1
|
Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury. Neural Regen Res 2025; 20:587-597. [PMID: 38819069 PMCID: PMC11317950 DOI: 10.4103/nrr.nrr-d-23-01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Zeng X, Liao Y, Huang D, Yang J, Dai Z, Chen Z, Luo X, Gong H, Huang S, Zhang L. Exosomes derived from hUC-MSCs exhibit ameliorative efficacy upon previous cesarean scar defect via orchestrating β-TrCP/CHK1 axis. Sci Rep 2025; 15:489. [PMID: 39747551 PMCID: PMC11697314 DOI: 10.1038/s41598-024-84689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Previous cesarean scar defect (PCSD), also acknowledged as the myometrium of uterus defects, which commonly results in myometrial discontinuity between the uterine and cervical cavity. Current literatures have indicated the efficacy of MSCs and MSC-derived exosomes (MSC-Exos) for diverse refractory disease administration, yet the feasibility of MSC-Exos for PCSD treatment is largely obscure. In this study, we took advantage of the in vivo myofibrotic model for mimicking the typical manifestation of PCSD and the assessment of fertility. Meanwhile, the ex vivo scratch wound healing model is used for exploring the underlying molecular mechanism. On the one hand, we took advantage of the TGF-β-induced in vitro myofibrotic model and the full-thickness uterine injury rat model to verify the efficacy of human umbilical cord MSC-derived exosomes (hUC-MSC-Exos). On the other hand, with the aid of CHK1 overexpression and β-TrCP knockdown, together with multifaceted biological analyses (e.g., histopathological sections, qRT-PCR assay, western-blotting analysis, Co-IP assay, protein degradation and ubiquitination), we further dissected the underlying regulatory mechanism. We identified hUC-MSC-Exos and verified the suppressive effect of hUC-MSC-Exos upon TGF-β-induced in vitro myofibrotic model and full-thickness uterine injury in rats via delivering β-TrCP. Furthermore, we found that β-TrCP in hUC-MSC-Exos facilitated the ubiquitination degradation of CHK1 and inhibited the myofibrosis. Collectively, our data indicated the preferable ameliorative effect of hUC-MSC-Exos upon both the in vitro and in vivo myofibrotic models, together with the β-TrCP and CHK1-mediated regulatory mechanism. Our findings provided new references of hUC-MSC-Exos-based regimens for PCSD management in future.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Yuan Liao
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Dan Huang
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Yang
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Zhihua Dai
- Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China
| | - Zhengyong Chen
- Department of Obstetrics, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China
| | - Xin Luo
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Han Gong
- Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China.
| | - Leisheng Zhang
- Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, Cardio- cerebrovascular Disease Hospital of Jinan, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong Second Medical University, 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China.
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, The Third Hospital of Lanzhou University (The Third Clinical College), Lanzhou, 730000, China.
| |
Collapse
|
3
|
Su N, Zhang J, Liu W, Zheng H, Li M, Zhao J, Gao M, Zhang X. Specific isolation and quantification of PD-L1 positive tumor derived exosomes for accurate breast cancer discrimination via aptamer-functionalized magnetic composites and SERS immunoassay. Talanta 2025; 281:126956. [PMID: 39332044 DOI: 10.1016/j.talanta.2024.126956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
PD-L1 positive tumor derived exosomes (TEXsPD-L1) play a significant role in disease progression, tumor metastasis and cancer immunotherapy. However, the overlap of PD-L1 between TEXs and non-tumor derived exosomes (non-TEXs) restricts the specific isolation and quantification of TEXPD-L1 from clinical samples. Herein, a new aptamer-functionalized and hydrophilic immunomagnetic substrate was designed by decorating generation 5 polyamidoamine dendrimers (G5 PAMAM), zwitterionic trimethylamine N-oxide (TMAO) and EpCAM (Epithelial cell adhesion molecule) aptamers on magnetic cores sequentially (Fe3O4@PAMAM@TMAO@Aptamer, named as FPTA) for rapid target and efficient capture of TEXs. The FPTA substrate gathered excellent characters of strong magnetic responsiveness of Fe3O4, abundant affinity sites of PAMAM, strong hydrophilicity of TMAO and enhanced affinity properties of EpCAM aptamers. Because of these advantages, FPTA can isolate TEXs quickly within 30min with high capture efficiency of 90.5 % ± 3.0 % and low nonspecific absorption of 8.2 % ± 2.0 % for non-TEXs. Furthermore, PD-L1 (Programmed cell death-ligand 1) positive TEXs (TEXsPD-L1) from the captured TEXs were recognized and quantitatively analyzed by utilizing SERS (surface-enhanced Raman spectroscopy) reporter molecules 4-NTP (4-Nitrothiophenol) on PD-L1 aptamers-functionalized gold immunoaffinity probe. The signal of TEXsPD-L1 was converted to SERS signal of 4-NTP at 1344 cm-1 which exhibited a linear correlation to concentration of TEXsPD-L1(R2 = 0.9905). With these merits, this strategy was further applied to clinical plasma samples from breast cancer (BC) patients and healthy controls (HC), exhibited an excellent diagnosis accuracy with area under curve (AUC) of receiver operating characteristic (ROC) curve reaching 0.988. All these results demonstrate that the FPTA immunomagnetic substrate combined with SERS immunoaffinity probe may become a generic tool for specific isolation and quantitative analysis of PD-L1 positive tumor-derived exosomes in clinics.
Collapse
Affiliation(s)
- Ning Su
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Wei Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mengran Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Huang T, Fan L, Tang J, Chen S, Du G, Zhang N. Advances in research on the carcinogenic mechanisms and therapeutic potential of YAP1 in bladder cancer (Review). Oncol Rep 2025; 53:10. [PMID: 39540392 PMCID: PMC11599795 DOI: 10.3892/or.2024.8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system with high morbidity and no clear pathogenesis. The Hippo signaling pathway is an evolutionarily conserved pathway that regulates organ size and maintains tissue homeostasis. Yes‑associated protein 1 (YAP1) is a key effector of this pathway and regulates downstream target genes by binding to transcriptional co‑activators with PDZ binding sequences (TAZ). Several studies have demonstrated that YAP1 is overexpressed in bladder cancer and is involved in adverse outcomes such as bladder cancer occurrence, progression, resistance to cisplatin and the recurrence of tumours. The present review summarized the involvement of YAP1 in bladder cancer disease onset and progression, and the mechanism of YAP1 involvement in bladder cancer treatment. In addition, this study further explored the potential of YAP1 in the diagnosis and treatment of bladder cancer. This study aimed to explore the potential mechanism of YAP1 in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Tianyu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Longmei Fan
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiajia Tang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guotu Du
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
5
|
He X, Chu XY, Chen X, Xiang YL, Li ZL, Gao CY, Luan YY, Yang K, Zhang DL. Dental pulp stem cell‑derived extracellular vesicles loaded with hydrogels promote osteogenesis in rats with alveolar bone defects. Mol Med Rep 2025; 31:29. [PMID: 39540371 PMCID: PMC11582518 DOI: 10.3892/mmr.2024.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alveolar bone defects caused by inflammation, trauma and tumors adversely affect periodontal health, causing tooth loosening or dentition defects, thus affecting denture or implant repair. Advancements in tissue engineering technology and stem cell biology have significantly improved the regenerative reconstruction of alveolar bone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells play important roles in exerting their therapeutic effects. Several studies have reported the role of dental pulp stem cells (DPSCs) in bone regeneration, but the regenerative effects of DPSC‑EVs on alveolar bone defects are unclear. In the present study, the osteogenic effects of DPSC‑EVs on Hertwig's epithelial root sheath (HERS) cells in vitro and their osteoinductive effects in an alveolar bone defect rat model were investigated. The results showed that DPSC‑EVs significantly promoted the expression of osteogenic genes, such as runt‑related transcription factor 2 and alkaline phosphatase, and increased the osteogenic differentiation capability of HERS. These findings suggested that transforming growth factor β1 inhibition decreased DPSC‑EV‑induced Smad, MAPK and ERK phosphorylation in HERS. In vivo, DPSC‑EV‑loaded hydrogels were transplanted into the alveolar sockets of Sprague‑Dawley rats and observed for eight weeks. The new bone grew concentrically in the DPSC‑EV or DPSC‑EV‑loaded hydrogel group, with greater bone mass than that in the control group, and the bone volume/total volume increased notably. The results confirmed the osteogenic and osteoinductive effects of DPSC‑EVs and DPSC‑Exo‑loaded hydrogels on alveolar bone defects. Due to their low immunogenicity, high stability, good biocompatibility and osteogenic propensity, DPSC‑EV‑loaded hydrogels are a safe cell‑free therapeutic approach for defective alveolar bone regeneration.
