduced OA histopathology (OARSI score 70% lower transplant vs B6 control), synovitis (60% reduction) and osteophyte scores (30% reduction) 8 weeks after DMM. When performed 48 hours after DMM, MRL-into-B6 transplant improved OA outcomes but not when performed 1-2 weeks after DMM. Protection was seen in F1 (60% reduction) and F2 progeny (30% reduction). Several cecal microbiome clades were correlated with either better (eg, Lactobacillus, R=-0.32, p=0.02) or worse (eg, Rikenellaceae, R=0.43, p=0.001) OA outcomes. Baseline immunophenotypes associated with MRL-into-B6 transplants and MRL included reduced double-negative T cells and increased CD25+CD4+ T cells. CONCLUSION The gut microbiome is responsible in part for OA protection in MRL mice and is transferrable by microbiome transplantation. Transplantation induces resting systemic immunophenotyping changes that correlate with OA protection.
Collapse
Affiliation(s)
- Emmaline Prinz
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Leoni Schlupp
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Gabby Dyson
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Montana Barrett
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Aleksander Szymczak
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Cassandra Velasco
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Vladislav Izda
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher M Dunn
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Matlock A Jeffries
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Rahman SO, Bariguian F, Mobasheri A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr Rheumatol Rep 2023; 25:307-326. [PMID: 37656392 PMCID: PMC10754743 DOI: 10.1007/s11926-023-01108-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This narrative review article comprehensively explains the pathophysiology of osteoarthritis (OA) pain perception, how the gut microbiota is correlated with it, possible molecular pathways involved in probiotics-mediated OA pain reduction, limitations in the current research approaches, and future perspectives. RECENT FINDINGS The initiation and progression of OA, including the development of chronic pain, is intricately associated with activation of the innate immune system and subsequent inflammatory responses. Trauma, lifestyle (e.g., obesity and metabolic disease), and chronic antibiotic treatment can disrupt commensal homeostasis of the human microbiome, thereby affecting intestinal integrity and promoting leakage of bacterial endotoxins and metabolites such as lipopolysaccharides (LPS) into circulation. Increased level of LPS is associated with knee osteophyte severity and joint pain. Both preclinical and clinical studies strongly suggest that probiotics may benefit patients with OA pain through positive gut microbiota modulation and attenuating low-grade inflammation via multiple pathways. Patent data also suggests increased interest in the development of new innovations that involve probiotic use for reducing OA and joint pain. Recent data suggest that probiotics are attracting more and more attention for OA pain management. The advancement of knowledge in this area may pave the way for developing different probiotic strains that can be used to support joint health, improve treatment outcomes in OA, and reduce the huge impact of the disease on healthcare systems worldwide.
Collapse
Affiliation(s)
| | - Frédérique Bariguian
- Haleon (Formerly GSK Consumer Healthcare), Route de L'Etraz 2, Case Postale 1279, 1260, Nyon 1, Switzerland.
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014, Oulu, FI, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium.
| |
Collapse
|
15
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
16
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
17
|
Liu S, Li G, Xu H, Wang Q, Wei Y, Yang Q, Xiong A, Yu F, Weng J, Zeng H. "Cross-talk" between gut microbiome dysbiosis and osteoarthritis progression: a systematic review. Front Immunol 2023; 14:1150572. [PMID: 37180142 PMCID: PMC10167637 DOI: 10.3389/fimmu.2023.1150572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives The aim of this systematic review was to summarize the available literature on gut microbiome (GMB) and osteoarthritis (OA), analyze the correlation between GMB and OA, and explore potential underlying mechanisms. Methods A systematic search of the PubMed, Embase, Cochrane, and Web of Science with the keywords "Gut Microbiome" and "Osteoarthritis" was conducted to identify the human and animal studies exploring the association between GMB and OA. The retrieval time range was from the database inception to July 31, 2022. Studies reported the other arthritic diseases without OA, reviews, and studies focused on the microbiome in other parts of the body with OA, such as oral or skin, were excluded. The included studies were mainly reviewed for GMB composition, OA severity, inflammatory factors, and intestinal permeability. Results There were 31 studies published met the inclusion criteria and were analyzed, including 10 human studies and 21 animal studies. Human and animal studies have reached a consistent conclusion that GMB dysbiosis could aggravate OA. In addition, several studies have found that alterations of GMB composition can increase intestinal permeability and serum levels of inflammatory factors, while regulating GMB can alleviate the changes. Owing to the susceptibility of GMB to internal and external environments, genetics, and geography, the included studies were not consistent in GMB composition analysis. Conclusion There is a lack of high-quality studies evaluating the effects of GMB on OA. Available evidence indicated that GMB dysbiosis aggravated OA through activating the immune response and subsequent induction of inflammation. Future studies should focus on more prospective, cohort studies combined with multi-omics to further clarify the correlation.
