1
|
Liu YJ, Miao HB, Lin S, Chen Z. Exosomes derived let-7f-5p is a potential biomarker of SLE with anti-inflammatory function. Noncoding RNA Res 2025; 12:116-131. [PMID: 40144341 PMCID: PMC11938083 DOI: 10.1016/j.ncrna.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
This study found that in patients with SLE (n = 5), lethal (let)-7f-5p expression was significantly downregulated in peripheral blood mononuclear cells. Further, high-throughput RNA sequencing was used to mine the differential transcriptome expression in renal tissue exosomes of systemic lupus erythematosus (SLE)-prone mice, and bioinformatics was utilized to analyze non-coding RNAs and coding RNAs in exosomes for their possible roles in SLE. In renal tissues of MRL/lpr SLE-prone mice with exosomes and Pristane-induced SLE mice, we also demonstrated aberrant expression levels of microRNA (miRNA) let-7f-5p. Meanwhile, in the macrophage inflammation model, the expression levels of let-7f-5p were downregulated, that of guanylate binding protein (Gbp2 and Gbp7) were upregulated, and the inflammatory state of macrophages was alleviated following transfection with the let-7f-5p mimic. Co-culturing mesenchymal stem cells with a macrophage model of inflammation resulted in increased let-7f-5p expression and downregulated inflammatory factors, Gbp2 and Gbp7 expression in macrophages. Dual luciferase reporter gene assays confirmed that let-7f-5p directly binds to the 3' UTR of Gbp7 to regulate its expression. Let-7f-5p regulation of the Gbp family is involved in SLE pathogenesis and is a biomarker associated with the inflammatory response with potential clinical applications.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Cao J, Zhang X, Guo J, Wu J, Lin L, Lin X, Mu J, Huang T, Zhu M, Ma L, Zhou W, Jiang X, Wang X, Feng S, Gu Z, Gao JQ. An engineering-reinforced extracellular vesicle-integrated hydrogel with an ROS-responsive release pattern mitigates spinal cord injury. SCIENCE ADVANCES 2025; 11:eads3398. [PMID: 40173229 PMCID: PMC11963969 DOI: 10.1126/sciadv.ads3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
The local delivery of mesenchymal stem cell-derived extracellular vesicles (EVs) via hydrogel has emerged as an effective approach for spinal cord injury (SCI) treatment. However, achieving on-demand release of EVs from hydrogel to address dynamically changing pathology remains challenging. Here, we used a series of engineering methods to further enhance EVs' efficacy and optimize their release pattern from hydrogel. Specifically, the pro-angiogenic, neurotrophic, and anti-inflammatory effects of EVs were reinforced through three-dimensional culture and dexamethasone (Dxm) encapsulation. Then, the prepared Dxm-loaded 3EVs (3EVs-Dxm) were membrane modified with ortho-dihydroxy groups (-2OH) and formed an EV-integrated hydrogel (3EVs-Dxm-Gel) via the cross-link with phenylboronic acid-modified hyaluronic acid and tannic acid. The phenylboronic acid ester in 3EVs-Dxm-Gel enabled effective immobilization and reactive oxygen species-responsive release of EVs. Topical injection of 3EVs-Dxm-Gel in SCI rats notably mitigated injury severity and promoted functional recovery, which may offer opportunities for EV-based therapeutics in central nervous system injury.
Collapse
Affiliation(s)
- Jian Cao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Guo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingmin Lin
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xurong Lin
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafu Mu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manning Zhu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuhua Wang
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
4
|
Hade MD, Butsch BL, Palacio PL, Nguyen KT, Shantaram D, Noria S, Brethauer SA, Needleman BJ, Hsueh W, Reategui E, Magana SM. Human differentiated adipocytes can serve as surrogate mature adipocytes for adipocyte-derived extracellular vesicle analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636729. [PMID: 39974962 PMCID: PMC11839020 DOI: 10.1101/2025.02.05.636729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Obesity is a growing global health concern, contributing to diseases such as cancer, autoimmune disorders, and neurodegenerative conditions. Adipose tissue dysfunction, characterized by abnormal adipokine secretion and chronic inflammation, plays a key role in these conditions. Adipose-derived extracellular vesicles (ADEVs) have emerged as critical mediators in obesity-related diseases. However, the study of mature adipocyte-derived EVs (mAdipo-EVs) is limited due to the short lifespan of mature adipocytes in culture, low EV yields, and the low abundance of these EV subpopulations in the circulation. Additionally, most studies rely on rodent models, which have differences in adipose tissue biology compared to humans. To overcome these challenges, we developed a standardized approach for differentiating human preadipocytes (preAdipos) into mature differentiated adipocytes (difAdipos), which produce high-yield, human adipocyte EVs (Adipo-EVs). Using visceral adipose tissue from bariatric surgical patients, we isolated the stromal vascular fraction (SVF) and differentiated preAdipos into difAdipos. Brightfield microscopy revealed that difAdipos exhibited morphological characteristics comparable to mature adipocytes (mAdipos) directly isolated from visceral adipose tissue, confirming their structural similarity. Additionally, qPCR analysis demonstrated decreased preadipocyte markers and increased mature adipocyte markers, further validating successful differentiation. Functionally, difAdipos exhibited lipolytic activity comparable to mAdipos, supporting their functional resemblance to native adipocytes. We then isolated preAdipo-EVs and difAdipo-EVs using tangential flow filtration and characterized them using bulk and single EV analysis. DifAdipo-EVs displayed classical EV and adipocyte-specific markers, with significant differences in biomarker expression compared to preAdipo-EVs. These findings demonstrate that difAdipos serve as a reliable surrogate for mature adipocytes, offering a consistent and scalable source of adipocyte-derived EVs for studying obesity and its associated disorders. Keywords: extracellular vesicles, adipocyte, adipose, adipocyte-derived extracellular vesicles, obesity.
Collapse
|
5
|
Liang Q, Ding Q, Zhao L, Tan J, Niu W. USP15-modified ADMSCs-Exo alleviates chondrocyte damage and effectively relieved osteoarthritis by inducing M2 polarization of macrophages through deubiquitinating FOXC1. J Orthop Surg Res 2025; 20:336. [PMID: 40176111 PMCID: PMC11963356 DOI: 10.1186/s13018-025-05742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The damage to chondrocytes and inflammatory responses are considered the key factors in the pathogenesis of osteoarthritis (OA). Ubiquitin-specific protease 15 (USP15) has been shown to be involved in OA. This study aimed to explore the mechanism of USP15-modified adipose-derived mesenchymal stem cells (ADMSCs) exosome (Exo) in alleviating OA. METHODS ADMSC-Exo with USP15 overexpression was isolated by magnetic beads method, and the Exo marker proteins were identified by western blot assay. M1 and M2 phenotypic markers of THP1-M0 cells were analyzed by flow cytometry. ELISA was used to detect the expression of inflammatory factors in cells. CCK-8, EdU, Transwell, and flow cytometry were used to detect the cell activity, proliferation, apoptosis and migration ability. The interaction between forkhead box C1 (FOXC1) and USP15 was verified by Glutathione-S-transferase (GST) pull-down and Co-immunoprecipitation (Co-IP) experiments. The stability of FOXC1 was measured by cycloheximide (CHX), and its ubiquitination level was analyzed by exogenous ubiquitination assay. RESULTS The Exos from ADMSCs overexpressing USP15 (oe-USP15/Exos) were successfully isolated. It was confirmed that oe-USP15/Exo inhibited the M1 polarization of THP1-M0 cells caused by lipopolysaccharide (LPS) but induced the M2 polarization and the release of inflammatory inhibitory factors. Meanwhile, the damage of chondrocytes caused by LPS was also prevented by oe-USP15/Exo. Besides, USP15 was validated to exert a deubiquitination effect by binding to FOXC1 and positively regulate FOXC1 expression. And the effects of oe-USP15/Exo were abolished after FOXC1 silencing. CONCLUSION USP15-modified ADMSC-derived Exos facilitated M2 polarization of macrophages and improved chondrocyte injury by deubiquitination of FOXC1.