Collapse
Affiliation(s)
- Xin He
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100000, P.R. China
| | - Xu Chen
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Yu-Lan Xiang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ze-Lu Li
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Chun-Yan Gao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100040, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100040, P.R. China
| |
Collapse
|
6
|
Deng Y, Xie J, Xiao J, Huang X, Cao Z. Gelatin methacryloyl hydrogel encapsulating molybdenum-inspired macrophage-derived exosomes accelerates wound healing via immune regulation and angiogenesis. Int J Biol Macromol 2024; 291:138947. [PMID: 39725118 DOI: 10.1016/j.ijbiomac.2024.138947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Clinically, abnormal or delayed wound healing leads to functional disorders and disfiguring scars. A well-vascularized environment and an anti-inflammatory immune state are crucial during the healing process. Molybdenum (Mo) is an essential element for the human body in modulating metabolism, immune function and tissue repair. In this study, we found that Mo-inspired macrophages significantly promoted the proliferation, migration, tube formation, and the expression of angiogenic factors (VEGF, PDGF, CD31) in human umbilical vein endothelial cells (HUVECs). We then successfully isolated and characterized Mo-inspired macrophage-derived exosomes (Mo-Exo) and demonstrated their internalization by HUVECs, leading to enhanced proliferation, migration, tube formation, and angiogenic factor expression. Moreover, we proved that Mo-Exo could promote the polarization of macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. In terms of application, Mo-Exo encapsulated gelatin methacryloyl hydrogel (GelMA) exhibited notable potential in wound healing in rat skin defects, as evidenced by the reduced wound area and increased epidermal thickness observed in H&E and Masson's staining. Mechanically, Mo-Exo promoted angiogenesis through the activation of the ERK1/2 signaling pathway. In general, this research introduced a novel immunoregulatory and pro-angiogenic exosome hydrogel for clinical wound healing.
Collapse
Affiliation(s)
- Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Jirong Xie
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Zhang S, Zhao X, Lv Y, Niu J, Wei X, Luo Z, Wang X, Chen XL. Exosomes of different cellular origins: prospects and challenges in the treatment of acute lung injury after burns. J Mater Chem B 2024. [PMID: 39704476 DOI: 10.1039/d4tb02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute lung injury (ALI) is a critical clinical disease caused by direct factors (inhalation injury, gastroesophageal reflux, etc.) or indirect factors (including infection, sepsis, burn, shock, trauma, acute pancreatitis, fat embolism, drug overdose, etc.). ALI is characterized mainly by diffuse interstitial and alveolar edema caused by an uncontrolled inflammatory response and damage to the alveoli-capillary barrier and has very high morbidity and mortality rates. Currently, there is no effective treatment strategy other than mechanical ventilation, fluid management or other supportive treatments. Exosomes are nanovesicle-like vesicles with double-membrane structures detached from the cell membrane or secreted by cells. These vesicles can be used as drug carriers because of their unique biological properties, such as anti-inflammatory, anti-apoptotic, pro-cell growth and immunomodulatory functions, and have been applied in the treatment of ALI in recent years. In this study, the mechanism and pathophysiological characteristics of ALI were first systematically described. The different cellular sources and characteristics of exosomes are summarized, and their functions and value as drug carriers in the treatment of ALI are discussed, as are the challenges that may be faced in the treatment of ALI with exosomes.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yang Lv
- Plastic Surgery Department, The Second Affiliated Hospital of Anhui Medical University, 230061, P. R. China
| | - Jianguo Niu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230022, China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
8
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
9
|
Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M, Ahmed HH. A review of the immunomodulatory properties of mesenchymal stem cells and their derived extracellular vesicles in small-cell and non-small-cell lung cancer cells. Int Immunopharmacol 2024; 146:113848. [PMID: 39689606 DOI: 10.1016/j.intimp.2024.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Among the most challenging diseases to treat is lung cancer (LC). While immunotherapy has a checkered history, it has lately shown great promise in the treatment of LC, and interest in this promising new approach is on the rise around the globe. Immunotherapy using mesenchymal stem cells (MSCs) is gaining popularity. Regenerative medicine, cell therapy, and immune modulation are three areas that have shown significant interest in MSCs. More than that, MSCs have recently attracted attention as potential anti-cancer drug delivery vehicles due to their inherent ability to go home to tumor locations. Making MSCs a double-edged sword in the fight against neoplastic illnesses, they are also known to impart pro-oncogenic properties. Additionally, multiple studies have proposed extracellular vesicles (EVs) secreted by MSCs as a potential therapeutic agent or method for delivering anti-cancer drugs. However, there has been conflicting evidence regarding the impact of MSCs or MSC-EV on the behavior of cancer cells, and the exact mechanism for this effect is still unknown. Our research has focused on MSCs and their key characteristics, such as their immunomodulatory capabilities for cancer therapy. Our research has also explored the potential of MSCs and their derivatives to treat small-cell and non-small-cell lung cancers (NSCLC and SCLC, respectively) by leveraging MSCs' immunomodulatory characteristics. At the end of this article, we covered the pros and cons of this therapy procedure, as well as what researchers want to do in the future to make it more suitable for clinical application in LC treatment.
Collapse
Affiliation(s)
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | |
Collapse
|
10
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2024; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Huang X, Zhao Z, Zhan W, Deng M, Wu X, Chen Z, Xie J, Ye W, Zhao M, Chu J. miR-21-5p Enriched Exosomes from Human Embryonic Stem Cells Promote Osteogenesis via YAP1 Modulation. Int J Nanomedicine 2024; 19:13095-13112. [PMID: 39660279 PMCID: PMC11629668 DOI: 10.2147/ijn.s484751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose To investigate the osteogenic potential of human embryonic stem cell-derived exosomes (hESC-Exos) and their effects on the differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs). Methods hESC-Exos were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. hUCMSCs were cultured with hESC-Exos to assess osteogenic differentiation through alizarin red staining, quantitative PCR (qPCR), and Western blotting. miRNA profiling of hESC-Exos was performed using miRNA microarray analysis. In vivo bone regeneration was evaluated using an ovariectomized rat model with bone defects treated with exosome-loaded scaffolds. Results hESC-Exos significantly promoted the osteogenic differentiation of hUCMSCs, as evidenced by increased alizarin red staining and the upregulation of osteogenesis-related genes and proteins (ALP, RUNX2, OCN). miRNA analysis revealed that miR-21-5p is a key regulator that targets YAP1 and activates the Wnt/β-catenin signaling pathway. In vivo, hESC-Exos enhanced bone repair in ovariectomized rats, as demonstrated by increased bone mineral density and improved bone microarchitecture compared to those in controls. Conclusion hESC-Exos exhibit significant osteogenic potential by promoting the differentiation of hUCMSCs and enhancing bone regeneration in vivo. This study revealed that the miR-21-5p-YAP1/β-catenin axis is a critical pathway, suggesting that the use of hESC-Exos is a promising therapeutic strategy for bone regeneration and repair.
