1
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
2
|
Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X. Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications. J Transl Med 2024; 22:1073. [PMID: 39604931 PMCID: PMC11600670 DOI: 10.1186/s12967-024-05769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies. Therefore, the cellular status of hPSC-RPE cells, including maturity and physiologic functions, have been widely explored. Particularly, research on ion channels in hPSC-RPE cells can lead to the development of more stable models upon which robust investigations and clinical safety assessments can be performed. Moreover, the use of patient-specific hiPSC-RPE cells has significantly accelerated the clinical translation of gene therapy for retinal channelopathies, such as bestrophinopathies. This review consolidates current research on ion channels in hPSC-RPE cells, specifically Kir7.1, Bestrophin-1, CLC-2, and CaV1.3, providing a foundation for future research.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weisheng Zou
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Wenjing Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guifu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
5
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
6
|
Haage V, Tuddenham JF, Comandante-Lou N, Bautista A, Monzel A, Chiu R, Fujita M, Garcia FG, Bhattarai P, Patel R, Buonfiglioli A, Idiarte J, Herman M, Rinderspacher A, Mela A, Zhao W, Argenziano MG, Furnari JL, Banu MA, Landry DW, Bruce JN, Canoll P, Zhang Y, Nuriel T, Kizil C, Sproul AA, de Witte LD, Sims PA, Menon V, Picard M, De Jager PL. A pharmacological toolkit for human microglia identifies Topoisomerase I inhibitors as immunomodulators for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579103. [PMID: 38370689 PMCID: PMC10871172 DOI: 10.1101/2024.02.06.579103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.
Collapse
Affiliation(s)
- Verena Haage
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - John F. Tuddenham
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Natacha Comandante-Lou
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alex Bautista
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Anna Monzel
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Frankie G. Garcia
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Prabesh Bhattarai
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ronak Patel
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Juan Idiarte
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mathieu Herman
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | | | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Tal Nuriel
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Caghan Kizil
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Lotje D. de Witte
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
7
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
8
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
9
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Ayoub M, David LM, Shklyar B, Hakim-Mishnaevski K, Kurant E. Drosophila FGFR/Htl signaling shapes embryonic glia to phagocytose apoptotic neurons. Cell Death Discov 2023; 9:90. [PMID: 36898998 PMCID: PMC10006210 DOI: 10.1038/s41420-023-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Glial phagocytosis of apoptotic neurons is crucial for development and proper function of the central nervous system. Relying on transmembrane receptors located on their protrusions, phagocytic glia recognize and engulf apoptotic debris. Like vertebrate microglia, Drosophila phagocytic glial cells form an elaborate network in the developing brain to reach and remove apoptotic neurons. However, the mechanisms controlling creation of the branched morphology of these glial cells critical for their phagocytic ability remain unknown. Here, we demonstrate that during early embryogenesis, the Drosophila fibroblast growth factor receptor (FGFR) Heartless (Htl) and its ligand Pyramus are essential in glial cells for the formation of glial extensions, the presence of which strongly affects glial phagocytosis of apoptotic neurons during later stages of embryonic development. Reduction in Htl pathway activity results in shorter lengths and lower complexity of glial branches, thereby disrupting the glial network. Our work thus illuminates the important role Htl signaling plays in glial subcellular morphogenesis and in establishing glial phagocytic ability.
