1
|
Muszyński J, Bienert A, Elsorady RW, Rybakowski F. New pharmacological approaches in the treatment of schizophrenia. Pharmacol Rep 2025:10.1007/s43440-025-00722-9. [PMID: 40198498 DOI: 10.1007/s43440-025-00722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Schizophrenia is a primary health concern, imposing a significant burden on both patients and healthcare systems globally. It is a disease with a complex etiology in which both genetic and environmental factors are involved. Despite numerous studies, the mechanism of its origin is still not fully understood. The hypotheses are synaptic, serotonergic, muscarinic, dopaminergic, microRNA-related, and neurodegenerative theories. Treatment to date is mainly based on antipsychotic drugs that act on the dopaminergic system. Although they are effective in reducing positive symptoms, their effect on negative and cognitive symptoms is limited, and their use is often associated with numerous side effects. A breakthrough in the treatment of schizophrenia came with the approval of the first drug with a non-dopaminergic mechanism of action, which opens up new therapeutic possibilities. As a result, there is intensive research into innovative substances that could increase the effectiveness of treatment and improve the quality of life of patients. In this review, we present the current state of knowledge about schizophrenia, its prevalence, risk factors, and its impact on patients' functioning. We pay special attention to new therapeutic directions, including drugs that affect systems other than the dopaminergic one, which could open up new prospects for treating the condition.
Collapse
Affiliation(s)
- Józef Muszyński
- Dr. Jan Jonston Regional Multispecialty Hospital in Leszno, Leszno, Poland
| | - Agnieszka Bienert
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland.
| | - Rasha Wafaie Elsorady
- Head of Clinical Pharmacy Departments at Alexandria University Hospitals, Alexandria University, Alexandria, 21523, Egypt
| | - Filip Rybakowski
- Head of Adult Psychiatry Clinic, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Heda V, Dogra S, Kouznetsova VL, Kumar A, Kesari S, Tsigelny IF. miRNA-Based Diagnosis of Schizophrenia Using Machine Learning. Int J Mol Sci 2025; 26:2280. [PMID: 40076899 PMCID: PMC11900116 DOI: 10.3390/ijms26052280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Diagnostic practices for schizophrenia are unreliable due to the lack of a stable biomarker. However, machine learning holds promise in aiding in the diagnosis of schizophrenia and other neurological disorders. Dysregulated miRNAs were extracted from public sources. Datasets of miRNAs selected from the literature and random miRNAs with designated gene targets along with related pathways were assigned as descriptors of machine-learning models. These data were preprocessed and classified using WEKA and TensorFlow, and several classifiers were tested to train the model. The Sequential neural network developed by authors performed the best of the classifiers tested, achieving an accuracy of 94.32%. Naïve Bayes was the next best model, with an accuracy of 72.23%. MLP achieved an accuracy of 65.91%, followed by Hoeffding tree with an accuracy of 64.77%, Random tree with an accuracy of 63.64%, Random forest, which achieved an accuracy of 61.36%, and lastly ADABoostM1, which achieved an accuracy of 53.41%. The Sequential neural network and Naïve Bayes classifier were tested to validate the model as they achieved the highest accuracy. Naïve Bayes achieved a validation accuracy of 72.22%, whereas the sequential neural network achieved an accuracy of 88.88%. Our results demonstrate the practicality of machine learning in psychiatric diagnosis. Dysregulated miRNA combined with machine learning can serve as a diagnostic aid to physicians for schizophrenia and potentially other neurological disorders as well.