Collapse
Affiliation(s)
- Xinqia Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Zhoutao Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Jiahao Xie
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Wei Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Mingyan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Jiaqi Chu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| |
Collapse
|
12
|
Wei X, Sui K, Peng Y, Li S, Fang Y, Chen Z, Du X, Xie X, Tang H, Wen Q, Li J, He M, Cheng Q, Zhang W. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded Mir-29-3p Targets AhR to Improve Juvenile Idiopathic Arthritis via Inhibiting the Expression of IL-22 in CD4 + T Cell. Stem Cell Rev Rep 2024:10.1007/s12015-024-10827-y. [PMID: 39621151 DOI: 10.1007/s12015-024-10827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children. Human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (HUCMSCs-Exos) are involved in autoimmune diseases. This study investigates the mechanism of HUCMSC-Exos in improving JIA by targeting AhR through delivery of miR-29-3p to inhibit IL-22 expression in CD4+ T cells. METHODS Collagen induced arthritis (CIA) mouse model was established, and mice were treated with HUCMSCs-Exos and miR-29-3p antagomir, respectively. CD4+ T cells from JIA patients were used for cell experiments. The mechanism was elucidated by histopathological staining, transmission electron microscopy (TEM), immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, real-time PCR, and enzyme-linked immunosorbent assay (ELISA), laser confocal microscopy, and luciferase assay. RESULT JIA-CD4+ T cells showed higher expression of IL-22 and lower the levels of miR-29-3p, while HUCMSCs-Exos significantly inhibited the expression of IL-22 and increased the levels of miR-29a-3p, miR-29b-3p, and miR-29c-3p in CD4+ T cells from JIA patients. The expression of miR-29a-3p, miR-29b-3p, miR-29c-3p, AhR, and IL-22 in CD4+ T cells was significantly reversed when co-cultured with HUCMSCs transfected with miR-29-3p mimic or miR-29-3p inhibitor. In vivo experiment, HUCMSCs-Exos ameliorated CIA mice by delivering miR-29-3p to inhibit AhR, IL-22, IL-22R1, MMP3, and MMP13 expression. Furthermore, HUCMSCs-Exos also deliver miR-29-3p targeting AhR expression to inhibit IL-22 in JIA-CD4 + T cells through alleviating arthritic synovial fibroblast activation. CONCLUSION HUCMSCs-Exos loaded miR-29-3p targets AhR to improve JIA via inhibiting the expression of IL-22 in CD4+ T cell, which provides a scientific basis for the treatment of JIA.
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kunpeng Sui
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Peng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sha Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Fang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhi Chen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiao Du
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xue Xie
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haiming Tang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - QiuYue Wen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - JingWei Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Meilin He
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Cheng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
14
|
Hu L, Zhang N, Zhao C, Pan J. Engineering ADSCs by manipulating YAP for lymphedema treatment in a mouse tail model. Exp Biol Med (Maywood) 2024; 249:10295. [PMID: 39633684 PMCID: PMC11614642 DOI: 10.3389/ebm.2024.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Secondary lymphedema is a chronic disease associated with deformity of limbs and dysfunction; however, conventional therapies are not curative. Adipose-derived stem cells (ADSCs) based therapy is a promising way, but a single transplantation of ADSCs has limited efficacy. In this study, ADSCs were engineered in vitro and then transplanted into the site of lymphedema. Yes-associated protein (YAP), a crucial regulator of Hippo pathway, plays an important role in regulating stem cell functions. We examined the YAP expression in a mouse tail lymphedema model, and found that transplanted ADSCs exhibited high expression level of YAP and a large number of YAP positive cells existed in lymphedema environment. In vitro, the downregulation of YAP in ADSCs resulted in higher expression levels of genes related to lymphangiogenesis such as Lyve-1, VEGFR-3 and Prox-1. In vivo, YAP-engineered ADSCs generated abundant VEGFR-3-positive lymphatic vessels and significantly improved subcutaneous fibrosis. These results indicated that the transplantation of pre-engineered ADSCs by manipulating YAP is a promising strategy for lymphatic reconstruction.
Collapse
Affiliation(s)
| | | | | | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Albougha MS, Sugii H, Adachi O, Mardini B, Soeno S, Hamano S, Hasegawa D, Yoshida S, Itoyama T, Obata J, Maeda H. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024; 14:1455. [PMID: 39595630 PMCID: PMC11591890 DOI: 10.3390/biom14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue.
Collapse
Affiliation(s)
- Mhd Safwan Albougha
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Orie Adachi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Serina Soeno
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Junko Obata
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.S.A.)
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Salem M, Ateya A, Shouman Z, Salama B, Hamed B, Batiha G, Ataya F, Alexiou A, Papadakis M, Abass M. Amelioration of full-thickness cutaneous wound healing using stem cell exosome and zinc oxide nanoparticles in rats. Heliyon 2024; 10:e38994. [PMID: 39568845 PMCID: PMC11577189 DOI: 10.1016/j.heliyon.2024.e38994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Wound healing is a complex procedure that requires the coordination of several factors, so this study aimed to assess the zinc oxide nanoparticles' regenerated effect and stem cell exosomes on full-thickness wounds in rats. Methods Seventy-two Wistar male rats were subjected to a full-thickness skin defect (20 mm2) on the dorsal surface of each rat between two shoulder joints. The rats were randomized into four groups (18/group) according to wound treatments. The wounds were irrigated with normal saline (Control group), or the wound's edges were subcutaneously injected daily with 0.3 ml of exosome (Exo-group), or 1 ml of zinc oxide nanoparticles (ZnO2-NPs group), or 0.3 ml of exosome in combined with 1 ml of zinc oxide nanoparticles (Exo/ZnO2-NPs group). On the 7th, 14th, and 21st days post-wounding, the weight of the rats, the wound healing breaking strength, the wound size, and the contraction percent were evaluated. Six rats in each group were euthanized at each time point for histopathological, immunohistochemical examination of collagen, the levels of alpha-smooth muscle actin (α-SMA), and epidermal growth factor receptor (EGFR). additionally, the gene expression analysis of the relative renal nuclear factor erythroid 2-related factor2 (Nrf2 mRNA), Transforming growth factor beta-1 (TGFβ1), fibroblast growth factor-7 (FGF7), Transforming growth factor beta-1 (TGFβ1), Lysyl oxidase (LOX), and Vascular endothelial growth factor (VEGF) were applied. Results The Exo-group exhibited a significant decrease in wound size and a significant increase in wound contraction compared with other groups. Histopathologically evaluation during the three intervals revealed that the Exo-group had the highest collagen deposition area with a significant reduction of the granulation tissue. Moreover, upregulated gene expression profiles of the growth factors genes at all time points post-wounding. Discussion The exosomes-treated group revealed superior wound healing and contraction, with minimal inflammatory signs, higher angiogenesis, and myofibroblasts, and associated with higher growth factor expression genes compared to the other groups. Conclusions Exosome-based therapy demonstrates potential as a treatment method to promote and accelerate wound healing by modulating angiogenesis, re-epithelialization, collagen deposition, and gene expression profiles.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Mansoura experimental research center (MERC), Faculty of Medicine, Mansoura, 35516, Egypt
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
17
|
Gao M, Zhao P, Xing J, Wang Z, Xu Y, Yan Y, Zhang H, Qu J. GelMA encapsulating BMSCs-exosomes combined with interference screw or suture anchor promotes tendon-bone healing in a rabbit model. Sci Rep 2024; 14:28212. [PMID: 39548341 PMCID: PMC11568266 DOI: 10.1038/s41598-024-79787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