Collapse
Affiliation(s)
- Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huihui Xu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yihao Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Yang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
18
|
Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
20
|
Sophocleous A, Azfer A, Huesa C, Stylianou E, Ralston SH. Probiotics Inhibit Cartilage Damage and Progression of Osteoarthritis in Mice. Calcif Tissue Int 2023; 112:66-73. [PMID: 36261653 PMCID: PMC9813193 DOI: 10.1007/s00223-022-01030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Increasing interest has focussed on the possible role of alterations in the microbiome in the pathogenesis of metabolic disease, inflammatory disease, and osteoporosis. Here we examined the role of the microbiome in a preclinical model of osteoarthritis in mice subjected to destabilisation of medical meniscus (DMM). The intestinal microbiome was depleted by broad-spectrum antibiotics from 1 week before birth until the age of 6 weeks when mice were subjected reconstitution of the microbiome with faecal microbial transplant (FMT) followed by the administration of a mixture of probiotic strains Lacticaseibacillus paracasei 8700:2, Lactiplantibacillus plantarum HEAL9 and L. plantarum HEAL19 or vehicle. All mice were subjected to DMM at the age of 8 weeks. The severity of osteoarthritis was evaluated by histological analysis and effects on subchondral bone were investigated by microCT analyses. The combination of FMT and probiotics significantly inhibited cartilage damage at the medial femoral condyle such that the OARSI score was 4.64 ± 0.32 (mean ± sem) in the FMT and probiotic group compared with 6.48 ± 0.53 in the FMT and vehicle group (p = 0.007). MicroCT analysis of epiphyseal bone from the femoral condyle showed that the probiotic group had higher BV/TV, increased Tb.Th, and moderately thicker subchondral bone plates than the control group. There was no difference between groups in joint inflammation or in serum concentrations of inflammatory cytokines and chemokines. We conclude that treatment with probiotics following FMT in mice where the microbiome has been depleted inhibits DMM-induced cartilage damage and impacts on the structure of subchondral bone particularly at the femoral condyle. While further studies are required to elucidate the mechanism of action, our research suggests that these probiotics may represent a novel intervention for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Asim Azfer
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Carmen Huesa
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eleni Stylianou
- Department of Life Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Stuart H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Su M, Tang Y, Kong W, Zhang S, Zhu T. Genetically supported causality between gut microbiota, gut metabolites and low back pain: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1157451. [PMID: 37125171 PMCID: PMC10140346 DOI: 10.3389/fmicb.2023.1157451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Background Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study. Methods Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's Q-test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation. Results We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP (p < 0.05). Among them, the lower level of family Ruminococcaceae (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected p = 0.045) and Lactobacillaceae (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected p = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's Q test revealed no Heterogeneity (p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null. Conclusion Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.