Collapse
Affiliation(s)
- Vishrut Heda
- Scholars Program, CureScience Institute, San Diego, CA 92121, USA;
| | - Saanvi Dogra
- MAP Program, University of California San Diego, La Jolla, CA 92093, USA;
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Sciences, CureScience Institute, San Diego, CA 92121, USA
| | - Alex Kumar
- Computing and Mathematical Sciences Department, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Santosh Kesari
- Department of Neuro-Oncology, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA;
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Sciences, CureScience Institute, San Diego, CA 92121, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Gallego JA, Palade J, Alsop E, Hutchins E, Hsieh M, Logerman A, Bilagody C, Reiman R, Meechoovet B, Terraf P, Beecroft B, Janss A, Gallaso F, Whitsett TG, Blanco EA, Lencz T, Keuren-Jensen KV, Malhotra AK. Characterization of RNA cargo from extracellular vesicles obtained from cerebrospinal fluid and plasma samples in schizophrenia participants and healthy volunteers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321299. [PMID: 39974022 PMCID: PMC11838674 DOI: 10.1101/2025.01.31.25321299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Biomarkers that are clinically useful for the diagnosis and treatment of schizophrenia are lacking. Biomarkers are critical tools that reduce the incidence of misdiagnosis, identify subgroups of patients, assist in the proper characterization of patient phenotypes, predict response to treatment or the development of side effects, and can serve as targets for novel therapeutic interventions. In this study, we evaluated small (< 200 nucleotide) and long (> 200 nucleotide) RNAs found in extracellular vesicles (EVs) isolated from the cerebrospinal fluid (CSF) and plasma of individuals with schizophrenia spectrum disorders (SSD) and healthy volunteers (HV). As EVs carry cargo from all tissues in the body, they act as a potential proxy for the tissue of origin, including cells from the brain. We compared the transcriptomic features of EVs from these two biofluids and examined their ability to discriminate between SSD and HV participants, identifying a total of 141 differentially expressed genes, some of which have been previously associated with SSD. Next, we evaluated the potential cell-types that give rise to the SSD-associated CSF RNA cargo, and found the majority were predominantly expressed in excitatory neurons. Our results highlight the potential of EVs as both a source of schizophrenia relevant biomarkers, and molecular insight into disease mechanisms.
Collapse
|
4
|
Pence HH, Kilic E, Elibol B, Kuras S, Guzel M, Buyuk Y, Pence S. Brain microRNA profiles after exposure to heroin in rats. Exp Brain Res 2024; 243:24. [PMID: 39671092 DOI: 10.1007/s00221-024-06972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Heroin addiction is one of the neuropsychiatric burdens that affects many genetic and epigenetic systems. While it is known that heroin may change the expressions of some genes in the brain during dependence, there is no detailed study related to which gene are mostly affected. Therefore, in the current study, we aimed to determine alterations in the miRNA profiles of rats' brains for providing a detailed analysis of molecular mechanisms in heroin addiction-related toxicology. Next generation global miRNA sequencing was used to predict potential miRNAs in prefrontal cortex (PC), hippocampus, ventral tegmental area (VTA), striatum, and Nucleus accumbens (NA) of rats that exposed to heroin by intravenous injections. The total daily dose was started with 2 mg/kg and ended with 10 mg/kg on the 10th day. In the striatum, miR-18a, miR-17-5p, miR-20a-5p, miR-106a, miR-301a-3p, miR872-5p, miR-15a-5p, miR-500-3p, and miR-339-5p expressions were upregulated by nearly 2-to-4 times with heroin. The expressions of hippocampal miR-153-3p, miR-130a-3p, miR-204-5p, miR-15b-5p, and miR-137-3p and the expressions of miR-872, miR-183-5p, miR-20a-5p, miR-325-5p, miR-379-5p, and miR-340-5p in the VTA were 2-times higher in the heroin-addicted rats. While there was nearly 2-times increase in the miR-129-1-3p and miR-3068-3p expressions in the NA, no change was noted in the PC due to heroin. The only heroin-dependent downregulation was observed in the expressions of striatal miR-450b-3p and miR-103-1-5p of VTA. These results suggested that heroin addiction might give harm to brain by altering cytokine balance and increasing neuroinflammation and apoptosis. In addition, neurons also try to compensate these abnormalities by enhancing neurogenesis and angiogenesis through several miRNAs in the different brain regions. In conclusion, the present study may provide a more integrated view of the molecular mechanism and a potential biomarker that will aid in clinical diagnosis and treatment of heroin-dependence.