The tendon-bone junction (TBJ), a critical transitional zone where tendons and bones connect, is particularly prone to injury due to the forces from muscle contractions and skeletal movements. Once tendon-bone injuries occur, the complex original tissue structure is difficult to restore, increasing the risk of re-tear. In this study, we initially established a rabbit model of tendon-bone injury and treated it using either interference screw or suture anchor. Biomechanical testing demonstrated the maximum tension and strength of TBJ with interference screw fixation were superior. However, histologic and immunohistochemical results showed more tissue regeneration and expression of cartilage markers at the site of injury with suture anchor fixation. Moreover, Gelatin Methacryloyl encapsulated with exosomes from mesenchymal stem cell (GelMA-exosomes) were prepared, showing a consistent and stable exosome release characteristic. The combined application of GelMA-exosomes with either interference screws or suture anchors further enhanced the healing of tendon-bone injuries, which may be achieved by promoting cellular proliferation as well as regulating the decreased expression of local pro-inflammatory factors IL-1β, IL-6 and TNF-α and increased expression of anti-inflammatory factors IL-10 and TGF-β. This provides a viable therapeutic strategy to enhance tendon-bone healing.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Piqian Zhao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Junhui Xing
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Zhuolin Wang
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
| | - Yingjie Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yurong Yan
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China
| | - Hongtao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
| | - Jing Qu
- Department of Cell Biology, School of Biology and Basic of Medical Science, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
18
|
Lee HY, Lee JW. Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine. J Funct Biomater 2024; 15:345. [PMID: 39590549 PMCID: PMC11595066 DOI: 10.3390/jfb15110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
19
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
20
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
21
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
22
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
23
|
Elajami MH. The Usefulness of Exosomes in Accelerating Healing and Preventing Complications in Behçet's Disease: A Case Report. Cureus 2024; 16:e74476. [PMID: 39600543 PMCID: PMC11590039 DOI: 10.7759/cureus.74476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 11/29/2024] Open
Abstract
Behçet's disease (BD) is a systemic auto-inflammatory vasculitis. The clinical pictures of BD involve the skin and mucosal membranes such as oral and genital ulcers, ocular lesions, cardiovascular, gastrointestinal, muscular, nervous systems, and joints. A 38-year-old woman was repeatedly suffering from oral, genital, and ocular lesions, wound dehiscence after any surgical procedure, and joint pain. She has a family history where multiple relatives were affected by BD. The patient had an abdominoplasty two years ago with delayed wound healing and keloid formation. The patient presented with an asymmetrical labia majora with multiple lumps after fat transfer, multiple vaginal cysts, and a chronic Bartholin's cyst for three years. She consulted surgeons to correct the deformity and for cyst excision, but there was a great risk of keloid formation, dehiscence, and infections. This was a challenge for her surgery. The patient was on colchicine and corticosteroids. BD affects multiple systems, most commonly the healing of the skin and the mucous membranes. This causes difficulties in deciding to undergo surgery because of the risks. The diversity of the manifestations of BD requires a spectrum of pre-surgical adjustments in inflammatory markers, medication doses, and improving general patient conditions. Furthermore, the intra-operative and post-operative use of the recent regenerative medicine methods might provide the best surgical healing outcomes in these groups of patients. This is most challenging with BD but can be achieved regardless.
Collapse
|
24
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024; 29:442-458. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
25
|
Kim M, Kim TH, Salas ESS, Jeon S, Shin JH, Choi D. The efficacy of exosomes from human chemically derived hepatic progenitors in liver damage alleviation: a preclinical experimental study. Ann Surg Treat Res 2024; 107:252-263. [PMID: 39524547 PMCID: PMC11543897 DOI: 10.4174/astr.2024.107.5.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Over the past decade, interest in exosomes as therapeutics has surged. In particular, stem-cell-derived exosomes may be more effective as a treatment for liver disease than the stem cells themselves. We have previously developed human chemically derived hepatic progenitors (hCdHs) from human hepatocytes. hCdHs can differentiate into hepatocytes and cholangiocytes, regenerating the liver in mouse models. In this study, we evaluated the mitigating effects of hCdHs-derived exosomes (hCdHs-exo) on liver damage and compared them with those of exosomes from bone marrow mesenchymal stem cells (BMMSCs-exo). Methods Exosomes were isolated from hCdHs and BMMSCs by culturing cells in large quantities and separating the exosomes from the culture medium using ultracentrifugation. Isolated exosomes were characterized by various methods before experimental use. In vitro, the ability of exosomes to inhibit activation of hepatic stellate cells (HSCs) by transforming growth factor beta 1 was evaluated. In vivo, exosomes were injected into mice with carbon tetrachloride (CCl4)-induced liver damage, and their effectiveness in mitigating liver damage was assessed by histological staining and biochemical analysis. Results The analyses confirmed the successful isolation of exosomes from both cell types. In vitro, hCdHs-exo significantly reduced the levels of transcription factors and activation markers in induced HSCs. In vivo, hCdHs-exo effectively alleviated liver damage caused by CCl4. Furthermore, both in vitro and in vivo studies confirmed that hCdHs-exo had a greater effect in alleviating liver damage than did BMMSCs-exo. Conclusion These results demonstrate that hCdHs-exo, similarly to hCdHs, have superior efficacy in alleviating liver damage compared with BMMSCs-exo.
Collapse
Affiliation(s)
- Min Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Tae Hun Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Elsy Soraya Silva Salas
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Soyoung Jeon
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
Zhao Q, Mo Z, Zeng L, Yuan Y, Wang Y, Wang Y. Construction and Evaluation of Hepatic Targeted Drug Delivery System with Hydroxycamptothecin in Stem Cell-Derived Exosomes. Molecules 2024; 29:5174. [PMID: 39519815 PMCID: PMC11547497 DOI: 10.3390/molecules29215174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Hydroxycamptothecin (HCPT) is commonly used in the treatment of liver cancer; however, its low water solubility and poor stability significantly limit its clinical application. In recent years, research on exosomes has deepened considerably. Exosomes possess a unique phospholipid bilayer structure, enabling them to traverse tissue barriers, which provides natural advantages as drug carriers. Nevertheless, delivering exosomes safely and efficiently to target cells remains a major challenge. In this study, we utilized the affinity of the SP94 peptide for human liver cancer cell receptors. HCPT was coated with exosomes in our experimental design, and the exosome membrane was modified with SP94 peptide to facilitate drug delivery to liver cancer cells. Exosomes were purified from bone marrow mesenchymal stem cells, and targeted peptides were attached to their surfaces via post-insertion techniques. Subsequently, HCPT was incorporated into the exosomes through electroporation. Using the HepG2 hepatoma cell line, we evaluated a series of in vitro pharmacodynamics and studied pharmacokinetics and tissue distribution in animal models. The results indicated that ligand-targeted, modified drug-carrying exosomes significantly enhance drug bioavailability, prolong retention time in vivo, and facilitate liver targeting. Moreover, this approach reduces drug nephrotoxicity, enhances anti-tumor efficacy, and lays the groundwork for the development of novel liver cancer-targeting agents.