Collapse
Affiliation(s)
- Qibin Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qinghe Ding
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, Guangdong, 510000, China
| | - Liang Zhao
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, Guangdong, 510000, China
| | - Jingchao Tan
- Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou, Guangdong, 510000, China
| | - Wei Niu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
6
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
8
|
Li Z, Wang H, Zhou L, Chen C, Zheng X, Zhou C. The effect of electric field microenvironment on the exosome secretion of PC12 cells by chitosan carbon dots. Int J Biol Macromol 2025:142747. [PMID: 40180068 DOI: 10.1016/j.ijbiomac.2025.142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
When neurons are sufficiently stimulated, they generate electrical signals with rapid voltage changes, and information is transferred between neurons through neurites. Chitosan carbon dots (CS CDs) possess unique optical properties, excellent biocompatibility, and superior electron transfer capabilities, making them promising materials for nerve tissue repair and replacement. Studies have shown that exosome (EXO) secretion by PC12 cells and neurite formation are critical for neural tissue repair. However, the effects of CDs on EXO secretion and neurite formation in an electric field microenvironment remain poorly explored. This study utilized CS to synthesize CDs and examined their impact on EXO secretion by PC12 cells in an electric field microenvironment. Findings demonstrated that CS-citric acid (CA) CDs had an average particle size of 4.5 nm with a lattice spacing of 0.248 nm and primarily consisted of graphitized carbon nuclei, hydroxyl, and amino groups. CS-CA CDs played a critical role in facilitating neurite elongation, especially with an electric field intensity of about 50 V/m. The combination of CS-CA CDs and electric field enhanced GAP43 expression in EXO secreted by PC12 cells. These results suggest that CS CDs have great potential for nerve injury treatment, repair, and regeneration.
Collapse
Affiliation(s)
- Zhuojuan Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Lin Zhou
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Chengzhi Chen
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China.
| | - Changren Zhou
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China.
| |
Collapse
|
9
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2025; 15:1121-1138. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
10
|
Liu X, Zhang X, Liu H, Fu H, Liu Y, Ge Y, Deng S, Tang Z, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Garlic-Derived Exosome-Like Nanoparticles Enhance Gut Homeostasis in Stressed Piglets: Involvement of Lactobacillus reuteri Modulation and Indole-3-propionic Acid Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7228-7243. [PMID: 40082245 DOI: 10.1021/acs.jafc.4c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The occurrence of pediatric diarrhea is frequently associated with inflammatory responses, compromised barrier function, and dysbiosis in the gut. These conditions are commonly triggered by stressors, similar to postweaning diarrhea observed in piglets. Garlic-derived exosome-like nanoparticles (GELNs) hold the potential for ameliorating stress-induced diarrhea, yet supporting evidence remains scarce. Following the successful isolation of GELNs, this study employed weaned piglets as a model to evaluate the regulatory effects of GELNs on intestinal barrier integrity, mucosal inflammation, and the gut microbiota and its metabolites. Weaned Bama miniature piglets were orally administered phosphate buffer saline (PBS) or GELNs, and 1 week later, samples were collected following slaughter. Histological and molecular biological techniques were performed to examine intestinal structure, tight junction protein expression, mucin secretion, T lymphocyte infiltration, and the levels of pro-inflammatory cytokines. The composition of the gut microbiota was analyzed using 16S rRNA sequencing, while its derived metabolites were profiled via untargeted metabolomics. Subsequently, correlation analyses were performed to evaluate the associations between the microbiota and its derived metabolites, as well as between the microbiota and the key indicators of intestinal barrier function and cytokine levels in response to GELNs. The isolated GELNs exhibit typical exosome characteristics in size and morphology, alongside a rich content of proteins and RNAs. The incidence of diarrhea in weaned piglets was reduced with supplementation of GELNs at a dosage of 50 mg/kg body weight, compared to the control group. In addition, piglets receiving GELNs displayed an increase in mucin content within the tissues of the jejunum, ileum, and colon, a decrease in CD8+ T lymphocyte counts in the colon, and suppression of pro-inflammatory cytokines (IL-8 and TNF-α) levels in the mucosal layers of both the jejunum and ileum. Furthermore, 16S rRNA sequencing unveiled that GELNs reshaped the colonic microbiota in weaned piglets by augmenting beneficial bacteria, notably Lactobacillus and Lactobacillus reuteri, correlating strongly with diminished TNF-α protein levels and heightened mucin expression. Metabolite analysis demonstrated a significant increase in indole-3-propionic acid, derived from the gut microbiota, in piglets supplemented with GELNs. This increase was positively correlated with the abundance of Lactobacillus and Lactobacillus reuteri and negatively linked with the protein levels of IL-8 and TNF-α in the gut. In summary, our study demonstrates that GELNs mitigate stress-related intestinal mucosal inflammation and enhance mucin production in the gut of weaned piglets, which is potentially achieved through the optimization of gut microbiota composition, specifically by increasing the abundance of Lactobacillus and Lactobacillus reuteri, as well as via the induction of the anti-inflammatory microbial metabolite indole-3-propionic acid. The findings presented here provide essential groundwork for the future development of GELNs as a therapeutic strategy aimed at enhancing gut homeostasis disruption caused by stress in both weaned piglets and children.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhining Tang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Qiu D, Yan B, Xue H, Xu Z, Tan G, Liu Y. Perspectives of exosomal ncRNAs in the treatment of bone metabolic diseases: Focusing on osteoporosis, osteoarthritis, and rheumatoid arthritis. Exp Cell Res 2025; 446:114457. [PMID: 39986599 DOI: 10.1016/j.yexcr.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Bone metabolic disorders, constituting a group of prevalent and grave conditions, currently have a scarcity of therapeutic alternatives. Over the recent past, exosomes have been at the forefront of research interest, owing to their nanoparticulate nature and potential for therapeutic intervention. ncRNAs are a class of heterogeneous transcripts that they lack protein-encoding capacity, yet they can modulate the expression of other genes through multiple mechanisms. Mounting evidence underscores the intricate role of exosomes as ncRNAs couriers implicated in the pathogenesis of bone metabolic disorders. In this review, we endeavor to elucidate recent insights into the roles of three ncRNAs - miRNAs, lncRNAs, and circRNAs - in bone metabolic ailments such as osteoporosis, osteoarthritis, and rheumatoid arthritis. Additionally, we examine the viability of exosomal ncRNAs as innovative, cell-free modalities in the diagnosis and therapeutic management of bone metabolic disorders. We aim to uncover the critical function of exosomal ncRNAs within the context of bone metabolic diseases.
Collapse
Affiliation(s)
- Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Binghan Yan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yajuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
| |
Collapse
|
12
|
Geng JX, Lu YF, Zhou JN, Huang B, Qin Y. Exosome technology: A novel and effective drug delivery system in the field of cancer therapy. World J Gastrointest Oncol 2025; 17:101857. [PMID: 40092946 PMCID: PMC11866225 DOI: 10.4251/wjgo.v17.i3.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/20/2024] [Indexed: 02/14/2025] Open
Abstract
In this article, we revisit an article, which specifically focuses on the utilization of exosomes derived from human bone marrow mesenchymal stem cells (MSCs) for targeted delivery of gemcitabine in pancreatic cancer treatment. The experimental results demonstrated that the exosome-based drug delivery system derived from MSCs significantly augmented apoptosis in pancreatic cancer cells. The biocompatibility, targeting specificity, and low immunogenicity of exosomes render them as optimal carriers for drug delivery, enabling precise administration of therapeutics to diseased tissues while mitigating adverse effects, thereby achieving targeted treatment of cancer cells and significantly enhancing anti-tumor efficacy. However, the clinical application of exosome drug delivery platforms in oncology still presents challenges, necessitating further optimization to ensure their stability and efficacy. This study focuses on elucidating the advantages of exosomes as a drug delivery platform, exploring the utilization of MSC-derived exosomes in oncology therapy, and discussing their potential and future directions in cancer treatment.