Collapse
Affiliation(s)
- Malak Ayoub
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Li-Mor David
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
11
|
Wenzel TJ, Murray TE, Noyovitz B, Narayana K, Gray TE, Le J, He J, Simtchouk S, Gibon J, Alcorn J, Mousseau DD, Zandberg WF, Klegeris A. Cardiolipin released by microglia can act on neighboring glial cells to facilitate the uptake of amyloid-β (1-42). Mol Cell Neurosci 2023; 124:103804. [PMID: 36592800 DOI: 10.1016/j.mcn.2022.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiolipin is a mitochondrial phospholipid that is also detected in serum inferring its extracellular release; however, this process has not been directly demonstrated for any of the brain cell types. Nevertheless, extracellular cardiolipin has been shown to modulate several neuroimmune functions of microglia and astrocytes, including upregulation of their endocytic activity. Low cardiolipin levels are associated with brain aging, and may thus hinder uptake of amyloid-β (Αβ) in Alzheimer's disease. We hypothesized that glial cells are one of the sources of extracellular cardiolipin in the brain parenchyma where this phospholipid interacts with neighboring cells to upregulate the endocytosis of Αβ. Liquid chromatography-mass spectrophotometry identified 31 different species of cardiolipin released from murine BV-2 microglial cells and revealed this process was accelerated by exposure to Aβ42. Extracellular cardiolipin upregulated internalization of fluorescently-labeled Aβ42 by primary murine astrocytes, human U118 MG astrocytic cells, and murine BV-2 microglia. Increased endocytic activity in the presence of extracellular cardiolipin was also demonstrated by studying uptake of Aβ42 and pHrodo™ Bioparticles™ by human induced pluripotent stem cells (iPSCs)-derived microglia, as well as iPSC-derived human brain organoids containing microglia, astrocytes, oligodendrocytes and neurons. Our observations indicate that Aβ42 augments the release of cardiolipin from microglia into the extracellular space, where it can act on microglia and astrocytes to enhance their endocytosis of Aβ42. Our observations suggest that the reduced glial uptake of Aβ due to the decreased levels of cardiolipin could be at least partially responsible for the extracellular accumulation of Aβ in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Benjamin Noyovitz
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Kamal Narayana
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Taylor E Gray
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
12
|
Implications of microglial heterogeneity in spinal cord injury progression and therapy. Exp Neurol 2023; 359:114239. [PMID: 36216123 DOI: 10.1016/j.expneurol.2022.114239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Collapse
|
13
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
15
|
Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility. CNS Neurosci Ther 2022; 28:1689-1705. [PMID: 35983626 PMCID: PMC9532927 DOI: 10.1111/cns.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/16/2023] Open
Abstract
Chronic hypobaric hypoxia in high‐altitude areas is closely related to the occurrence of many neurological diseases. Among these diseases, epilepsy is a common disease of the nervous system that is difficult to diagnose and treat, with a long treatment cycle. As of 2019, there were more than 70 million epilepsy patients worldwide, including 10 million in China. Studies have shown that chronic hypoxia promotes the occurrence and development of epilepsy, and elucidation of the relationship between chronic hypoxia and epilepsy is important for studying the pathogenesis of epilepsy and exploring the potential characteristics of epilepsy and new drug targets for epilepsy. In this article, we review the factors that may cause increased seizure susceptibility in chronic hypoxia and consider the potential relationship between chronic hypobaric hypoxia and seizure susceptibility in high‐altitude areas and prospects surrounding related research in the future.
Collapse
Affiliation(s)
- YuanHang Xu
- Qinghai University Graduate School, Xining, China.,Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| | - QingLi Fan
- Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| |
Collapse
|
16
|
Comparative Review of Microglia and Monocytes in CNS Phagocytosis. Cells 2021; 10:cells10102555. [PMID: 34685535 PMCID: PMC8534258 DOI: 10.3390/cells10102555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages maintain tissue homeostasis by phagocytosing and removing unwanted materials such as dead cells and cell debris. Microglia, the resident macrophages of the central nervous system (CNS), are no exception. In addition, a series of recent studies have shown that microglia phagocytose the neuronal synapses that form the basis of neural circuit function. This discovery has spurred many neuroscientists to study microglia. Importantly, in the CNS parenchyma, not only microglia but also blood-derived monocytes, which essentially differentiate into macrophages after infiltration, exert phagocytic ability, making the study of phagocytosis in the CNS even more interesting and complex. In particular, in the diseased brain, the phagocytosis of tissue-damaging substances, such as myelin debris in multiple sclerosis (MS), has been shown to be carried out by both microglia and blood-derived monocytes. However, it remains largely unclear why blood-derived monocytes need to invade the parenchyma, where microglia are already abundant, to assist in phagocytosis. We will also discuss whether this phagocytosis can affect the fate of the phagocytosing cell itself as well as the substance being phagocytosed and the surrounding environment in addition to future research directions. In this review, we will introduce recent studies to answer a question that often arises when studying microglial phagocytosis: under what circumstances and to what extent blood-derived monocytes infiltrate the CNS and contribute to phagocytosis. In addition, the readers will learn how recent studies have experimentally distinguished between microglia and infiltrating monocytes. Finally, we aim to contribute to the progress of phagocytosis research by discussing the effects of phagocytosis on phagocytic cells.
Collapse
|