Collapse
Affiliation(s)
- Halime Hanim Pence
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey.
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sibel Kuras
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yalcin Buyuk
- Department of Forensic Art, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
5
|
Waddington JL, Wang X, Zhen X. 'Whole-Body' Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules 2024; 14:1185. [PMID: 39334950 PMCID: PMC11430658 DOI: 10.3390/biom14091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
A wide array of biological abnormalities in psychotic illness appear to reflect non-cerebral involvement. This review first outlines the evidence for such a whole-body concept of schizophrenia pathobiology, focusing particularly on cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. It then considers the roles of miRNAs in general and of miRNA-143 in particular as they relate to the epidemiology, pathobiology, and treatment of schizophrenia. This is followed by notable evidence that miRNA-143 is also implicated in each of these domains of cardiovascular disease, metabolic syndrome and diabetes, immunity and inflammation, cancer, and the gut-brain axis. Thus, miRNA-143 is an exemplar of what may be a class of molecules that play a role across the multiple domains of bodily dysfunction that appear to characterize a whole-body perspective of illness in schizophrenia. Importantly, the existence of such an exemplary molecule across these multiple domains implies a coordinated rather than stochastic basis. One candidate process would be a pleiotropic effect of genetic risk for schizophrenia across the whole body.
Collapse
Affiliation(s)
- John L. Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xiaoyu Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (X.W.); (X.Z.)
| |
Collapse
|
6
|
Li K, Zhu L, Lv H, Bai Y, Guo C, He K. The Role of microRNA in Schizophrenia: A Scoping Review. Int J Mol Sci 2024; 25:7673. [PMID: 39062916 PMCID: PMC11277492 DOI: 10.3390/ijms25147673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a serious mental disease that is regulated by multiple genes and influenced by multiple factors. Due to the complexity of its etiology, the pathogenesis is still unclear. MicroRNAs belong to a class of small non-coding RNAs that are highly conserved in endogenous evolution and play critical roles in multiple biological pathways. In recent years, aberrant miRNA expression has been implicated in schizophrenia, with certain miRNAs emerging as potential diagnostic and prognostic biomarkers for this disorder. In this review, our objective is to investigate the differential expression of miRNAs in schizophrenia, elucidate their potential mechanisms of action, and assess their feasibility as biomarkers. The PubMed electronic database and Google Scholar were searched for the years 2003 to 2024. The study focused on schizophrenia and miRNA as the research topic, encompassing articles related to biomarkers, etiology, action mechanisms, and differentially expressed genes associated with schizophrenia and miRNA. A total of 1488 articles were retrieved, out of which 49 were included in this scope review. This study reviewed 49 articles and identified abnormal expression of miRNA in different tissues of both schizophrenia patients and healthy controls, suggesting its potential role in the pathogenesis and progression of schizophrenia. Notably, several specific miRNAs, including miR-34a, miR-130b, miR-193-3p, miR-675-3p, miR-1262, and miR-218-5p, may serve as promising biological markers for diagnosing schizophrenia. Furthermore, this study summarized potential mechanisms through which miRNAs may contribute to the development of schizophrenia. The studies within the field of miRNA's role in schizophrenia encompass a broad spectrum of focus. Several selected studies have identified dysregulated miRNAs associated with schizophrenia across various tissues, thereby highlighting the potential utility of specific miRNAs as diagnostic biomarkers for this disorder. Various mechanisms underlying dysregulated miRNAs in schizophrenia have been explored; however, further investigations are needed to determine the exact mechanisms by which these dysregulated miRNAs contribute to the pathogenesis of this condition. The exploration of miRNA's involvement in the etiology and identification of biomarkers for schizophrenia holds significant promise in informing future clinical trials and advancing our understanding in this area.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (K.L.); (L.Z.); (H.L.); (Y.B.); (C.G.)