Collapse
Affiliation(s)
- Jia-Xin Geng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yao-Fan Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Jing-Nan Zhou
- Zhejiang Cancer Hospital, Hangzhou 310018, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
13
|
Zhang X, Zhang Y, Peng X, Yang L, Miao J, Yue Y, Wang Y, Wang X, Zhu C, Song J. Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cell Mol Neurobiol 2025; 45:23. [PMID: 40072734 PMCID: PMC11903990 DOI: 10.1007/s10571-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators. MSC-Exos, enriched with lipids, proteins, and nucleic acids, regulate neuroinflammation by modulating glial cell activity and influencing signaling pathways associated with inflammation and repair. Preclinical evidence has indicated that MSC-Exos can suppress the activation of microglia and astrocytes, promote oligodendrocyte maturation, and enhance myelination, highlighting their potential as a cell-free treatment for PWMI. However, there are a paucity of comprehensive reviews on how MSC-Exos regulate neuroinflammation in PWMI through specific signaling pathways. This review aims to summarize the key signaling pathways through which MSC-Exos modulate neuroinflammation in PWMI and discuss the challenges associated with the clinical application of MSC-Exos-based therapies.
Collapse
Affiliation(s)
- Xinling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuhang Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Luxiang Yang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Jingwen Miao
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuyang Yue
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
- Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 436, 405 30, Gothenburg, Sweden.
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Ai H, Dou C, Wu Y, Zhang D, Zhang Z, Zhang C, Xi Y, Qu Y, Tan J, Yin P, Xu J, Guo S, Luo F. Osteoclast-derived apoptotic bodies accelerate the pathological progression of osteoarthritis via disturbing subchondral bone remodeling. J Orthop Translat 2025; 51:108-118. [PMID: 40123999 PMCID: PMC11930187 DOI: 10.1016/j.jot.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/03/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
Objective To investigate the role of osteoclast-derived apoptotic bodies (OC-ABs) in osteoarthritis (OA), specifically their impact on subchondral bone remodeling and disease progression, and to explore potential therapeutic strategies targeting OC-AB-induced pathways. Methods We utilized a mouse model of anterior cruciate ligament transection (ACLT) to simulate post-traumatic osteoarthritis (PTOA). Levels of OC-ABs were assessed in subchondral bone and correlated with OA severity. Additionally, apoptotic body-deficient MRL/lpr mice were analyzed to evaluate the direct contribution of OC-ABs to OA progression and subchondral bone remodeling. The involvement of OC-ABs in osteogenesis was further examined using mesenchymal stem cells (MSCs), with a focus on the RANKL reverse signaling pathway. The therapeutic potential of rapamycin to counteract OC-AB effects was tested. Results Increased OC-AB accumulation in subchondral bone was positively correlated with OA severity in ACLT-induced mice. Apoptotic body-deficient MRL/lpr mice demonstrated slower OA progression and maintained more stable subchondral bone architecture, indicating a pathogenic role of OC-ABs in OA. OC-ABs significantly stimulated osteogenesis in MSCs via the RANKL reverse signaling pathway. Treatment with rapamycin effectively reversed OC-AB-induced subchondral bone formation, mitigated OA progression, and inhibited the RANKL reverse signaling pathway. Conclusion OC-ABs play a critical role in exacerbating OA by promoting subchondral bone remodeling via the RANKL reverse signaling pathway. Rapamycin presents as a promising therapeutic agent capable of mitigating OC-AB-driven pathology, highlighting new avenues for targeted OA treatment.
Collapse
Affiliation(s)
- Hongbo Ai
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Wu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Orthopedics, 75th Group Army Hospital, Dali, 671000, China
| | - Dongyang Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziyang Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, 75th Group Army Hospital, Dali, 671000, China
| | - Yuhang Xi
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Qu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Jianzhong Xu
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuquan Guo
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
16
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2025; 22:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
17
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
18
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
19
|
Qataya PO, Zaki AM, Amin F, Swedan A, Elkafrawy H. Piano level laser therapy versus epidermal growth factor injection for painful myogenic temporomandibular disorder (a randomized clinical trial). Clin Oral Investig 2025; 29:118. [PMID: 39912963 PMCID: PMC11802707 DOI: 10.1007/s00784-025-06189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE The aim of this clinical trial was to evaluate the effectiveness of Piano level laser therapy using Nd-YAG laser and intramuscular EGF injection in pain alleviation, function, and quality of life improvement in patients suffering from myogenic TMD. MATERIALS AND METHODS A randomized clinical trial was performed on 29 patients suffering from chronic painful myogenic TMD based on diagnostic criteria for temporomandibular disorders. Group I (n = 13patients) was treated using 1064 nm Nd-YAG Laser (4 sessions once/week). Group II (n = 14 patients) was treated by intramuscular injection of EGF. Pain using numerical rating score, pain free opening and unassisted maximum opening were measured at baseline, 7,14,21 days, 1 and 3 months. Quality of life using OHIP-14 was assessed at baseline, 1 and 3 months. RESULTS Results showed that there was a significant pain reduction (P < 0.000) and increase in pain free opening (P < 0.0001) in both test groups. However, only group I showed a significant increase in maximum opening (P = 0.007). Quality of life significantly improved in both groups (P = 0.0001). There was no significant difference between the two treatments in pain scores, pain free opening, maximum opening nor quality of life. CONCLUSION Both treatment modalities offered effective and cost-effective non- to minimally invasive treatment options for myogenic TMD with no side effects. CLINICAL RELEVANCE Myogenic TMD forms a public health issue and is a common musculoskeletal problem causing pain and disability. The proposal of effective, non-invasive, and affordable treatment options can help solve this issue.
Collapse
Affiliation(s)
- Passant Osama Qataya
- Oral Medicine, Periodontology, Radiology and Diagnosis, Department of Oral Medicine, Periodontology, Radiology and Diagnosis, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Azza Mohamed Zaki
- Oral Medicine, Periodontology, Radiology and Diagnosis, Department of Oral Medicine, Periodontology, Radiology and Diagnosis, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Fatma Amin
- Oral Medicine, Periodontology, Radiology and Diagnosis, Department of Oral Medicine, Periodontology, Radiology and Diagnosis, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Swedan
- Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry, Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Deng Y, Xie J, Xiao J, Huang X, Cao Z. Gelatin methacryloyl hydrogel encapsulating molybdenum-inspired macrophage-derived exosomes accelerates wound healing via immune regulation and angiogenesis. Int J Biol Macromol 2025; 291:138947. [PMID: 39725118 DOI: 10.1016/j.ijbiomac.2024.138947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Clinically, abnormal or delayed wound healing leads to functional disorders and disfiguring scars. A well-vascularized environment and an anti-inflammatory immune state are crucial during the healing process. Molybdenum (Mo) is an essential element for the human body in modulating metabolism, immune function and tissue repair. In this study, we found that Mo-inspired macrophages significantly promoted the proliferation, migration, tube formation, and the expression of angiogenic factors (VEGF, PDGF, CD31) in human umbilical vein endothelial cells (HUVECs). We then successfully isolated and characterized Mo-inspired macrophage-derived exosomes (Mo-Exo) and demonstrated their internalization by HUVECs, leading to enhanced proliferation, migration, tube formation, and angiogenic factor expression. Moreover, we proved that Mo-Exo could promote the polarization of macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. In terms of application, Mo-Exo encapsulated gelatin methacryloyl hydrogel (GelMA) exhibited notable potential in wound healing in rat skin defects, as evidenced by the reduced wound area and increased epidermal thickness observed in H&E and Masson's staining. Mechanically, Mo-Exo promoted angiogenesis through the activation of the ERK1/2 signaling pathway. In general, this research introduced a novel immunoregulatory and pro-angiogenic exosome hydrogel for clinical wound healing.
