1
|
Strandberg TE, Kovanen PT, Lloyd-Jones DM, Raal FJ, Santos RD, Watts GF. Drugs for dyslipidaemia: the legacy effect of the Scandinavian Simvastatin Survival Study (4S). Lancet 2024; 404:2462-2475. [PMID: 39577453 DOI: 10.1016/s0140-6736(24)02089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/24/2024]
Abstract
Since the discovery of statins and the Scandinavian Simvastatin Survival Study (4S) results three decades ago, remarkable advances have been made in the treatment of dyslipidaemia, a major risk factor for atherosclerotic cardiovascular disease. Safe and effective statins remain the cornerstone of therapeutic approach for this indication, including for children with genetic dyslipidaemia, and are one of the most widely prescribed drugs in the world. However, despite the affordability of generic statins, they remain underutilised worldwide. The use of ezetimibe to further decrease plasma LDL cholesterol and the targeting of other atherogenic lipoproteins, such as triglyceride-rich lipoproteins and lipoprotein(a), are likely to be required to further reduce atherosclerotic cardiovascular disease events. Drugs directed at these lipoproteins, including gene silencing and editing methods that durably suppress the production of proteins, such as PCSK9 and ANGPTL3, open novel therapeutic options to further reduce the development of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Timo E Strandberg
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland; University of Oulu, Center for Life Course Health Research, Oulu, Finland.
| | | | - Donald M Lloyd-Jones
- Department of Preventive Medicine and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Frederick J Raal
- Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Academic Research Organization, Hospital Israelita Albert Einstein, São Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, WA, Australia; Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Gao Z, Pu C, Lin L, Ou Q, Quan H. Genome-wide association study of blood lipid levels in Southern Han Chinese adults with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1334893. [PMID: 38371897 PMCID: PMC10869499 DOI: 10.3389/fendo.2023.1334893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024] Open
Abstract
Background Dyslipidemia is highly prevalent among individuals with prediabetes, further exacerbating their cardiovascular risk. However, the genetic determinants underlying diabetic dyslipidemia in Southern Han Chinese remain largely unexplored. Methods We performed a genome-wide association study (GWAS) of blood lipid traits in 451 Southern Han Chinese adults with prediabetes. Fasting plasma lipids, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were assayed. Genotyping was conducted using the Precision Medicine Diversity Array and Gene Titan platform, followed by genotype imputation using IMPUTE2 with the 1000 Genomes Project (Phase 3, Southern Han Chinese) as reference. Single nucleotide polymorphisms (SNPs) associated with lipid levels were identified using mixed linear regression, with adjustment for covariates. Results We identified 58, 215, 74 and 81 novel SNPs associated with TG, TC, HDL-C and LDL-C levels, respectively (P < 5×10-5). Several implicated loci were located in or near genes involved in lipid metabolism, including SRD5A2, PCSK7, PITPNC1, IRX3, BPI, and LBP. Pathway enrichment analysis highlighted lipid metabolism and insulin secretion. Conclusion This first GWAS of dyslipidemia in Southern Han Chinese with prediabetes identified novel genetic variants associated with lipid traits. Our findings provide new insights into genetic mechanisms underlying heightened cardiovascular risk in the prediabetic stage. Functional characterization of implicated loci is warranted.
Collapse
Affiliation(s)
- Zhenshu Gao
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Changchun Pu
- Department of Endocrinology, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Leweihua Lin
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Qianying Ou
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital, Haikou, China
| |
Collapse
|
3
|
Price TR, Emfinger CH, Schueler KL, King S, Nicholson R, Beck T, Yandell BS, Summers SA, Holland WL, Krauss RM, Keller MP, Attie AD. Identification of genetic drivers of plasma lipoprotein size in the Diversity Outbred mouse population. J Lipid Res 2023; 64:100471. [PMID: 37944753 PMCID: PMC10750189 DOI: 10.1016/j.jlr.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Tara R Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah King
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Rebekah Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Tim Beck
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Ronald M Krauss
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Acute Coronary Syndrome: Unravelling the Biology to Identify New Therapies. Cells 2022; 11:cells11244136. [PMID: 36552899 PMCID: PMC9776788 DOI: 10.3390/cells11244136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Acute coronary syndrome (ACS) encompasses a spectrum of presentations including unstable angina, non-ST elevation myocardial infarction (NSTEMI) and ST-elevation myocardial infarction (STEMI) [...].
Collapse
|
5
|
Suur BE, Chemaly M, Lindquist Liljeqvist M, Djordjevic D, Stenemo M, Bergman O, Karlöf E, Lengquist M, Odeberg J, Hurt-Camejo E, Eriksson P, Ketelhuth DF, Roy J, Hedin U, Nyberg M, Matic L. Therapeutic potential of the Proprotein Convertase Subtilisin/Kexin family in vascular disease. Front Pharmacol 2022; 13:988561. [PMID: 36188622 PMCID: PMC9520287 DOI: 10.3389/fphar.2022.988561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel ‘molecular’ 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.
Collapse
Affiliation(s)
- Bianca E. Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Djordje Djordjevic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Markus Stenemo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Odeberg
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Proteomics, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Eva Hurt-Camejo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Biopharmaceutical R&D, AstraZeneca, Mölndal, Sweden
| | - Per Eriksson
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F.J. Ketelhuth
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Michael Nyberg
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Ljubica Matic,
| |
Collapse
|
6
|
Zhang Z, Mei Y, Xiong M, Lu F, Zhao X, Zhu J, He B. Genetic Variation of Inflammatory Genes to Ischemic Stroke Risk in a Chinese Han Population. Pharmgenomics Pers Med 2021; 14:977-986. [PMID: 34413669 PMCID: PMC8370589 DOI: 10.2147/pgpm.s320483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Inflammation proteins play an important role in stroke occurrence. IL1A, IL1B, PTGS2, MMP2, and MMP9 were the mediators involved in the immune response, and the association of these genetic variations with ischemic stroke (IS) risk was still unclear. Methods To investigate the susceptibility of genetic variations of IL1A, IL1B, PTGS2, MMP2, and MMP9 to IS risk, we performed a case–control study involving 299 patients and 300 controls in a Chinese population. Thirteen genetic variations of investigated genes of all participants were genotyped using an improved multiplex ligase detection–reaction technique. Results No SNP in all genes showed an association with overall IS. However, in subgroup analysis, PTGS2 rs689466 (dominant model: CT vs TT – ORadjusted= 2.51, 95% CI: 1.22–5.16, p = 0.012; co-dominant model: CT/CC vs TT – ORadjusted= 2.53, 95% CI: 1.26–5.07, p = 0.009; additive model – ORadjusted= 2.26, 95% CI: 1.19–4.28, p = 0.013) and rs5275 (dominant model: GG vs AA – ORadjusted= 0.31, 95% CI: 0.12–0.80, p = 0.016; co-dominant model: GA/GG vs AA – ORadjusted= 0.45, 95% CI: 0.21–0.95, p = 0.036; additive model – ORadjusted= 0.60, 95% CI: 0.39–0.92, p = 0.020) were associated with IS type of small-vessel occlusion. Conclusion Our study suggested that PTGS2 rs689466 C and rs5275 A were potentially associated with IS subtype of small-vessel occlusion. Our result should be confirmed with further large sample sized studies.
Collapse
Affiliation(s)
- Zhongqiu Zhang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Yanping Mei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Fang Lu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Xianghong Zhao
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Junrong Zhu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Bangshun He
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| |
Collapse
|