Collapse
Affiliation(s)
- Qiongjun Zhao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Zixuan Mo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Liuting Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Yue Yuan
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Yan Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Q.Z.); (Z.M.); (L.Z.); (Y.Y.)
| | - Ying Wang
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528453, China
| |
Collapse
|
27
|
Yang Z, Yang M, Rui S, Hao W, Wu X, Guo L, Armstrong DG, Yang C, Deng W. Exosome-based cell therapy for diabetic foot ulcers: Present and prospect. Heliyon 2024; 10:e39251. [PMID: 39498056 PMCID: PMC11532254 DOI: 10.1016/j.heliyon.2024.e39251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic foot ulcers (DFUs) represent a serious complication of diabetes with high incidence, requiring intensive treatment, prolonged hospitalization, and high costs. It poses a severe threat to the patient's life, resulting in substantial burdens on patient and healthcare system. However, the therapy of DFUs remains challenging. Therefore, exploring cell-free therapies for DFUs is both critical and urgent. Exosomes, as crucial mediators of intercellular communication, have been demonstrated potentially effective in anti-inflammation, angiogenesis, cell proliferation and migration, and collagen deposition. These functions have been proven beneficial in all stages of diabetic wound healing. This review aims to summarize the role and mechanisms of exosomes from diverse cellular sources in diabetic wound healing research. In addition, we elaborate on the challenges for clinical application, discuss the advantages of membrane vesicles as exosome mimics in wound healing, and present the therapeutic potential of exosomes and their mimetic vesicles for future clinical applications.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Lian Guo
- Department of Endocrinology, School of Medicine, Chongqing University Three Gorges Central Hospital, Chongqing, 404000, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| |
Collapse
|
28
|
Liang B, Zhou Y, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Lv X, Qin D. Research Progress on Using Nanoparticles to Enhance the Efficacy of Drug Therapy for Chronic Mountain Sickness. Pharmaceutics 2024; 16:1375. [PMID: 39598498 PMCID: PMC11597246 DOI: 10.3390/pharmaceutics16111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic mountain sickness (CMS) poses a significant health risk to individuals who rapidly ascend to high altitudes, potentially endangering their lives. Nanoparticles (NPs) offer an effective means of transporting and delivering drugs, protecting nucleic acids from nuclease degradation, and mediating the expression of target genes in specific cells. These NPs are almost non-toxic and easy to prepare and store, possess a large surface area, exhibit good biocompatibility and degradability, and maintain good stability. They can be utilized in the treatment of CMS to enhance the therapeutic efficacy of drugs. This paper provides an overview of the impact of NPs on CMS, discussing their roles as nanocarriers and their potential in CMS treatment. It aims to present novel therapeutic strategies for the clinical management of CMS and summarizes the relevant pathways through which NPs contribute to plateau disease treatment, providing a theoretical foundation for future clinical research.
Collapse
Affiliation(s)
- Boshen Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Yang Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xiaoman Lv
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| |
Collapse
|
29
|
Zhang WY, Wen L, Du L, Liu TT, Sun Y, Chen YZ, Lu YX, Cheng XC, Sun HY, Xiao FJ, Wang LS. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. J Nanobiotechnology 2024; 22:662. [PMID: 39462403 PMCID: PMC11515248 DOI: 10.1186/s12951-024-02830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. RESULTS Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p < 0.05), thereby constructing miR-486-5p engineered MSC exosomes (miR-486-MSC-Exo). MiR-486-MSC-Exo promoted the proliferation and migration of irradiated mouse lung epithelial (MLE-12) cells in vitro and inhibited RILI in vivo (all p < 0.05). MiR-486-MSC-Exo suppressed ferroptosis in MLE-12 cells, and an in vitro assay revealed that the expression of fibrosis-related genes is up-regulated following ferroptosis (both p < 0.05). MiR-486-MSC-Exo reversed the up-regulated expression of fibrosis-related genes induced by TGF-β1 in vitro and improved pathological fibrosis in RIPF mice in vivo (all p < 0.05). SARS-CoV-2-S-RBD-modified and miR-486-5p-engineered MSC exosomes (miR-486-RBD-MSC-Exo) were also constructed, and the distribution of DiR dye-labeled miR-486-RBD-MSC-Exo in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated long-term retention in the lung (p < 0.05). MiR-486-RBD-MSC-Exo significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice (all p < 0.05). Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects via targeted SMAD2 inhibition and Akt phosphorylation activation (p < 0.05). CONCLUSIONS Engineered MSC exosomes with SARS-CoV-2-S-RBD- and miR-486-5p-modification were developed. MiR-486-RBD-MSC-Exo suppressed ferroptosis and fibrosis of MLE-12 cells in vitro, and alleviated RILI and long-term RIPF in ACE2 humanized mice in vivo. MiR-486-MSC-Exo exerted anti-fibrotic effects via SMAD2 inhibition and Akt activation. This study provides a potential approach for RIPF intervention.
Collapse
Affiliation(s)
- Wei-Yuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Li Wen
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ting Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yi-Zhu Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang, 065201, China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
30
|
Li T, Zhang L, Wang P, Yu J, Zhong J, Tang Q, Zhu T, Chen K, Li F, Hong P, Wei J, Sun X, Ji G, Song B, Zhu J. Extracellular vesicles from neural stem cells safeguard neurons in intracerebral hemorrhage by suppressing reactive astrocyte neurotoxicity. Cell Rep 2024; 43:114854. [PMID: 39395173 DOI: 10.1016/j.celrep.2024.114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells have shown therapeutic potential in various diseases, but their use in treating neurological disorders remains limited. In this study, we observed neurotoxic activation of reactive astrocytes and lipoapoptosis pathways in both mice and patients with intracerebral hemorrhage (ICH) and found that EVs derived from neural stem cells (EVs-NSC) could suppress this activation. Using loss- and gain-of-function approaches, we identified interferon-β (IFNβ) as a key regulator in neurotoxic activation of astrocytes. In addition, we demonstrated that the microRNA (miRNA) miR-124-3p within EVs-NSC degrades IFNβ mRNA and inhibits ELOVL1 expression via miRNA-coding sequence (CDS) and miRNA-3' UTR binding mechanisms, respectively. This dual action likely reduces astrocyte neurotoxicity by lowering saturated lipid secretion. These mechanisms enable EVs-NSC or miR-124-3p overexpression to inhibit astrocyte neurotoxicity, reduce neural damage, and promote recovery in ICH models, offering strategies for treating neurological disorders by targeting neurotoxic reactive astrocytes.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jingyu Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Fengshi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jiachen Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xicai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Guangchao Ji
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Bin Song
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China.
| |
Collapse
|
31
|
Jin B, Liao Y, Ding Z, Zou R, Xu F, Li Y, Cheng B, Niu L. The role of biophysical cues and their modulated exosomes in dental diseases: from mechanism to therapy. Stem Cell Res Ther 2024; 15:373. [PMID: 39427216 PMCID: PMC11491033 DOI: 10.1186/s13287-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Dental diseases such as caries and periodontitis have been common public health problems. Dental disease treatment can be achieved through stem cell-based dental regeneration. Biophysical cues determine the fate of stem cells and govern the success of dental regeneration. Some studies have manifested exosomes derived from stem cells could not only inherit biophysical signals in microenvironment but also evade some issues in the treatment with stem cells. Nowadays, biophysical cue-regulated exosomes become another promising therapy in dental regenerative medicine. However, methods to improve the efficacy of exosome therapy and the underlying mechanisms are still unresolved. In this review, the association between biophysical cues and dental diseases was summarized. We retrospected the role of exosomes regulated by biophysical cues in curing dental diseases and promoting dental regeneration. Our research also delved into the mechanisms by which biophysical cues control the biogenesis, release, and uptake of exosomes, as well as potential methods to enhance the effectiveness of exosomes. The aim of this review was to underscore the important place biophysical cue-regulated exosomes occupy in the realm of dentistry, and to explore novel targets for dental diseases.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaojing Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
32
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2024:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
33
|
Ghanbari A, Rad F, Shahraki MH, Hosseini E, Barmak MJ, Zibara K. Human mesenchymal stem cells-derived microvesicles increase oligodendrogenesis and neurogenesis of cultured adult neural stem cells. Neurosci Lett 2024; 841:137951. [PMID: 39191299 DOI: 10.1016/j.neulet.2024.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Mesenchymal stem cells (MSCs) are involved in tissue repair and anti-inflammatory activities and have shown promising therapeutic efficiency in different animal models of neurodegenerative disorders. Microvesicles (MVs), implicated in cellular communication, are secreted from MSCs and play a key role in determining the fate of cell differentiation. Our study examines the effect of human umbilical cord MSC-derived MVs (hUC-MSC MVs) on the proliferation and differentiation potential of adult neural stem cells (NSCs). Results showed that 0.2 μg MSC derived MVs significantly increased the viability of NSCs and their proliferation, as demonstrated by an increase in the number of neurospheres and their derived cells, compared to controls. In addition, all hUC-MSC MVs concentrations (0.1, 0.2 and 0.4 µg) induced the differentiation of NSCs toward precursors (Olig2 + ) and mature oligodendrocytes (MBP+). This increase in mature oligodendrocytes was inversely proportional to the dose of MVs. Moreover, hUC-MSC MVs induced the differentiation of NSCs into neurons (β-tubulin + ), in a dose-dependent manner, but had no effect on astrocytes (GFAP+). Furthermore, treatment of NSCs with hUC-MSC MVs (0.1 and 0.2 μg) significantly increased the expression levels of the proliferation marker Ki67 gene, compared to controls. Finally, hUC-MSC MVs (0.1 μg) significantly increased the expression level of Sox10 transcripts; but not Pax6 gene, demonstrating an increased NSC ability to differentiate into oligodendrocytes. In conclusion, our study showed that hUC-MSC MVs increased NSC proliferation in vitro and induced NSC differentiation into oligodendrocytes and neurons, but not astrocytes.