| |
Collapse
|
7
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of schizophrenia and influence of antipsychotic treatment. Neural Regen Res 2024; 19:1523-1531. [PMID: 38051895 PMCID: PMC10883514 DOI: 10.4103/1673-5374.387966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Characterized by positive symptoms (such as changes in behavior or thoughts, including delusions and hallucinations), negative symptoms (such as apathy, anhedonia, and social withdrawal), and cognitive impairments, schizophrenia is a chronic, severe, and disabling mental disorder with late adolescence or early adulthood onset. Antipsychotics are the most commonly used drugs to treat schizophrenia, but those currently in use do not fully reverse all three types of symptoms characterizing this condition. Schizophrenia is frequently misdiagnosed, resulting in a delay of or inappropriate treatment. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of schizophrenia. The recent studies reviewed included microRNA profiling in blood- and urine-based materials and nervous tissue materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for schizophrenia in adults could be miR-22-3p, -30e-5p, -92a-3p, -148b-5p, -181a-3p, -181a-5p, -181b-5p, -199b-5p, -137 in whole blood, and miR-130b, -193a-3p in blood plasma. Antipsychotic treatment of schizophrenia patients was found to modulate the expression of certain microRNAs including miR-130b, -193a-3p, -132, -195, -30e, -432 in blood plasma. Further studies are warranted with adolescents and young adults having schizophrenia and consideration should be given to using animal models of the disorder to investigate the effect of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
9
|
García-Cerro S, Gómez-Garrido A, Garcia G, Crespo-Facorro B, Brites D. Exploratory Analysis of MicroRNA Alterations in a Neurodevelopmental Mouse Model for Autism Spectrum Disorder and Schizophrenia. Int J Mol Sci 2024; 25:2786. [PMID: 38474035 DOI: 10.3390/ijms25052786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11. We focused on a set of miRNAs most frequently altered in ASD (miR-451a and miR-486-3p) and in SCZ (miR-132-3p and miR-137-3p) according to human studies. Additionally, we explored miRNAs whose alterations have been identified in both disorders (miR-21-5p, miR-92a-2-5p, miR-144-3p, and miR-146a-5p). We placed particular emphasis on studying the sexual dimorphism in the dynamics of these miRNAs. Our findings revealed significant alterations in the PFC of this ASD- and SCZ-like mouse model. Specifically, we observed upregulated miR-451a and downregulated miR-137-3p. Furthermore, we identified sexual dimorphism in the expression of miR-132-3p, miR-137-3p, and miR-92a-2-5p. From a translational perspective, our results emphasize the potential involvement of miR-92a-2-5p, miR-132-3p, miR-137-3p, and miR-451a in the pathophysiology of ASD and SCZ and strengthen their potential as biomarkers and therapeutic targets of such disorders.
Collapse
Affiliation(s)
- Susana García-Cerro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Ana Gómez-Garrido
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Benedicto Crespo-Facorro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
- Mental Health Unit, Virgen del Rocio University Hospital, Manuel Siurot AV, 41013 Seville, Spain
- Department of Psychiatry, Faculty of Medicine, University of Seville, Sánchez Pizjuán AV, 41013 Seville, Spain
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
10
|
Saxena A, Liu S, Handley ED, Dodell-Feder D. Social victimization, default mode network connectivity, and psychotic-like experiences in adolescents. Schizophr Res 2024; 264:462-470. [PMID: 38266514 DOI: 10.1016/j.schres.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Social victimization (SV) and altered neural connectivity have been associated with each other and psychotic-like experiences (PLE). However, research has not directly examined the associations between these variables, which may speak to mechanisms of psychosis-risk. Here, we utilized two-year follow-up data from the Adolescent Brain Cognitive Development study to test whether SV increases PLE through two neural networks mediating socio-affective processes: the default mode (DMN) and salience networks (SAN). We find that a latent SV factor was significantly associated with PLE outcomes. Simultaneous mediation analyses indicated that the DMN partially mediated the SV-PLE association while the SAN did not. Further, multigroup testing found that while Black and Hispanic adolescents experienced SV differently than their White peers, the DMN similarly partially mediated the effect of SV on PLE for these racial groups. These cross-sectional results highlight the importance of SV and its potential impact on social cognitive neural networks for psychosis risk.