Collapse
Affiliation(s)
- Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Jirong Xie
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
21
|
Wei X, Sui K, Peng Y, Li S, Fang Y, Chen Z, Du X, Xie X, Tang H, Wen Q, Li J, He M, Cheng Q, Zhang W. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded Mir-29-3p Targets AhR to Improve Juvenile Idiopathic Arthritis via Inhibiting the Expression of IL-22 in CD4 + T Cell. Stem Cell Rev Rep 2025; 21:536-553. [PMID: 39621151 DOI: 10.1007/s12015-024-10827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children. Human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (HUCMSCs-Exos) are involved in autoimmune diseases. This study investigates the mechanism of HUCMSC-Exos in improving JIA by targeting AhR through delivery of miR-29-3p to inhibit IL-22 expression in CD4+ T cells. METHODS Collagen induced arthritis (CIA) mouse model was established, and mice were treated with HUCMSCs-Exos and miR-29-3p antagomir, respectively. CD4+ T cells from JIA patients were used for cell experiments. The mechanism was elucidated by histopathological staining, transmission electron microscopy (TEM), immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, real-time PCR, and enzyme-linked immunosorbent assay (ELISA), laser confocal microscopy, and luciferase assay. RESULT JIA-CD4+ T cells showed higher expression of IL-22 and lower the levels of miR-29-3p, while HUCMSCs-Exos significantly inhibited the expression of IL-22 and increased the levels of miR-29a-3p, miR-29b-3p, and miR-29c-3p in CD4+ T cells from JIA patients. The expression of miR-29a-3p, miR-29b-3p, miR-29c-3p, AhR, and IL-22 in CD4+ T cells was significantly reversed when co-cultured with HUCMSCs transfected with miR-29-3p mimic or miR-29-3p inhibitor. In vivo experiment, HUCMSCs-Exos ameliorated CIA mice by delivering miR-29-3p to inhibit AhR, IL-22, IL-22R1, MMP3, and MMP13 expression. Furthermore, HUCMSCs-Exos also deliver miR-29-3p targeting AhR expression to inhibit IL-22 in JIA-CD4 + T cells through alleviating arthritic synovial fibroblast activation. CONCLUSION HUCMSCs-Exos loaded miR-29-3p targets AhR to improve JIA via inhibiting the expression of IL-22 in CD4+ T cell, which provides a scientific basis for the treatment of JIA.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- Interleukin-22
- Exosomes/metabolism
- Exosomes/genetics
- Arthritis, Juvenile/therapy
- Arthritis, Juvenile/genetics
- Arthritis, Juvenile/pathology
- Arthritis, Juvenile/metabolism
- Animals
- Interleukins/genetics
- Interleukins/metabolism
- Mesenchymal Stem Cells/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- Mice
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Umbilical Cord/cytology
- Male
- Arthritis, Experimental/therapy
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kunpeng Sui
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Peng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sha Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Fang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhi Chen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiao Du
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xue Xie
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haiming Tang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - QiuYue Wen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - JingWei Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Meilin He
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Cheng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Chen M, Huang B, Su X. Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair. J Mol Med (Berl) 2025; 103:137-156. [PMID: 39821702 DOI: 10.1007/s00109-025-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.
Collapse
Affiliation(s)
- Mengbing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury. Neural Regen Res 2025; 20:587-597. [PMID: 38819069 PMCID: PMC11317950 DOI: 10.4103/nrr.nrr-d-23-01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Zhang S, Zhao X, Lv Y, Niu J, Wei X, Luo Z, Wang X, Chen XL. Exosomes of different cellular origins: prospects and challenges in the treatment of acute lung injury after burns. J Mater Chem B 2025; 13:1531-1547. [PMID: 39704476 DOI: 10.1039/d4tb02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute lung injury (ALI) is a critical clinical disease caused by direct factors (inhalation injury, gastroesophageal reflux, etc.) or indirect factors (including infection, sepsis, burn, shock, trauma, acute pancreatitis, fat embolism, drug overdose, etc.). ALI is characterized mainly by diffuse interstitial and alveolar edema caused by an uncontrolled inflammatory response and damage to the alveoli-capillary barrier and has very high morbidity and mortality rates. Currently, there is no effective treatment strategy other than mechanical ventilation, fluid management or other supportive treatments. Exosomes are nanovesicle-like vesicles with double-membrane structures detached from the cell membrane or secreted by cells. These vesicles can be used as drug carriers because of their unique biological properties, such as anti-inflammatory, anti-apoptotic, pro-cell growth and immunomodulatory functions, and have been applied in the treatment of ALI in recent years. In this study, the mechanism and pathophysiological characteristics of ALI were first systematically described. The different cellular sources and characteristics of exosomes are summarized, and their functions and value as drug carriers in the treatment of ALI are discussed, as are the challenges that may be faced in the treatment of ALI with exosomes.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yang Lv
- Plastic Surgery Department, The Second Affiliated Hospital of Anhui Medical University, 230061, P. R. China
| | - Jianguo Niu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
25
|
Sheng MHC, Rundle CH, Lau KHW. Microvesicles Released by Osteoclastic Cells Exhibited Chondrogenic, Osteogenic, and Anti-Inflammatory Activities: An Evaluation of the Feasibility of Their Use for Treatment of Osteoarthritis in a Mouse Model. Cells 2025; 14:193. [PMID: 39936984 DOI: 10.3390/cells14030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs), particularly exosomes (EXOs) of various skeletal and stem cells, were shown to delay osteoarthritis (OA) progression, and apoptotic bodies (ABs), another EV subtype, of osteoclasts showed osteoanabolic actions and were involved in the osteoclastic-regulation of local bone formation. Moreover, this study demonstrates that microvesicles (MVs) released by osteoclasts displayed potent pro-chondrogenic, pro-osteogenic, and anti-inflammatory activities. These activities were unique to osteoclastic MVs and were not shared by osteoclastic ABs and EXOs or MVs of other cell types. Because chronic synovial inflammation, progressive articular cartilage erosion, abnormal subchondral bone remodeling, and inability to regenerate articular cartilage are key etiologies of OA, we postulate that the foregoing activities of osteoclastic MVs could simultaneously target multiple etiologies of OA and could thereby be an effective therapy for OA. Accordingly, this study sought to assess the feasibility of an osteoclastic MV-based strategy for OA with a mouse tibial plateau injury model of OA. Briefly, tibial plateau injuries were created on the right knees of adult C57BL/6J mice, MVs were intraarticularly injected into the injured joints biweekly, and the OA progression was monitored histologically at five weeks post-injury. The MV treatment reduced the OA-induced losses of articular cartilage area and thickness, decreased irregularity in the articular cartilage surface, reduced loss of gliding/intermediate zone of articular cartilage, reduced osteophyte formation, suppressed synovial inflammation, and decreased the OARSI OA score. In summary, treatment with osteoclastic MVs delayed or reversed OA progression. Thus, this study supports the feasibility of an osteoclastic MV-based therapy for OA.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles H Rundle
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kin-Hing William Lau
- VA Loma Linda Healthcare System, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA
- Division of Biochemistry, School of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
26
|
Avalos-de Leon CG, Thomson AW. Regulatory Immune Cell-derived Exosomes: Modes of Action and Therapeutic Potential in Transplantation. Transplantation 2025:00007890-990000000-00994. [PMID: 39865513 DOI: 10.1097/tp.0000000000005309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties. Twenty years ago, it was first reported that donor-derived exosomes could extend the survival of transplanted organs in rodents. Recent studies have revealed that regulatory immune cells, such as regulatory myeloid cells (dendritic cells, macrophages, or myeloid-derived suppressor cells), regulatory T cells, or mesenchymal stem/stromal cells can suppress graft rejection via exosomes that express a cargo of immunosuppressive molecules. These include cell surface molecules that interact with adaptive immune cell receptors, immunoregulatory enzymes, and micro- and long noncoding RNAs that can regulate inflammatory gene expression via posttranscriptional changes and promote tolerance through promotion of regulatory T cells. This overview analyzes the diverse molecules and mechanisms that enable regulatory immune cell-derived exosomes to modulate alloimmunity and promote experimental transplant tolerance. We also discuss the potential benefits and limitations of their application as therapeutic entities in organ transplantation.