Collapse
Affiliation(s)
- Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | | | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
34
|
Banerjee D, Bhattacharya A, Puri A, Munde S, Mukerjee N, Mohite P, Kazmi SW, Sharma A, Alqahtani T, Shmrany HA. Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology- A comprehensive review. Int J Surg 2024; 110:01279778-990000000-01980. [PMID: 39377430 PMCID: PMC11634158 DOI: 10.1097/js9.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cell therapy represents a transformative frontier in medical science, offering promising avenues for revolutionizing cancer treatment and advancing our understanding of neurobiology. This review explores innovative approaches in stem cell therapy that have the potential to reshape clinical practices and therapeutic outcomes in cancer and neurodegenerative diseases. In this dynamic and intriguing realm of cancer research, recent years witnessed a surge in attention towards understanding the intricate role of Mesenchymal Stem Cells (MSCs). These cells, capable of either suppressing or promoting tumors across diverse experimental models, have been a focal point in the exploration of exosome-based therapies. Exosomes released by MSCs have played a pivotal role, in unraveling the nuances of paracrine signaling and its profound impact on cancer development. Recent studies have revealed the complex nature of MSC-derived exosomes, showcasing both pro-tumor and anti-tumor effects. Despite their multifaceted involvement in tumor growth, these exosomes show significant promise in influencing both tumor development and chemosensitivity, acting as a pivotal factor that increases stem cells' potential for medicinal use. Endogenous MSCs, primarily originating from the bone marrow, exhibited a unique migratory response to damaged tissue sites. The genetic modification of stem cells, including MSCs, opened avenues for the precise delivery of therapeutic payloads in the milieu around the tumor (TME). Stem cell therapy offers groundbreaking potential for treating neurodegenerative and autoimmune disorders by regenerating damaged tissues and modulating immune responses. This approach aims to restore lost function and promote healing through targeted cellular interventions. In this review, we explored the molecular complexities of cancer and the potential for breakthroughs in personalized and targeted therapies. This analysis offers hope for transformative advancements in both cancer treatment and neurodegenerative disorders, highlighting the promise of precision medicine in addressing these challenging conditions.
Collapse
Affiliation(s)
- Dhrupad Banerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology (a college of pharmacy), Sugandha, West Bengal, India
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Syeda W. Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
35
|
Liang L, Wang L, Liao Z, Ma L, Wang P, Zhao J, Wu J, Yang H. High-yield nanovesicles extruded from dental follicle stem cells promote the regeneration of periodontal tissues as an alternative of exosomes. J Clin Periodontol 2024; 51:1395-1407. [PMID: 38951121 DOI: 10.1111/jcpe.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
AIM To identify an optimized strategy for the large-scale production of nanovesicles (NVs) that preserve the biological properties of exosomes (EXOs) for use in periodontal regeneration. MATERIALS AND METHODS NVs from dental follicle stem cells (DFSCs) were prepared through extrusion, and EXOs from DFSCs were isolated. The yield of both extruded NVs (eNVs) and EXOs were quantified through protein concentration and particle number analyses. Their pro-migration, pro-proliferation and pro-osteogenesis capacities were compared subsequently in vitro. Additionally, proteomics analysis was conducted. To further evaluate the periodontal regeneration potential of eNVs and EXOs, they were incorporated into collagen sponges and transplanted into periodontal defects in rats. In vivo imaging and H&E staining were utilized to verify their biodistribution and safety. Micro-Computed Tomography analysis and histological staining were performed to examine the regeneration of periodontal tissues. RESULTS The yield of eNVs was nearly 40 times higher than that of EXOs. Interestingly, in vitro experiments indicated that the pro-migration and pro-proliferation abilities of eNVs were superior, and the pro-osteogenesis potential was comparable to EXOs. More importantly, eNVs exhibited periodontal regenerative potential similar to that of EXOs. CONCLUSIONS Extrusion has proven to be an efficient method for generating numerous eNVs with the potential to replace EXOs in periodontal regeneration.
Collapse
Affiliation(s)
- Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Pinwen Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Junjie Zhao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Jinyan Wu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
- Department of Endodontics, Kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
36
|
Luo L, Peng B, Xiong L, Wang B, Wang L. Ginsenoside Re promotes proliferation of murine bone marrow mesenchymal stem cells in vitro through estrogen-like action. In Vitro Cell Dev Biol Anim 2024; 60:996-1008. [PMID: 39256290 DOI: 10.1007/s11626-024-00969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Ginsenoside Re (GS-Re) is a major saponin monomer found in Panax ginseng Meyer. It has been shown to exhibit a wide range of biological and pharmacological activities. This study aimed to investigate the effect of GS-Re on the proliferation of murine bone marrow-derived MSCs in vitro and to assess whether its effect is dependent on the estrogen receptor-mediated signal transduction. CFU colony formation assay, cell counting, and colorimetric MTT test were employed to examine effects of GS-Re on the in vitro proliferation of MSCs and the mechanisms of the underlying effect were detected by flow cytometric analysis, immunofluorescence staining for BrdU, and Western blotting. GS-Re dose-dependently promoted the in vitro proliferation of murine bone marrow-derived MSCs over a range of concentrations of 0.5 ~ 20 µmol/L, and this effect approached the maximal level at 10 µmol/L. Increases in the expression level of phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2) were observed in the passaged MSCs treated with 10 µmol/L of GS-Re. These effects of GS-Re on the MSCs were significantly counteracted by the addition of ICI 182, 780 (an estrogen receptor antagonist) to the culture media. We concluded that GS-Re is able to exert a proliferation-promoting effect on murine bone marrow-derived mesenchymal stem cells in vitro, and its action is involved in the estrogen receptor-mediated signaling.