Collapse
Affiliation(s)
- Mengchan Su
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yidan Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| | - Weishuang Kong
- Department of Surgery, Xuanwei Hospital of Traditional Chinese Medicine, Xuanwei, China
| | - Shuangyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| |
Collapse
|
22
|
Shao M, Lv D, Zhou K, Sun H, Wang Z. Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:535-542. [PMID: 35225151 PMCID: PMC8890578 DOI: 10.1080/13880209.2022.2042327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Osteoarthritis (OA) is a degenerative disease. Senkyunolide A (SenA) is an important phthalide from Ligusticum chuanxiong Hort (Umbelliferae) with anti-spasmodic and neuroprotective effects. OBJECTIVE We explored the effect of SenA on IL-1β-stimulated chondrocytes and OA mice. MATERIALS AND METHODS Chondrocytes were stimulated by IL-1β (10 ng/mL) to establish an OA model in vitro. Cells were treated with SenA (20, 40, 80 and 160 μg/mL) for 48 h. The in vivo OA model was established by cutting off the medial meniscus tibial ligament (MMTL) at right knee incision of male C57BL/6 mice. One week after surgery, mice were injected with SenA (intraperitoneally one week) and divided into four groups (n = 6 per group): Sham, OA, OA + SenA 20 mg/kg and OA + SenA 40 mg/kg. The OA progression was examined by haematoxylin and eosin (H&E) staining. RESULTS SenA treatment increased cell viability (33%), proliferation (71%), inhibited apoptosis (21%), decreased levels of catabolic marker proteins (MMP13, 23%; ADAMTS4, 31%; ADAMTS5, 19%), increased levels of anabolic marker proteins (IGF-1, 57%; aggrecan, 75%; Col2a1, 48%), reduced levels of inflammation cytokines (TNF-α, 31%; IL-6, 19%; IL-18, 20%) and decreased levels of NLRP3 (21%), ASC (20%) and caspase-1 (29%) of chondrocytes. However, NLRP3 agonist nigericin increased levels of MMP13 (55%), ADAMTS4 (70%), ADAMTS5 (53%), decreased levels of IGF-1 (36%), aggrecan (26%), Col2a1 (25%), inhibited proliferation (61%) and promoted apoptosis (76%). DISCUSSION AND CONCLUSIONS SenA alleviates OA progression by inhibiting NLRP3 signalling pathways. These findings provide an experimental basis for the clinical application of drugs in the treatment of OA.
Collapse
Affiliation(s)
- Minglei Shao
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
| | - Dongwei Lv
- Department of Joint Surgery, Dongying People’s Hospital, Dongying, PR China
| | - Kai Zhou
- Department of Orthopedics, Dongying District People’s Hospital, Dongying, PR China
| | - Haijun Sun
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
| | - Zhitao Wang
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
- CONTACT Zhitao Wang Department of Orthopedics, Dongying People’s Hospital, No. 317, Dongcheng South 1st Road, Dongying, Shandong257091, PR China
| |
Collapse
|
23
|
Cho KH, Na HS, Jhun J, Woo JS, Lee AR, Lee SY, Lee JS, Um IG, Kim SJ, Park SH, Cho ML. Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front Immunol 2022; 13:930511. [PMID: 36325344 PMCID: PMC9619036 DOI: 10.3389/fimmu.2022.930511] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated Lactobacillus (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of Faecalibacterium which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.
Collapse
Affiliation(s)
- Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Jeong Su Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - In Gyu Um
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- Department of Medical Life Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho,
| |
Collapse
|
24
|
Xiang W, Ji B, Jiang Y, Xiang H. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review. Front Vet Sci 2022; 9:938629. [PMID: 36172610 PMCID: PMC9510893 DOI: 10.3389/fvets.2022.938629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.
Collapse
Affiliation(s)
- Wu Xiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Bingjin Ji
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Yiqin Jiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Han Xiang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Han Xiang
| |
Collapse
|
25
|
Therapeutic Effects of Live Lactobacillus plantarum GKD7 in a Rat Model of Knee Osteoarthritis. Nutrients 2022; 14:nu14153170. [PMID: 35956346 PMCID: PMC9370768 DOI: 10.3390/nu14153170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a painful, progressive chronic inflammatory disease marked by cartilage destruction. Certain synovial inflammatory cytokines, such as IL-1β and TNF-α, promote OA inflammation and pain. Lactobacillus spp. is a well-known probiotic with anti-inflammatory, analgesic, antioxidant, and antiosteoporotic properties. This study evaluated the therapeutic effects of a live L. plantarum strain (GKD7) in the anterior cruciate ligament transection (ACLT)-induced OA rat model. The results show that oral administration of live L. plantarum GKD7 improved weight-bearing asymmetry after ACLT surgery. Moreover, micro-computed tomography images and histopathological analysis show that oral live L. plantarum GKD7 improved subchondral bone architecture, protected articular cartilage against ACLT-induced damage, and reduced synovial inflammation. L. plantarum GKD7 also reduced IL-1β and TNF-α production in OA cartilage and synovium. Thus, orally administered live L. plantarum GKD7 appears to effectively slow the progression of OA.