Collapse
Affiliation(s)
| | - Shangzan Liu
- University of Pennsylvania, United States of America
| | | | | |
Collapse
|
11
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
12
|
Han S, Li Y, Gao J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: expectations from a meta-analysis that combines deep learning methods. World J Biol Psychiatry 2024; 25:65-81. [PMID: 37703215 DOI: 10.1080/15622975.2023.2258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES This study aimed at identifying reliable differentially expressed miRNAs (DEMs) for schizophrenia in blood via meta-analyses combined with deep learning methods. METHODS First, we meta-analysed published DEMs. Then, we enriched the pool of schizophrenia-associated miRNAs by applying two computational learning methods to identify candidate biomarkers and verified the results in external datasets. RESULTS In total, 27 DEMs were found to be statistically significant (p < .05). Ten candidate schizophrenia-associated miRNAs were identified through computational learning methods. The diagnostic efficiency was verified on a blood-miRNA dataset (GSE54578) with a random forest (RF) model and achieved an area under the curve (AUC) of 0.83 ± 0.14. Moreover, 855 experimentally validated target genes for these candidate miRNAs were retrieved, and 11 hub genes were identified. Enrichment analysis revealed that the main functions in which the target genes were enriched were those related to cell signalling, prenatal infections, cancers, cell deaths, oxidative stress, endocrine disorders, transcription regulation, and kinase activities. The diagnostic ability of the hub genes was reflected in a comparably good average AUC of 0.77 ± 0.09 for an external dataset (GSE38484). CONCLUSIONS A meta-analysis that combines computational and mathematical methods provides a reliable tool for identifying candidate biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Wei H, Kong L, Zhu X, Chen S, Zhang L, Niu W. The Correlation Between Peripheral Blood Micro-Ribonucleic Acid Expression Level and Personality Disorder in Patients with Schizophrenia. ALPHA PSYCHIATRY 2024; 25:23-29. [PMID: 38799488 PMCID: PMC11114240 DOI: 10.5152/alphapsychiatry.2024.231216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 05/29/2024]
Abstract
Objective Schizophrenia patients often have personality disorders; schizophrenia patients with personality disorders are more difficult to treat and have a worse prognosis. Early identification of this group of patients and early intervention can achieve better prognosis. Therefore, it is very important to explore effective biomarkers and early diagnosis for the prognosis of schizophrenia. The primary purpose of this paper is to explore the relationship between plasma miRNA expression level and personality disorder with schizophrenia. Methods Gene microarrays in miRNA files were employed, and the plasma of peripheral blood of 82 schizophrenic patients and 43 healthy control subjects were examined. Real-time reverse transcription polymerase chain reaction detection were performed to explore the results. Spearman correlation analysis was used to analyze the correlation between expression level of miRNAs and Personality Diagnosis Questionnaire-4 score. Results The results showed that miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096 were up-regulated in schizophrenic patients. Compared to healthy control subjects, the difference was statistically significant (P < .05). Schizophrenic patients with schizoid, paranoid, schizotypal, and obsessive compulsive traits had negative correlation with miR-1303, miR-3131, miR-4428, and miR-5096 expression level (r = -0.40 to -0.62, P < .05); there were no significant differences in the other miRNAs. Correlation with other personality traits was not significant (P > .05). The stepwise regression analysis indicated that miR-5096, miR-3131, and miR-1273d have a significant predictive effect on the schizoid trait (P < .01). MiR-4428 and miR-1303 had a significant predictive effect on the schizotypal trait (P < .01). MiR-5096, miR-4428, and miR-4725-3P had a significant predictive effect on the paranoid trait (P < .05). MiR-4428, miR-1303, and miR-5096 had a significant predictive effect on the obsessive compulsive trait (P < .05). Conclusion The expression levels of miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096 were up-regulated in the peripheral blood of patients with schizophrenia, and these miRNAs are expected to be diagnostic biomarkers for accurate diagnosis of schizophrenia. The expression levels of miR-1303, miR-3131, miR-1273d, miR-4428, miR-4725-3p, and miR-5096 have significant predictive effects on personality disorder in schizophrenia.