Collapse
Affiliation(s)
- Linzi Luo
- Department of Endoscopic Diagnosis and Treatment, Hunan Chest Hospital, Changsha, China
| | - Bin Peng
- School of Life Science, Hunan Normal University, Changsha, China
| | - Lei Xiong
- School of Life Science, Hunan Normal University, Changsha, China
| | - Baohe Wang
- School of Life Science, Hunan Normal University, Changsha, China
| | - Linghao Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
37
|
Chen WT, Luo Y, Chen XM, Xiao JH. Role of exosome-derived miRNAs in diabetic wound angiogenesis. Mol Cell Biochem 2024; 479:2565-2580. [PMID: 37891446 DOI: 10.1007/s11010-023-04874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Chronic wounds with high disability are among the most common and serious complications of diabetes. Angiogenesis dysfunction impair wound healing in patients with diabetes. Compared with traditional therapies that can only provide symptomatic treatment, stem cells-owing to their powerful paracrine properties, can alleviate the pathogenesis of chronic diabetic wounds and even cure them. Exosome-derived microRNAs (miRNAs), important components of stem cell paracrine signaling, have been reported for therapeutic use in various disease models, including diabetic wounds. Exosome-derived miRNAs have been widely reported to be involved in regulating vascular function and have promising applications in the repair and regeneration of skin wounds. Therefore, this article aims to review the current status of the pathophysiology of exosome-derived miRNAs in the diabetes-induced impairment of wound healing, along with current knowledge of the underlying mechanisms, emphasizing the regulatory mechanism of angiogenesis, we hope to document the emerging theoretical basis for improving wound repair by restoring angiogenesis in diabetes.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Xue-Mei Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Guizhou Provincial Universities Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
38
|
Li S, Xu J, Qian Y, Zhang R. Hydrogel in the Treatment of Traumatic Brain Injury. Biomater Res 2024; 28:0085. [PMID: 39328790 PMCID: PMC11425593 DOI: 10.34133/bmr.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The high prevalence of traumatic brain injury (TBI) poses an important global public health challenge. Current treatment modalities for TBI primarily involve pharmaceutical interventions and surgical procedures; however, the efficacy of these approaches remains limited. In the field of regenerative medicine, hydrogels have garnered significant attention and research efforts. This review provides an overview of the existing landscape and pathological manifestations of TBI, with a specific emphasis on delineating the therapeutic potential of hydrogels incorporated with various bioactive agents for TBI management. Particularly, the review delves into the utilization and efficacy of hydrogels based on extracellular matrix (ECM), stem cell-loaded, drug-loaded, self-assembled peptide structures or conductive in the context of TBI treatment. These applications are shown to yield favorable outcomes such as tissue damage mitigation, anti-inflammatory effects, attenuation of oxidative stress, anti-apoptotic properties, promotion of neurogenesis, and facilitation of angiogenesis. Lastly, a comprehensive analysis of the merits and constraints associated with hydrogel utilization in TBI treatment is presented, aiming to steer and advance future research endeavors in this domain.
Collapse
Affiliation(s)
- Shanhe Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiajun Xu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Qian
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
39
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01710-x. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
40
|
Gong X, Zhao Q, Zhang H, Liu R, Wu J, Zhang N, Zou Y, Zhao W, Huo R, Cui R. The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. Int J Nanomedicine 2024; 19:9871-9887. [PMID: 39345908 PMCID: PMC11438468 DOI: 10.2147/ijn.s480901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Pathological scarring results from aberrant cutaneous wound healing due to the overactivation of biological behaviors of human skin fibroblasts, characterized by local inordinate inflammation, excessive extracellular matrix and collagen deposition. Yet, its underlying pathogenesis opinions vary, which could be caused by increased local mechanical tension, enhanced and continuous inflammation, gene mutation, as well as cellular metabolic disorder, etc. Metabolic reprogramming is the process by which the metabolic pattern of cells undergoes a systematic adjustment and transformation to adapt to the changes of the external environment and meet the needs of their growth and differentiation. Therefore, the abnormality of metabolic reprogramming in cells within wounds and scars attaches great importance to scar formation. Mesenchymal stem cells-derived exosomes (MSC-Exo) are the extracellular vesicles that play an important role in tissue repair, cancer treatment as well as immune and metabolic regulation. However, there is not a systematic work to detail the relevant studies. Herein, we gave a comprehensive summary of the existing research on three main metabolisms, including glycometabolism, lipid metabolism and amino acid metabolism, and MSC-Exo regulating metabolic reprogramming in wound healing and scar formation for further research reference.
Collapse
Affiliation(s)
- Xiangan Gong
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Qian Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Wu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Nanxin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Yuanxian Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
41
|
El Assaad N, Chebly A, Salame R, Achkar R, Bou Atme N, Akouch K, Rafoul P, Hanna C, Abou Zeid S, Ghosn M, Khalil C. Anti-aging based on stem cell therapy: A scoping review. World J Exp Med 2024; 14:97233. [PMID: 39312703 PMCID: PMC11372738 DOI: 10.5493/wjem.v14.i3.97233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells. Due to their multipotency property, mesenchymal stem cells have attracted considerable attention worldwide due to their immunomodulation and therapeutic function in tissue regeneration. Stem cells secrete components such as paracrine factors, extracellular vesicles, and exosomes which have been shown to have anti-inflammatory, anti-aging, reconstruction and wound healing potentials in many in vitro and in vivo models. The pluripotency and immunomodulatory features of stem cells could potentially be an effective tool in cell therapy and tissue repair. Aging affects the capacity for self-renewal and differentiation of stem cells, decreasing the potential for regeneration and the loss of optimal functions in organisms over time. Current progress in the field of cellular therapy and regenerative medicine has facilitated the evolution of particular guidelines and quality control approaches, which eventually lead to clinical trials. Cell therapy could potentially be one of the most promising therapies to control aging due to the fact that single stem cell transplantation can regenerate or substitute the injured tissue. To understand the involvement of stem cells not only in tissue maintenance and disease but also in the control of aging it is important to know and identify their properties, functions, and regulation in vivo, which are addressed in this review.
Collapse
Affiliation(s)
- Nassar El Assaad
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Alain Chebly
- Centre Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut 961, Lebanon
| | - Rawad Salame
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Robert Achkar
- Poz Pozan University of Medical Sciences, Pozan 034, Poland
| | - Nour Bou Atme
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Khalil Akouch
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Paul Rafoul
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Lebanese University, Beirut 961, Lebanon
| | - Colette Hanna
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
| | - Samer Abou Zeid
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Marwan Ghosn
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Charbel Khalil
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi 999041, United Arab Emirates
| |
Collapse
|
42
|
Liu J, Xu Z, Yu J, Zang X, Jiang S, Xu S, Wang W, Hong S. MiR-146a-5p engineered hucMSC-derived extracellular vesicles attenuate Dermatophagoides farinae-induced allergic airway epithelial cell inflammation. Front Immunol 2024; 15:1443166. [PMID: 39364406 PMCID: PMC11446808 DOI: 10.3389/fimmu.2024.1443166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Allergic asthma is prevalent in children, with Dermatophagoides farinae as a common indoor allergen. Current treatments for allergic airway inflammation are limited and carry risks. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) show promise as a cell-free therapeutic approach. However, the use of engineered MSC-EVs for D. farinae-induced allergic airway epithelial cell inflammation remains unexplored. Methods We generated miR-146a-5p-engineered EVs from human umbilical cord mesenchymal stem cells (hucMSCs) and established D. farinae-induced mouse and human bronchial epithelial cell allergic models. Levels of IL-1β, IL-18, IL-4, IL-5, IL-6, IL-10, IL-33, TNF-α and IgE were detected using ELISA. The relative TRAF6 and IRAK1 mRNA expression was quantified using qPCR assay and the NLRP3, NF-κB, IRAK1 and TRAF6 protein expression was determined using Western blotting. The regulatory effect of IRAK1 and TRAF6 by miR-146a-5p was examined using a dual luciferase reporter assay, and the nuclear translocation of NF-κB p65 into 16-HBE cells was evaluated using immunofluorescence assay. Results Treatment with hucMSC-EVs effectively reduced allergic inflammation, while miR-146a-5p engineered hucMSC-EVs showed greater efficacy. The enhanced efficacy in alleviating allergic airway inflammation was attributed to the downregulation of IRAK1 and TRAF6 expression, facilitated by miR-146a-5p. This downregulation subsequently led to a decrease in NF-κB nuclear translocation, which in turn resulted in reduced activation of the NLRP3 inflammasome and diminished production of inflammatory cytokines, including IL-6, TNF-α, IL-1β and IL-18. Conclusion Our study underscores the potential of miR-146a-5p engineered hucMSC-EVs as a cell-free therapeutic strategy for D. farinae-induced allergic airway inflammation, offering a promising avenue for boosting anti-inflammatory responses.