Collapse
|
26
|
Chang SLY, Lin YY, Liu SC, Tsai YS, Lin SW, Chen YL, Chen CC, Ko CY, Chen HT, Chen WC, Tang CH. Oral Administration of Clostridium butyricum GKB7 Ameliorates Signs of Osteoarthritis in Rats. Cells 2022; 11:2169. [PMID: 35883610 PMCID: PMC9323988 DOI: 10.3390/cells11142169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative and painful inflammatory joint disease affecting the cartilage, bone, and synovial membranes, without any effective treatment that targets the underlying mechanisms of OA. Our study evaluated the therapeutic effects of a live probiotic strain, Clostridium butyricum GKB7, administered for 6 weeks to rats with knee OA (KOA) induced by anterior cruciate ligament transection (ACLT) of the right knee. All rats underwent weekly weight-bearing behavioral testing and body weight measurements. At 6 weeks, all rats were sacrificed, and the right hind knees were collected for micro-computed tomography imaging and histopathological and immunohistochemical analyses. Compared with rats in the ACLT-only group, ACLT rats administered the probiotic exhibited dramatic improvements in pain-related behavior from postoperative week 2, had significantly less osseous and cartilaginous damage at week 6, and significantly lower levels of the inflammatory markers interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in cartilage and synovium sections. C. butyricum GKB7 appeared to slow or even reverse OA progression and is worth investigating as a novel therapeutic for OA.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Shan-Chi Liu
- Department of Medical Education and Research, Beigang Hospital, China Medical University, Yunlin 651012, Taiwan;
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Shih-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106617, Taiwan;
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104036, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404333, Taiwan;
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404333, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404333, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40354, Taiwan
| |
Collapse
|
27
|
Na HS, Woo JS, Kim JH, Lee JS, Um IG, Cho KH, Kim GH, Cho ML, Chung SJ, Park SH. Coenzyme Q10 encapsulated in micelles ameliorates osteoarthritis by inhibiting inflammatory cell death. PLoS One 2022; 17:e0270351. [PMID: 35749420 PMCID: PMC9231733 DOI: 10.1371/journal.pone.0270351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/08/2022] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease and is characterized by breakdown of joint cartilage. Coenzyme Q10 (CoQ10) exerts diverse biological effects on bone and cartilage; observational studies have suggested that CoQ10 may slow OA progression and inflammation. However, any effect of CoQ10 on OA remains unclear. Here, we investigated the therapeutic utility of CoQ10-micelles. Methods Seven-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. CoQ10-micelles were administered orally to MIA-induced OA rats; celecoxib served as the positive control. Pain, tissue destruction, and inflammation were measured. The expression levels of catabolic and inflammatory cell death markers were assayed in CoQ10-micelle-treated chondrocytes. Results Oral supplementation with CoQ10-micelles attenuated OA symptoms remarkably, including pain, tissue destruction, and inflammation. The expression levels of the inflammatory cytokines IL-1β, IL-6, and MMP-13, and of the inflammatory cell death markers RIP1, RIP3, and pMLKL in synovial tissues were significantly reduced by CoQ10-micelle supplementation, suggesting that CoQ10-micelles might attenuate the synovitis of OA. CoQ10-micelle addition to cultured OA chondrocytes reduced the expression levels of catabolic and inflammatory cell death markers. Conclusions CoQ10-micelles might usefully treat OA.