Collapse
Affiliation(s)
- Honghui Wei
- Department of Geriatric Psychiatry, Zhejiang Mental Health Center, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Lingming Kong
- Prevention and Treatment Center for Psychological Diseases, No.904 Hospital of Chinese People’s Liberation Army, Jiangsu, China
| | - Xiaoli Zhu
- Prevention and Treatment Center for Psychological Diseases, No.904 Hospital of Chinese People’s Liberation Army, Jiangsu, China
| | - Shengdong Chen
- Prevention and Treatment Center for Psychological Diseases, No.904 Hospital of Chinese People’s Liberation Army, Jiangsu, China
| | - Liyi Zhang
- Prevention and Treatment Center for Psychological Diseases, No.904 Hospital of Chinese People’s Liberation Army, Jiangsu, China
| | - Wei Niu
- Mental Rehabilitation Center, No.904 Hospital of Chinese People’s Liberation Army, Jiangsu, China
| |
Collapse
|
14
|
Yang H, Zhang C, Chao X, Zhao J, Liu M, Chen J, Liu S, Wang T, Muhammad A, Schinckel AP, Zhou B. A Functional Single Nucleotide Polymorphism in the 3' Untranslated Region of the Porcine JARID2 Gene Is Associated with Aggressive Behavior of Weaned Pigs after Mixing. Int J Mol Sci 2023; 25:27. [PMID: 38203196 PMCID: PMC10779117 DOI: 10.3390/ijms25010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
In pig production, pigs often show more aggressive behavior after mixing, which adversely affects animal welfare and growth performance. The Jumonji and structural domain-rich AT interaction domain 2 (JARID2) gene plays an important role in neurodevelopment in mice and various psychiatric disorders in humans. The JARID2 gene may impact the aggressive behavior of pigs. By observing the behavior of 500 weaned pigs during the first 72 h after mixing, the ear tissue samples of the 12 most aggressive and 12 least aggressive pigs were selected for DNA resequencing based on the intensity of their aggressive behavior. Large group correlation analysis indicated that the rs3262221458 site located in the 3'-UTR region of the porcine JARID2 gene has a strong relationship with the aggressive behavior of weaned pigs. Pigs with the mutant TT genotype of rs3262221458 have more aggressive behavior than those pigs with the GG and GT genotypes. The dual luciferase assay indicated that the luciferase activity of the plasmids containing the G allele of rs326221458 was significantly less than that of plasmids containing the T allele of rs326221458 and control groups. The binding ability of miR-9828-3p to sequences containing the T allele was less than that of sequences containing the G allele. The overexpression of miR-9828-3p in porcine neuroglial cells (PNGCs) and PK15 cells significantly decreased the mRNA and protein levels of the JARID2 gene. In addition, miR-9828-3p inhibited the proliferation of PNGCs. After inhibiting miR-9828-3p, the mRNA and protein expression levels of JARID2 increased, and the proliferation of PNGCs showed an opposite trend to the cells that forced the expression of miR-9828-3p. In addition, interference with the JARID2 gene by siRNA can effectively inhibit the proliferation of PNGCs. In summary, we found that the rs326221458 locus regulates the expression of the JARID2 gene by affecting the binding of miR-9828-3p and the JARID2 gene, thereby affecting the aggressive behavior of weaned pigs after mixing.