Collapse
Affiliation(s)
- Cindy G Avalos-de Leon
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
27
|
Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ahmed HH. A review of the immunomodulatory properties of mesenchymal stem cells and their derived extracellular vesicles in small-cell and non-small-cell lung cancer cells. Int Immunopharmacol 2025; 146:113848. [PMID: 39689606 DOI: 10.1016/j.intimp.2024.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Among the most challenging diseases to treat is lung cancer (LC). While immunotherapy has a checkered history, it has lately shown great promise in the treatment of LC, and interest in this promising new approach is on the rise around the globe. Immunotherapy using mesenchymal stem cells (MSCs) is gaining popularity. Regenerative medicine, cell therapy, and immune modulation are three areas that have shown significant interest in MSCs. More than that, MSCs have recently attracted attention as potential anti-cancer drug delivery vehicles due to their inherent ability to go home to tumor locations. Making MSCs a double-edged sword in the fight against neoplastic illnesses, they are also known to impart pro-oncogenic properties. Additionally, multiple studies have proposed extracellular vesicles (EVs) secreted by MSCs as a potential therapeutic agent or method for delivering anti-cancer drugs. However, there has been conflicting evidence regarding the impact of MSCs or MSC-EV on the behavior of cancer cells, and the exact mechanism for this effect is still unknown. Our research has focused on MSCs and their key characteristics, such as their immunomodulatory capabilities for cancer therapy. Our research has also explored the potential of MSCs and their derivatives to treat small-cell and non-small-cell lung cancers (NSCLC and SCLC, respectively) by leveraging MSCs' immunomodulatory characteristics. At the end of this article, we covered the pros and cons of this therapy procedure, as well as what researchers want to do in the future to make it more suitable for clinical application in LC treatment.
Collapse
Affiliation(s)
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | |
Collapse
|
28
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
29
|
Poongodi R, Hsu YW, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Stem Cell-Derived Extracellular Vesicle-Mediated Therapeutic Signaling in Spinal Cord Injury. Int J Mol Sci 2025; 26:723. [PMID: 39859437 PMCID: PMC11765593 DOI: 10.3390/ijms26020723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration. Recent studies have delved into the molecular mechanisms underlying MSC-EV-mediated therapeutic effects. Exosomal microRNAs (miRNAs) have been identified as key regulators of various cellular processes involved in SCI pathogenesis and repair. These miRNAs can influence inflammation, oxidative stress, and apoptosis by modulating gene expression. This review summarized the current state of MSC-EV-based therapies for SCI, highlighting the underlying mechanisms and potential clinical applications. We discussed the challenges and limitations of translating these therapies into clinical practice, such as inconsistent EV production, complex cargo composition, and the need for targeted delivery strategies. Future research should focus on optimizing EV production and characterization, identifying key therapeutic miRNAs, and developing innovative delivery systems to maximize the therapeutic potential of MSC-EVs in SCI.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Yung-Wei Hsu
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 25245, Taiwan;
- MacKay Children’s Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
30
|
Zeng X, Liao Y, Huang D, Yang J, Dai Z, Chen Z, Luo X, Gong H, Huang S, Zhang L. Exosomes derived from hUC-MSCs exhibit ameliorative efficacy upon previous cesarean scar defect via orchestrating β-TrCP/CHK1 axis. Sci Rep 2025; 15:489. [PMID: 39747551 PMCID: PMC11697314 DOI: 10.1038/s41598-024-84689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Previous cesarean scar defect (PCSD), also acknowledged as the myometrium of uterus defects, which commonly results in myometrial discontinuity between the uterine and cervical cavity. Current literatures have indicated the efficacy of MSCs and MSC-derived exosomes (MSC-Exos) for diverse refractory disease administration, yet the feasibility of MSC-Exos for PCSD treatment is largely obscure. In this study, we took advantage of the in vivo myofibrotic model for mimicking the typical manifestation of PCSD and the assessment of fertility. Meanwhile, the ex vivo scratch wound healing model is used for exploring the underlying molecular mechanism. On the one hand, we took advantage of the TGF-β-induced in vitro myofibrotic model and the full-thickness uterine injury rat model to verify the efficacy of human umbilical cord MSC-derived exosomes (hUC-MSC-Exos). On the other hand, with the aid of CHK1 overexpression and β-TrCP knockdown, together with multifaceted biological analyses (e.g., histopathological sections, qRT-PCR assay, western-blotting analysis, Co-IP assay, protein degradation and ubiquitination), we further dissected the underlying regulatory mechanism. We identified hUC-MSC-Exos and verified the suppressive effect of hUC-MSC-Exos upon TGF-β-induced in vitro myofibrotic model and full-thickness uterine injury in rats via delivering β-TrCP. Furthermore, we found that β-TrCP in hUC-MSC-Exos facilitated the ubiquitination degradation of CHK1 and inhibited the myofibrosis. Collectively, our data indicated the preferable ameliorative effect of hUC-MSC-Exos upon both the in vitro and in vivo myofibrotic models, together with the β-TrCP and CHK1-mediated regulatory mechanism. Our findings provided new references of hUC-MSC-Exos-based regimens for PCSD management in future.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Yuan Liao
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Dan Huang
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Yang
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China
| | - Zhengyong Chen
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Xin Luo
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Han Gong
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China.
| | - Leisheng Zhang
- Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, Cardio- cerebrovascular Disease Hospital of Jinan, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong Second Medical University, 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China.
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, The Third Hospital of Lanzhou University (The Third Clinical College), Lanzhou, 730000, China.
| |
Collapse
|
31
|
Su N, Zhang J, Liu W, Zheng H, Li M, Zhao J, Gao M, Zhang X. Specific isolation and quantification of PD-L1 positive tumor derived exosomes for accurate breast cancer discrimination via aptamer-functionalized magnetic composites and SERS immunoassay. Talanta 2025; 281:126956. [PMID: 39332044 DOI: 10.1016/j.talanta.2024.126956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
PD-L1 positive tumor derived exosomes (TEXsPD-L1) play a significant role in disease progression, tumor metastasis and cancer immunotherapy. However, the overlap of PD-L1 between TEXs and non-tumor derived exosomes (non-TEXs) restricts the specific isolation and quantification of TEXPD-L1 from clinical samples. Herein, a new aptamer-functionalized and hydrophilic immunomagnetic substrate was designed by decorating generation 5 polyamidoamine dendrimers (G5 PAMAM), zwitterionic trimethylamine N-oxide (TMAO) and EpCAM (Epithelial cell adhesion molecule) aptamers on magnetic cores sequentially (Fe3O4@PAMAM@TMAO@Aptamer, named as FPTA) for rapid target and efficient capture of TEXs. The FPTA substrate gathered excellent characters of strong magnetic responsiveness of Fe3O4, abundant affinity sites of PAMAM, strong hydrophilicity of TMAO and enhanced affinity properties of EpCAM aptamers. Because of these advantages, FPTA can isolate TEXs quickly within 30min with high capture efficiency of 90.5 % ± 3.0 % and low nonspecific absorption of 8.2 % ± 2.0 % for non-TEXs. Furthermore, PD-L1 (Programmed cell death-ligand 1) positive TEXs (TEXsPD-L1) from the captured TEXs were recognized and quantitatively analyzed by utilizing SERS (surface-enhanced Raman spectroscopy) reporter molecules 4-NTP (4-Nitrothiophenol) on PD-L1 aptamers-functionalized gold immunoaffinity probe. The signal of TEXsPD-L1 was converted to SERS signal of 4-NTP at 1344 cm-1 which exhibited a linear correlation to concentration of TEXsPD-L1(R2 = 0.9905). With these merits, this strategy was further applied to clinical plasma samples from breast cancer (BC) patients and healthy controls (HC), exhibited an excellent diagnosis accuracy with area under curve (AUC) of receiver operating characteristic (ROC) curve reaching 0.988. All these results demonstrate that the FPTA immunomagnetic substrate combined with SERS immunoaffinity probe may become a generic tool for specific isolation and quantitative analysis of PD-L1 positive tumor-derived exosomes in clinics.