Collapse
Affiliation(s)
- Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Jeong Su Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Gyu Um
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Lifesciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail: (MLC); (SJC); (SHP)
| | - Sang J. Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwankwan University, Suwon, Korea
- * E-mail: (MLC); (SJC); (SHP)
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail: (MLC); (SJC); (SHP)
| |
Collapse
|
28
|
Dunn CM, Jeffries MA. The Microbiome in Osteoarthritis: a Narrative Review of Recent Human and Animal Model Literature. Curr Rheumatol Rep 2022; 24:139-148. [PMID: 35389162 PMCID: PMC11627155 DOI: 10.1007/s11926-022-01066-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW The microbiome has recently emerged as a powerful contributor to health and illness in chronic, systemic disorders. Furthermore, new microbiome niches beyond traditional gut locations are frequently being described. Over the past 5 years, numerous pivotal studies have demonstrated associations between changes in various microbiome niches and the development of osteoarthritis (OA). Herein, we review the most impactful recent literature, including microbiome associations with disease and the potential therapeutic value of microbiome manipulation. RECENT FINDINGS The gut microbiome of human OA patients is enriched in specific bacterial clades, most notably Streptococcus, which correlates with OA pain, Firmicutes, and others. Most studies have focused on knee OA, although one publication demonstrated positive associations with 3 gut microbiome clades in hand OA. OA can be easily distinguished from RA by evaluating differences in oral microbiome composition. Most studies have also demonstrated a reduction in richness of the gut microbiome (alpha diversity) associated with OA. Several studies have identified bacterial signatures within human knee and hip cartilage, synovial fluid, and synovial tissue and have described changes in these patterns occurring with the development of OA. In animal models of OA, high-fat diet-induced obesity has been the most well-studied OA risk factor associated with changes in the microbiome, with numerous bacterial clades changed within the gut microbiome and associated with OA. Also in animal models, various oral supplementations, including dietary fiber, probiotics including Lactobacillus species, and cecal microbiome transplantation have all shown improvements in OA histopathology or cartilage healing. Microbiome changes are strongly associated with the OA disease process and with individual OA risk factors related to both the gut microbiome and the microbial DNA patterns in the joint. Microbiome-directed interventions have the potential to prevent or reduce the progression of OA. Future studies should investigate the mechanistic underpinnings of these microbiome associations and further define the therapeutic potential of microbiome augmentation.
Collapse
Affiliation(s)
- Christopher M Dunn
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matlock A Jeffries
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA.
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
30
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
31
|
Microbiota and Pain: Save Your Gut Feeling. Cells 2022; 11:cells11060971. [PMID: 35326422 PMCID: PMC8946251 DOI: 10.3390/cells11060971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, a growing body of evidence has emerged regarding the interplay between microbiota and the nervous system. This relationship has been associated with several pathological conditions and also with the onset and regulation of pain. Dysregulation of the axis leads to a huge variety of diseases such as visceral hypersensitivity, stress-induced hyperalgesia, allodynia, inflammatory pain and functional disorders. In pain management, probiotics have shown promising results. This narrative review describes the peripheral and central mechanisms underlying pain processing and regulation, highlighting the role of the gut-brain axis in the modulation of pain. We summarized the main findings in regard to the stress impact on microbiota’s composition and its influence on pain perception. We also focused on the relationship between gut microbiota and both visceral and inflammatory pain and we provided a summary of the main evidence regarding the mechanistic effects and probiotics use.
Collapse
|
32
|
Gut microbiota and its role in stress-induced hyperalgesia: gender-specific responses linked to different changes in serum metabolites. Pharmacol Res 2022; 177:106129. [DOI: 10.1016/j.phrs.2022.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
33
|
Lee DH, Kim SJ, Kim SA, Ju GI. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg Relat Res 2022; 34:1. [PMID: 35090574 PMCID: PMC8800252 DOI: 10.1186/s43019-022-00132-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteoarthritis, one of the most common joint diseases, is characterized by the loss of joint function due to articular cartilage destruction. Herein, we review current and previous research involving the clinical applications of arthritis therapy and suggest potential therapeutic options for osteoarthritis in the future. PAST, PRESENT, AND FUTURE TREATMENT The arthroscopic cartilage regeneration procedure or realignment osteotomy has been performed as a joint-conserving procedure in cases where conservative treatment for damaged articular cartilage and early osteoarthritis failed. If cartilage regeneration is ineffective or if the joint damage progresses, arthroplasty is the main treatment option. The need for biological arthritis treatment has expanded as the healthy lifespan of the global population has increased. Accordingly, minimally invasive surgical treatment has been developed for the treatment of damaged cartilage and early osteoarthritis. However, patients generally prefer to avoid all types of surgery, including minimally invasive surgery. Therefore, in the future, the treatment of osteoarthritis will likely involve injection or medication. CONCLUSION Currently, arthritis management primarily involves the surgical application of therapeutic agents to the joints. However, nonsurgical or prophylactic methods are expected to become mainstream arthritis therapies in the future.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea.