Collapse
Affiliation(s)
- Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| |
Collapse
|
15
|
Zhao XL, Liu YL, Long Q, Zhang YQ, You X, Guo ZY, Cao X, Yu L, Qin FY, Teng ZW, Zeng Y. Abnormal expression of miR-3653-3p, caspase 1, IL-1β in peripheral blood of schizophrenia. BMC Psychiatry 2023; 23:822. [PMID: 37946206 PMCID: PMC10633926 DOI: 10.1186/s12888-023-05182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023] Open
Abstract
Schizophrenia (SCZ) is a chronic, highly relapsing, severe mental disorder with an unclear etiology. Cytokine-mediated neuroimmune abnormalities have been repeatedly revealed. IL-1β was reported to play a vital role in expanding the inflammatory response. However, the underlying molecular mechanism is poorly understood. In this study, we found that miR-3653-3p with the NLRP3 binding site in Targetscan was differentially expressed in miRNA high-throughput sequencing in schizophrenia (SCZ), and indeed, its downregulation in SCZ peripheral blood was also verified by RT-qPCR (P-value = 0.015). Furthermore, we found that the mRNAs of caspase 1 and IL-1β are elevated in people who suffer from SCZ (P = 0.044 and P = 0.001, respectively). Moreover, the interaction of NLRP3, Caspase1, and IL-1β was found in the peripheral blood of patients with SCZ. The expression level of miR-3653-3p was negatively correlated with NLRP3 and IL-1β mRNA contents (r = 0.487, P = 0.04 and r = 0.508, P = 0.037, respectively). NLRP3 mRNA was positively correlated with caspase1 mRNA. Meanwhile, the expression of miR-3653-3p was also negatively correlated with negative symptom subscores of PANSS (r = 0.450, P = 0.046). IL-1β mRNA is positively correlated with the total scores of PANSS (r = 0.690, P = 0.002) and the sub-scores of general psychopathology of PANSS (r = 0.583, P = 0.014). Additionally, a significant positive relationship exists between IL-1β and the total duration (r = 0.638, P = 0.006). We found that the combination of miR-3653-3p, caspase 1, and IL-1β have better diagnostic values. The results indicate that miR-3653-3p, caspase 1, and IL-1β can potentially be biomarkers of SCZ, identifying negative symptoms or a chronic course. A further understanding of the involvement of IL-1β in SCZ may be a crucial molecular effector for the chronic course to intervene.
Collapse
Affiliation(s)
- Xin-Ling Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yi-Lin Liu
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Long
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yun-Qiao Zhang
- Psychiatric Ward, Honghe Second People's Hospital, Honghe, Yunnan Province, China
| | - Xu You
- Psychiatric Ward, Honghe Second People's Hospital, Honghe, Yunnan Province, China
| | - Ze-Yi Guo
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiang Cao
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Lei Yu
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fu-Yi Qin
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhao-Wei Teng
- Central Laboratory of the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Yong Zeng
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
16
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
17
|
Peng Q, Dai Z, Yin J, Lv D, Luo X, Xiong S, Yang Z, Chen G, Wei Y, Wang Y, Zhang D, Wang L, Yu D, Zhao Y, Lin D, Liao Z, Zhong Y, Lin Z, Lin J. Schizophrenia plausible protective effect of microRNA-137 is potentially related to estrogen and prolactin in female patients. Front Psychiatry 2023; 14:1187111. [PMID: 37680447 PMCID: PMC10482089 DOI: 10.3389/fpsyt.2023.1187111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Background Schizophrenia (SCZ) is a serious chronic mental disorder. Our previous case-control genetic association study has shown that microRNA-137 (miR-137) may only protect females against SCZ. Since estrogen, an important female sex hormone, exerts neuroprotective effects, the relationship between estrogen and miR-137 in the pathophysiology of SCZ was further studied in this study. Methods Genotyping of single-nucleotide polymorphism rs1625579 of miR-137 gene in 1,004 SCZ patients and 896 healthy controls was conducted using the iMLDR assay. The effect of estradiol (E2) on the miR-137 expression was evaluated on the human mammary adenocarcinoma cell line (MCF-7) and the mouse hippocampal neuron cell line (HT22). The relationships between serum