Collapse
Affiliation(s)
- Ning Su
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Wei Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mengran Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
32
|
Huang T, Fan L, Tang J, Chen S, Du G, Zhang N. Advances in research on the carcinogenic mechanisms and therapeutic potential of YAP1 in bladder cancer (Review). Oncol Rep 2025; 53:10. [PMID: 39540392 PMCID: PMC11599795 DOI: 10.3892/or.2024.8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system with high morbidity and no clear pathogenesis. The Hippo signaling pathway is an evolutionarily conserved pathway that regulates organ size and maintains tissue homeostasis. Yes‑associated protein 1 (YAP1) is a key effector of this pathway and regulates downstream target genes by binding to transcriptional co‑activators with PDZ binding sequences (TAZ). Several studies have demonstrated that YAP1 is overexpressed in bladder cancer and is involved in adverse outcomes such as bladder cancer occurrence, progression, resistance to cisplatin and the recurrence of tumours. The present review summarized the involvement of YAP1 in bladder cancer disease onset and progression, and the mechanism of YAP1 involvement in bladder cancer treatment. In addition, this study further explored the potential of YAP1 in the diagnosis and treatment of bladder cancer. This study aimed to explore the potential mechanism of YAP1 in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Tianyu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Longmei Fan
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiajia Tang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guotu Du
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
33
|
Cui X, Liu L, Duan C, Mao S, Wang G, Li H, Miao C, Cao Y. A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome. J Dent Sci 2025; 20:1-14. [PMID: 39873057 PMCID: PMC11762945 DOI: 10.1016/j.jds.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Indexed: 01/30/2025] Open
Abstract
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents. In primary Sjögren's syndrome (pSS), exosomes derived from Epstein-Barr virus-infected B cells and activated T cells transfer key microRNAs that impair calcium signaling, contributing to glandular dysfunction. Exosome-based biomarkers like Ro/SSA and La/SSB, found in saliva, serum, and tears, offer non-invasive diagnostic tools for early disease detection. Furthermore, mesenchymal stem cell-derived exosomes show promise in treating pSS by modulating immune responses and promoting tissue repair. While exosomes hold promise for the diagnosis and treatment of other salivary gland diseases, such as radiation-induced xerostomia and sialolithiasis, their application remains limited, necessitating further research to unlock their full diagnostic and therapeutic potential. This review focuses on the role of exosomes in salivary gland diseases, with an emphasis on pSS, and highlights the need for future clinical applications and large-scale trials.
Collapse
Affiliation(s)
- Xianzhen Cui
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengchen Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Suning Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Evidence-Based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Fitri AD, Noviana D, Gunanti G, Esfandiari A, Subangkit M. Implantation of porcine amniotic epithelial cells model for myocardial infarction combined with cardiomyocyte therapy of pigs ( Sus scrofa domestica). Open Vet J 2025; 15:98-107. [PMID: 40092190 PMCID: PMC11910290 DOI: 10.5455/ovj.2025.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 04/11/2025] Open
Abstract
Background Myocardial infarction (MI) is the most common heart disorder in patients with cardiovascular disease. Obstruction of blood flow to the heart causes ischemia and results in heart pump failure. Aim This study aims to evaluate the effects of porcine amniotic epithelial cell (pAEC)-based stem cell therapy alone and in combination with cardiomyocytes to understand its potential benefits in MI treatment. Methods In this study, we conducted MI therapy using pluripotent stem cells derived from the amnion (AEC) implanted into the infarcted heart. Nine domestic pigs (Sus scrofa domestica), aged 3-4 months and weighing 35-40 kg, were used as models. The animal models were divided into three groups: the placebo MI group, the MI group treated with pAEC stem cells, and the MI group treated with amniotic epithelial stem cells combined with cardiomyocyte cells. Electrocardiography (ECG), pulsed wave (PW) Doppler, and biomarker examinations were performed to evaluate the effects of stem cell intervention on MI. Results Single pAEC stem cell therapy and its combination with cardiomyocytes in MI lesions demonstrated improvements in VTI, particularly renal artery, mitral, and tricuspid valve compared to untreated infarction (placebo). Notably, single pAEC therapy significantly improved more than combining them with cardiomyocytes. Conclusion Treatment with AEC stem cells alone resulted in more significant improvements in heart valve function and large blood vessels compared to combining AEC with cardiomyocytes. This study allowed us to understand better the effects of stem cell therapy on blood hemodynamics and biomarker parameters of heart injury.
Collapse
Affiliation(s)
- Arni Diana Fitri
- Graduate Student of Animal Biomedical Science, School of Veterinary and Biomedical Sciences, Bogor, Indonesia
- Veterinary Teaching Hospital, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and BiomedicalSciences, IPB University, Bogor, Indonesia
| | - Gunanti Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and BiomedicalSciences, IPB University, Bogor, Indonesia
| | - Anita Esfandiari
- Division of Internal Medicine, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| | - Mawar Subangkit
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| |
Collapse
|
35
|
He X, Chu XY, Chen X, Xiang YL, Li ZL, Gao CY, Luan YY, Yang K, Zhang DL. Dental pulp stem cell‑derived extracellular vesicles loaded with hydrogels promote osteogenesis in rats with alveolar bone defects. Mol Med Rep 2025; 31:29. [PMID: 39540371 PMCID: PMC11582518 DOI: 10.3892/mmr.2024.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alveolar bone defects caused by inflammation, trauma and tumors adversely affect periodontal health, causing tooth loosening or dentition defects, thus affecting denture or implant repair. Advancements in tissue engineering technology and stem cell biology have significantly improved the regenerative reconstruction of alveolar bone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells play important roles in exerting their therapeutic effects. Several studies have reported the role of dental pulp stem cells (DPSCs) in bone regeneration, but the regenerative effects of DPSC‑EVs on alveolar bone defects are unclear. In the present study, the osteogenic effects of DPSC‑EVs on Hertwig's epithelial root sheath (HERS) cells in vitro and their osteoinductive effects in an alveolar bone defect rat model were investigated. The results showed that DPSC‑EVs significantly promoted the expression of osteogenic genes, such as runt‑related transcription factor 2 and alkaline phosphatase, and increased the osteogenic differentiation capability of HERS. These findings suggested that transforming growth factor β1 inhibition decreased DPSC‑EV‑induced Smad, MAPK and ERK phosphorylation in HERS. In vivo, DPSC‑EV‑loaded hydrogels were transplanted into the alveolar sockets of Sprague‑Dawley rats and observed for eight weeks. The new bone grew concentrically in the DPSC‑EV or DPSC‑EV‑loaded hydrogel group, with greater bone mass than that in the control group, and the bone volume/total volume increased notably. The results confirmed the osteogenic and osteoinductive effects of DPSC‑EVs and DPSC‑Exo‑loaded hydrogels on alveolar bone defects. Due to their low immunogenicity, high stability, good biocompatibility and osteogenic propensity, DPSC‑EV‑loaded hydrogels are a safe cell‑free therapeutic approach for defective alveolar bone regeneration.