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| | - Gang-Ik Ju
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Gyeonggi-do, 11765, Uijeongbu-si, Republic of Korea
| |
Collapse
|
34
|
Chisari E, Wouthuyzen-Bakker M, Friedrich AW, Parvizi J. The relation between the gut microbiome and osteoarthritis: A systematic review of literature. PLoS One 2021; 16:e0261353. [PMID: 34914764 PMCID: PMC8675674 DOI: 10.1371/journal.pone.0261353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Along with mechanical and genetic factors, emerging evidence suggests that the presence of low-grade inflammation has a role in the pathogenesis of osteoarthritis (OA) and seems to be related to the microbiome composition of the gut. Purpose To provide evidence whether there is clinical or preclinical evidence of gut-joint axis in the pathogenesis and symptoms of OA. Methods An extensive review of the current literature was performed using three different databases. Human, as well as animal studies, were included. The risk of bias was identified using ROBINS and SYRCLE tools, while the quality of evidence was assessed using GRADE and CAMADARES criteria. Results A total of nineteen articles were included. Multiple animal studies demonstrated that both obesity, and high-fat and high-sugar diets resulted in a gut dysbiosis status characterized by increased Firmicutes/Bacteroidetes (F/B) phyla ratio and increased permeability. These changes were associated with increased lipopolysaccharide serum levels, which consequently resulted in synovitis and OA severity. The administration of pre-and probiotics partially reversed this bacterial composition. In addition, in human studies, a decreased amount of gut Bacteroidetes, subsequent increased F/B ratio, have also been observed in OA patients. Conclusions Our review confirms preliminary yet sound evidence supporting a gut-joint axis in OA in primarily preclinical models, by showing an association between diet, gut dysbiosis and OA radiological severity and self-reported symptoms. Clinical studies are needed to confirm these findings, and to investigate whether interventions targeting the composition of the microbiome will have a beneficial clinical effect.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Feng K, Xie X, Yuan J, Gong L, Zhu Z, Zhang J, Li H, Yang Y, Wang Y. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment. J Extracell Vesicles 2021; 10:e12160. [PMID: 34724347 PMCID: PMC8559985 DOI: 10.1002/jev2.12160] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) possess a great therapeutical potential for osteoarthritis (OA) treatment. However, the steric and electrostatic hindrance of cartilage matrix leads to very limited distribution of MSC-sEVs in cartilage and low bioavailability of MSC-sEVs after intra-articular injection. To overcome this, a strategy to reverse the surface charge of MSC-sEVs by modifying the MSC-sEVs with a novel cationic amphiphilic macromolecule namely ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) was developed in this study. Through incubation with 100 μg/ml PPD, positively charged MSC-sEVs (PPD-sEVs) were obtained, and the modification process showed nearly no disturbance to the integrity and contents of sEVs and exhibited good stability under the interference of anionic macromolecules. A more effective cellular uptake and homeostasis modulation ability of PPD-sEVs than unmodified MSC-sEVs to chondrocytes was demonstrated. More importantly, PPD-sEVs demonstrated significantly enhanced cartilage uptake, cartilage penetration, and joint retention capacity as compared to MSC-sEVs. Intra-articular injection of PPD-sEVs into a mouse OA model showed significantly improved bioavailability than MSC-sEVs, which resulted in enhanced therapeutic efficacy with reduced injection frequency. In general, this study provides a facile and effective strategy to improve the intra-articular bioavailability of MSC-sEVs and has a great potential to accelerate the clinical practice of MSC-sEVs based OA therapy.
Collapse
Affiliation(s)
- Kai Feng
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xuetao Xie
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ji Yuan
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Liangzhi Gong
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhaochen Zhu
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Juntao Zhang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haiyan Li
- Chemical and Environmental EngineeringSchool of EngineeringRMIT UniversityMelbourneAustralia
| | - Yunlong Yang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|