Collapse
Affiliation(s)
- Jiaxi Liu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuyu Xu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Yu
- School of Clinical Laboratory Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Zang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shangde Jiang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuyue Xu
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Wei Wang
- National Health Commission Key Laboratory on Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Shanchao Hong
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
43
|
Yassaghi Y, Nazerian Y, Niazi F, Niknejad H. Advancements in cell-based therapies for thermal burn wounds: a comprehensive systematic review of clinical trials outcomes. Stem Cell Res Ther 2024; 15:277. [PMID: 39227861 PMCID: PMC11373270 DOI: 10.1186/s13287-024-03901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Burn trauma is one of the major causes of morbidity and mortality worldwide. The standard management of burn wounds consists of early debridement, dressing changes, surgical management, and split-thickness skin autografts (STSGs). However, there are limitations for the standard management that inclines us to find alternative treatment approaches, such as innovative cell-based therapies. We aimed to systematically review the different aspects of cell-based treatment approaches for burn wounds in clinical trials. METHODS A systematic search through PubMed, Medline, Embase, and Cochrane Library databases was carried out using a combination of keywords, including "Cell transplantation", "Fibroblast", "Keratinocyte", "Melanocyte", or "Stem Cell" with "Burn", "Burn wound", or "Burn injury". Firstly, titles and abstracts of the studies existing in these databases until "February 2024" were screened. Then, the selected studies were read thoroughly, and considering the inclusion and exclusion criteria, final articles were included in this systematic review. Moreover, a manual search was performed through the reference lists of the included studies to minimize the risk of missing reports. RESULTS Overall, 30 clinical trials with 970 patients were included in our study. Considering the type of cells, six studies used keratinocytes, nine used fibroblasts, eight used combined keratinocytes and fibroblasts, one study used combined keratinocytes and melanocytes, five used combined keratinocytes and fibroblasts and melanocytes, and one study used mesenchymal stem cells (MSCs). Evaluation of the preparation type in these studies showed that cultured method was used in 25 trials, and non-cultured method in 5 trials. Also, the graft type of 17 trials was allogeneic, and of 13 other trials was autologous. CONCLUSIONS Our study showed that employing cell-based therapies for the treatment of burn wounds have significant results in clinical studies and are promising approaches that can be considered as alternative treatments in many cases. However, choosing appropriate cell-based treatment for each burn wound is essential and depends on the situation of each patient.
Collapse
Affiliation(s)
- Younes Yassaghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
45
|
Liu F, Meng F, Yang Z, Wang H, Ren Y, Cai Y, Zhang X. Exosome-biomimetic nanocarriers for oral drug delivery. CHINESE CHEM LETT 2024; 35:109335. [DOI: 10.1016/j.cclet.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Montagnoli TL, Santos AD, Sudo SZ, Gubert F, Vasques JF, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Perspectives on Stem Cell Therapy in Diabetic Neuropathic Pain. Neurol Int 2024; 16:933-944. [PMID: 39311343 PMCID: PMC11417725 DOI: 10.3390/neurolint16050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
Collapse
Affiliation(s)
- Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Mauro Paes Leme de Sá
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
47
|
Cui L, Li D, Xu J, Li H, Pan Y, Qiu J, Peng S, Wang Y, Wang C, Wang J, Chen G. Exosomal miRNA-21 derived from umbilical cord mesenchymal stem cells inhibits microglial overactivation to counteract nerve damage. Mol Biol Rep 2024; 51:941. [PMID: 39196412 DOI: 10.1007/s11033-024-09878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of neurological disability, and current treatments have limited effectiveness. Recent studies have emphasized the potential of exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs-Exo) in TBI treatment, but the molecular mechanisms underlying their therapeutic effects are not fully understood. METHODS AND RESULTS In this study, UC-MSCs-Exo was isolated using ultracentrifugation and intraventricularly injected to TBI rat model. The neurofunctional motor function of the rats was evaluated using the modified neurological severity score (mNSS), and the activation of microglia was assessed through immunofluorescence detection of IBA1 expression levels. Additionally, we established an in vitro neuroinflammatory model using BV2 microglia to investigate the effects of UC-MSCs-Exo and miRNA-21. Our findings indicate that UC-MSCs-Exo promote neurological recovery in TBI rats and inhibit excessive microglia activation. Furthermore, UC-MSCs-Exo highly expresses miRNA-21 and inhibited the proliferation, migration, and release of inflammatory mediators of BV2 microglia by transporting miRNA-21. CONCLUSIONS The present study suggests that the promotion of neurological recovery in TBI rats by UC-MSCs-Exo may be attributed to the inhibition of excessive microglia activation through miRNA-21.
Collapse
Affiliation(s)
- Lianxu Cui
- The First People's Hospital of Foshan, Foshan, Guangdong, China.
| | | | - Junrong Xu
- VitaLife Biotech Co., Foshan, Guangdong, China
| | - Haomin Li
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yufeng Pan
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jianguo Qiu
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Siwei Peng
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - You Wang
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chen Wang
- The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jinhui Wang
- VitaLife Biotech Co., Foshan, Guangdong, China.
| | - Guoqiang Chen
- The First People's Hospital of Foshan, Foshan, Guangdong, China.
| |
Collapse
|
48
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
49
|
Shah S, Lucke-Wold B. Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma. Cancers (Basel) 2024; 16:2892. [PMID: 39199662 PMCID: PMC11352884 DOI: 10.3390/cancers16162892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. METHODS This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words 'radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma' were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. RESULTS As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. CONCLUSION The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | | |
Collapse
|
50
|
Ma Y, Liu Y, Guo J, Chen Z, Zhao Z, Zheng J. Topical application of daphnetin hydrogel for traumatic brain injury. Front Neurosci 2024; 18:1450072. [PMID: 39170676 PMCID: PMC11335657 DOI: 10.3389/fnins.2024.1450072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Traumatic brain injury (TBI) causes neuronal cell damage and dysfunction. According to previous studies, daphnetin (Dap) has a protective effect in neurological injury. However, the in vivo bioavailability of daphnetin is not high. The purpose of this study was to determine whether administering daphnetin directly into the site of injury via a hydrogel drug carrier could improve its therapeutic impact. Methods Tripolycerol monostearates / daphnetin (TM/Dap) hydrogels were prepared and characterised using water bath heating, scanning electron microscopy (SEM) and small animal in vivo imaging techniques. The TBI model was established using the Feeney free fall impact method. Using the Morris water maze test, the mNSS neurological deficit rating scale, haematoxylin-eosin staining, and liver and kidney function tests, the therapeutic benefit of TM/Dap and its toxic side effects were assessed. The therapeutic effects of TM/Dap were further investigated using wet and dry gravimetric methods, Evans blue staining, protein immunoblotting, immunofluorescence staining techniques and ELISA. Results The efficacy of the TM/Dap hydrogel in gradually releasing daphnetin in the context of traumatic brain damage was shown by both in vitro and in vivo tests. Behavioral experiments showed that the learning and spatial memory abilities of TM/Dap hydrogel treated mice were significantly improved in the water maze experiment. And TM/Dap hydrogel has high biosafety for organisms. The results of the therapeutic mechanism of action showed that TM/Dap hydrogel showed more significant efficacy in reducing the neuroinflammatory response caused by TNF-α, IL-6 and other factors, as well as promoting the recovery of post-traumatic neurological function. Conclusion The use of hydrogel as a drug carrier for daphnetin showed more significant efficacy in reducing neuroinflammatory response, protecting nerve tissue and promoting post-traumatic neurological recovery compared with traditional drug delivery methods.
Collapse
Affiliation(s)
- Yuanhao Ma
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Yu Liu
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Jianqiang Guo
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
- Xuzhou Medical University, Xuzhou, China
| | - Zhongjun Chen
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Zongren Zhao
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Jinyu Zheng
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| |
Collapse
|