Collapse
Affiliation(s)
- Xin He
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Xu Chen
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Yu-Lan Xiang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ze-Lu Li
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Chun-Yan Gao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| |
Collapse
|
36
|
Fitri AD, Noviana D, Gunanti G, Esfandiari A, Subangkit M. Implantation of porcine amniotic epithelial cells model for myocardial infarction combined with cardiomyocyte therapy of pigs ( Sus scrofa domestica). Open Vet J 2025; 15:98-107. [PMID: 40092190 PMCID: PMC11910290 DOI: 10.5455/ovj.2024.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Background Myocardial infarction (MI) is the most common heart disorder in patients with cardiovascular disease. Obstruction of blood flow to the heart causes ischemia and results in heart pump failure. Aim This study aims to evaluate the effects of porcine amniotic epithelial cell (pAEC)-based stem cell therapy alone and in combination with cardiomyocytes to understand its potential benefits in MI treatment. Methods In this study, we conducted MI therapy using pluripotent stem cells derived from the amnion (AEC) implanted into the infarcted heart. Nine domestic pigs (Sus scrofa domestica), aged 3-4 months and weighing 35-40 kg, were used as models. The animal models were divided into three groups: the placebo MI group, the MI group treated with pAEC stem cells, and the MI group treated with amniotic epithelial stem cells combined with cardiomyocyte cells. Electrocardiography (ECG), pulsed wave (PW) Doppler, and biomarker examinations were performed to evaluate the effects of stem cell intervention on MI. Results Single pAEC stem cell therapy and its combination with cardiomyocytes in MI lesions demonstrated improvements in VTI, particularly renal artery, mitral, and tricuspid valve compared to untreated infarction (placebo). Notably, single pAEC therapy significantly improved more than combining them with cardiomyocytes. Conclusion Treatment with AEC stem cells alone resulted in more significant improvements in heart valve function and large blood vessels compared to combining AEC with cardiomyocytes. This study allowed us to understand better the effects of stem cell therapy on blood hemodynamics and biomarker parameters of heart injury.
Collapse
Affiliation(s)
- Arni Diana Fitri
- Graduate Student of Animal Biomedical Science, School of Veterinary and Biomedical Sciences, Bogor, Indonesia
- Veterinary Teaching Hospital, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and BiomedicalSciences, IPB University, Bogor, Indonesia
| | - Gunanti Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and BiomedicalSciences, IPB University, Bogor, Indonesia
| | - Anita Esfandiari
- Division of Internal Medicine, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| | - Mawar Subangkit
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPBUniversity, Bogor, Indonesia
| |
Collapse
|
37
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
38
|
Torkashvand M, Rezakhani L, Habibi Z, Mikaeili A, Rahmati S. Innovative approaches in lung tissue engineering: the role of exosome-loaded bioscaffolds in regenerative medicine. Front Bioeng Biotechnol 2024; 12:1502155. [PMID: 39758953 PMCID: PMC11695380 DOI: 10.3389/fbioe.2024.1502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Lung diseases account for over four million premature deaths every year, and experts predict that this number will increase in the future. The top cause of death globally is diseases which include conditions like lung cancer asthma and COPD. Treating severe acute lung injury is a complex task because lungs struggle to heal themselves in the presence of swelling inflammation and scarring caused by damage, to the lung tissues. Though achieving lung regeneration, in controlled environments is still an ambition; ongoing studies are concentrating on notable progress, in the field of lung tissue engineering and methods for repairing lung damage. This review delves into methods, for regenerating lungs with a focus on exosome carry bioscaffolds and mesenchymal stem cells among others. It talks about how these new techniques can help repair lung tissue and improve lung function in cases of damage. Also noted is the significance of ex vivo lung perfusion (EVLP), for rejuvenating donor lungs and the healing properties of exosomes in supporting lung regeneration.
Collapse
Affiliation(s)
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Habibi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
39
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
40
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
41
|
Raghav PK, Mann Z. Nano-Delivery Revolution: Harnessing Mesenchymal Stem Cell-Derived Exosomes' Potential for Wound Healing. Biomedicines 2024; 12:2791. [PMID: 39767697 PMCID: PMC11673788 DOI: 10.3390/biomedicines12122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell transplantation has proven effective in treating acute and chronic wounds, but its limitations, such as low cellular viability and the need for specialized transportation, highlight the necessity for alternative approaches. This review explores the potential of engineered exosomes, containing identified miRNAs/peptides, as a more stable and efficient cell-free therapy for regenerative medicine, particularly in wound healing. The discussion emphasizes the benefits of exosomes, including their stability, reduced damage, and consistent biological activity, paving the way for innovative applications like lyophilized exosomes, mist spray delivery, and exosome-based scaffolds. The exploration of cell-free therapy in this review holds promising implications for advancing wound-healing strategies.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94118, USA
| | | |
Collapse
|
42
|
Huang X, Zhao Z, Zhan W, Deng M, Wu X, Chen Z, Xie J, Ye W, Zhao M, Chu J. miR-21-5p Enriched Exosomes from Human Embryonic Stem Cells Promote Osteogenesis via YAP1 Modulation. Int J Nanomedicine 2024; 19:13095-13112. [PMID: 39660279 PMCID: PMC11629668 DOI: 10.2147/ijn.s484751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose To investigate the osteogenic potential of human embryonic stem cell-derived exosomes (hESC-Exos) and their effects on the differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs). Methods hESC-Exos were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. hUCMSCs were cultured with hESC-Exos to assess osteogenic differentiation through alizarin red staining, quantitative PCR (qPCR), and Western blotting. miRNA profiling of hESC-Exos was performed using miRNA microarray analysis. In vivo bone regeneration was evaluated using an ovariectomized rat model with bone defects treated with exosome-loaded scaffolds. Results hESC-Exos significantly promoted the osteogenic differentiation of hUCMSCs, as evidenced by increased alizarin red staining and the upregulation of osteogenesis-related genes and proteins (ALP, RUNX2, OCN). miRNA analysis revealed that miR-21-5p is a key regulator that targets YAP1 and activates the Wnt/β-catenin signaling pathway. In vivo, hESC-Exos enhanced bone repair in ovariectomized rats, as demonstrated by increased bone mineral density and improved bone microarchitecture compared to those in controls. Conclusion hESC-Exos exhibit significant osteogenic potential by promoting the differentiation of hUCMSCs and enhancing bone regeneration in vivo. This study revealed that the miR-21-5p-YAP1/β-catenin axis is a critical pathway, suggesting that the use of hESC-Exos is a promising therapeutic strategy for bone regeneration and repair.
Collapse
Affiliation(s)
- Xinqia Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Zhoutao Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Jiahao Xie
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Wei Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Mingyan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Jiaqi Chu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| |
Collapse
|
43
|
Banerjee D, Bhattacharya A, Puri A, Munde S, Mukerjee N, Mohite P, Kazmi SW, Sharma A, Alqahtani T, Shmrany HA. Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology - a comprehensive review. Int J Surg 2024; 110:7528-7545. [PMID: 39377430 PMCID: PMC11634158 DOI: 10.1097/js9.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cell therapy represents a transformative frontier in medical science, offering promising avenues for revolutionizing cancer treatment and advancing our understanding of neurobiology. This review explores innovative approaches in stem cell therapy that have the potential to reshape clinical practices and therapeutic outcomes in cancer and neurodegenerative diseases. In this dynamic and intriguing realm of cancer research, recent years witnessed a surge in attention toward understanding the intricate role of mesenchymal stem cells (MSCs). These cells, capable of either suppressing or promoting tumors across diverse experimental models, have been a focal point in the exploration of exosome-based therapies. Exosomes released by MSCs have played a pivotal role, in unraveling the nuances of paracrine signaling and its profound impact on cancer development. Recent studies have revealed the complex nature of MSC-derived exosomes, showcasing both protumor and antitumor effects. Despite their multifaceted involvement in tumor growth, these exosomes show significant promise in influencing both tumor development and chemosensitivity, acting as a pivotal factor that increases stem cells' potential for medicinal use. Endogenous MSCs, primarily originating from the bone marrow, exhibited a unique migratory response to damaged tissue sites. The genetic modification of stem cells, including MSCs, opened avenues for the precise delivery of therapeutic payloads in the milieu around the tumor (TME). Stem cell therapy offers groundbreaking potential for treating neurodegenerative and autoimmune disorders by regenerating damaged tissues and modulating immune responses. This approach aims to restore lost function and promote healing through targeted cellular interventions. In this review, we explored the molecular complexities of cancer and the potential for breakthroughs in personalized and targeted therapies. This analysis offers hope for transformative advancements in both cancer treatment and neurodegenerative disorders, highlighting the promise of precision medicine in addressing these challenging conditions.
Collapse
Affiliation(s)
- Dhrupad Banerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology (a college of pharmacy), Sugandha, West Bengal, India
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Syeda W. Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
44
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
45
|
Hu L, Zhang N, Zhao C, Pan J. Engineering ADSCs by manipulating YAP for lymphedema treatment in a mouse tail model. Exp Biol Med (Maywood) 2024; 249:10295. [PMID: 39633684 PMCID: PMC11614642 DOI: 10.3389/ebm.2024.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Secondary lymphedema is a chronic disease associated with deformity of limbs and dysfunction; however, conventional therapies are not curative. Adipose-derived stem cells (ADSCs) based therapy is a promising way, but a single transplantation of ADSCs has limited efficacy. In this study, ADSCs were engineered in vitro and then transplanted into the site of lymphedema. Yes-associated protein (YAP), a crucial regulator of Hippo pathway, plays an important role in regulating stem cell functions. We examined the YAP expression in a mouse tail lymphedema model, and found that transplanted ADSCs exhibited high expression level of YAP and a large number of YAP positive cells existed in lymphedema environment. In vitro, the downregulation of YAP in ADSCs resulted in higher expression levels of genes related to lymphangiogenesis such as Lyve-1, VEGFR-3 and Prox-1. In vivo, YAP-engineered ADSCs generated abundant VEGFR-3-positive lymphatic vessels and significantly improved subcutaneous fibrosis. These results indicated that the transplantation of pre-engineered ADSCs by manipulating YAP is a promising strategy for lymphatic reconstruction.
Collapse
Affiliation(s)
| | | | | | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Albougha MS, Sugii H, Adachi O, Mardini B, Soeno S, Hamano S, Hasegawa D, Yoshida S, Itoyama T, Obata J, Maeda H. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024; 14:1455. [PMID: 39595630 PMCID: PMC11591890 DOI: 10.3390/biom14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue.
Collapse
Affiliation(s)
- Mhd Safwan Albougha
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Orie Adachi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Serina Soeno
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Junko Obata
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Salem M, Ateya A, Shouman Z, Salama B, Hamed B, Batiha G, Ataya F, Alexiou A, Papadakis M, Abass M. Amelioration of full-thickness cutaneous wound healing using stem cell exosome and zinc oxide nanoparticles in rats. Heliyon 2024; 10:e38994. [PMID: 39568845 PMCID: PMC11577189 DOI: 10.1016/j.heliyon.2024.e38994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Wound healing is a complex procedure that requires the coordination of several factors, so this study aimed to assess the zinc oxide nanoparticles' regenerated effect and stem cell exosomes on full-thickness wounds in rats. Methods Seventy-two Wistar male rats were subjected to a full-thickness skin defect (20 mm2) on the dorsal surface of each rat between two shoulder joints. The rats were randomized into four groups (18/group) according to wound treatments. The wounds were irrigated with normal saline (Control group), or the wound's edges were subcutaneously injected daily with 0.3 ml of exosome (Exo-group), or 1 ml of zinc oxide nanoparticles (ZnO2-NPs group), or 0.3 ml of exosome in combined with 1 ml of zinc oxide nanoparticles (Exo/ZnO2-NPs group). On the 7th, 14th, and 21st days post-wounding, the weight of the rats, the wound healing breaking strength, the wound size, and the contraction percent were evaluated. Six rats in each group were euthanized at each time point for histopathological, immunohistochemical examination of collagen, the levels of alpha-smooth muscle actin (α-SMA), and epidermal growth factor receptor (EGFR). additionally, the gene expression analysis of the relative renal nuclear factor erythroid 2-related factor2 (Nrf2 mRNA), Transforming growth factor beta-1 (TGFβ1), fibroblast growth factor-7 (FGF7), Transforming growth factor beta-1 (TGFβ1), Lysyl oxidase (LOX), and Vascular endothelial growth factor (VEGF) were applied. Results The Exo-group exhibited a significant decrease in wound size and a significant increase in wound contraction compared with other groups. Histopathologically evaluation during the three intervals revealed that the Exo-group had the highest collagen deposition area with a significant reduction of the granulation tissue. Moreover, upregulated gene expression profiles of the growth factors genes at all time points post-wounding. Discussion The exosomes-treated group revealed superior wound healing and contraction, with minimal inflammatory signs, higher angiogenesis, and myofibroblasts, and associated with higher growth factor expression genes compared to the other groups. Conclusions Exosome-based therapy demonstrates potential as a treatment method to promote and accelerate wound healing by modulating angiogenesis, re-epithelialization, collagen deposition, and gene expression profiles.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Mansoura experimental research center (MERC), Faculty of Medicine, Mansoura, 35516, Egypt
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
48
|
Gao M, Zhao P, Xing J, Wang Z, Xu Y, Yan Y, Zhang H, Qu J. GelMA encapsulating BMSCs-exosomes combined with interference screw or suture anchor promotes tendon-bone healing in a rabbit model. Sci Rep 2024; 14:28212. [PMID: 39548341 PMCID: PMC11568266 DOI: 10.1038/s41598-024-79787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
The tendon-bone junction (TBJ), a critical transitional zone where tendons and bones connect, is particularly prone to injury due to the forces from muscle contractions and skeletal movements. Once tendon-bone injuries occur, the complex original tissue structure is difficult to restore, increasing the risk of re-tear. In this study, we initially established a rabbit model of tendon-bone injury and treated it using either interference screw or suture anchor. Biomechanical testing demonstrated the maximum tension and strength of TBJ with interference screw fixation were superior. However, histologic and immunohistochemical results showed more tissue regeneration and expression of cartilage markers at the site of injury with suture anchor fixation. Moreover, Gelatin Methacryloyl encapsulated with exosomes from mesenchymal stem cell (GelMA-exosomes) were prepared, showing a consistent and stable exosome release characteristic. The combined application of GelMA-exosomes with either interference screws or suture anchors further enhanced the healing of tendon-bone injuries, which may be achieved by promoting cellular proliferation as well as regulating the decreased expression of local pro-inflammatory factors IL-1β, IL-6 and TNF-α and increased expression of anti-inflammatory factors IL-10 and TGF-β. This provides a viable therapeutic strategy to enhance tendon-bone healing.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Piqian Zhao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Junhui Xing
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Zhuolin Wang
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
| | - Yingjie Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yurong Yan
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
| | - Hongtao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
| | - Jing Qu
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
49
|
Lee HY, Lee JW. Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine. J Funct Biomater 2024; 15:345. [PMID: 39590549 PMCID: PMC11595066 DOI: 10.3390/jfb15110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
50
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|