E2, prolactin (PRL), and peripheral blood miR-137 were investigated in 41 SCZ patients and 43 healthy controls. The miR-137 and other reference miRNAs were detected by real-time fluorescent quantitative reverse transcription-PCR. Results Based on the well-known SNP rs1625579, the distributions of protective genotypes and alleles of the miR-137 gene were not different between patients and healthy controls but were marginally significantly lower in female patients. E2 upregulated the expression of miR-137 to 2.83 and 1.81 times in MCF-7 and HT22 cells, respectively. Both serum E2 and blood miR-137 were significantly decreased or downregulated in SCZ patients, but they lacked expected positive correlations with each other in both patients and controls. When stratified by sex, blood miR-137 was negatively correlated with serum E2 in female patients. On the other hand, serum PRL was significantly increased in SCZ patients, and the female patients had the highest serum PRL level and a negative correlation between serum PRL and blood miR-137. Conclusion The plausible SCZ-protective effect of miR-137 may be female specific, of which the underlying mechanism may be that E2 upregulates the expression of miR-137. This protective mechanism may also be abrogated by elevated PRL in female patients. These preliminary findings suggest a new genetic/environmental interaction mechanism for E2/miR-137 to protect normal females against SCZ and a novel E2/PRL/miR-137-related pathophysiology of female SCZ, implying some new antipsychotic ways for female patients in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Marques BL, Maciel GF, Brito MR, Dias LD, Scalzo S, Santos AK, Kihara AH, da Costa Santiago H, Parreira RC, Birbrair A, Resende RR. Regulatory mechanisms of stem cell differentiation: Biotechnological applications for neurogenesis. Semin Cell Dev Biol 2023; 144:11-19. [PMID: 36202693 DOI: 10.1016/j.semcdb.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marcello R Brito
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Lucas D Dias
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Sérgio Scalzo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson K Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
20
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
21
|
Chen L, Xie W, Wu K, Meng Y, He Y, Cai J, Jiang Y, Zhao Q, Yang Y, Zhang M, Lu M, Lin S, Liang L, Zhang Z. Continuous nutrient supply culture strategy controls multivesicular endosomes pathway and anti-photo-aging miRNA cargo loading of extracellular vesicles. J Tissue Eng 2023; 14:20417314231197604. [PMID: 37674933 PMCID: PMC10478562 DOI: 10.1177/20417314231197604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Extracellular vesicle (EV) therapy recently had shown significant efficacy in various diseases. Serum starvation culture (SC) is one of the most widely used methods for collecting EVs. However, SC may cause inadvertent effects and eventually dampen the therapeutic potential of EVs. Therefore, we developed a novel method for EV collection, continuous nutrient supply culture (CC), which can provide an optimal condition for mesenchymal stem cells (MSCs) by continuously supplying essential nutrients to MSCs. By comparing with SC strategy, we revealed that CC could maintain CC-MSCs in a normal autophagy and apoptotic state, which reduced the shunting of EV precursors in cells and useless information material carried by EVs. In CC-MSCs, the expression levels of endosomal sorting complexes required for transport (ESCRT) and targeting GTPase27 (Rab27) were upregulated compared to those in SC-MSCs. Besides, we analyzed the membrane transport efficiency of EV formation, which demonstrated the CC strategy could promote the formation of EV precursors and the release of EVs. In addition, miRNA analysis revealed that CC-EVs were enriched with anti-chronic inflammatory factors, which could inhibit the nuclear factor kappa-B (NF-κB) pathway, mitigate chronic inflammation, and effectively repair skin photo-aging damage.
Collapse
Affiliation(s)
- Lihao Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weihan Xie
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Keke Wu
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Meng
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiawei Cai
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minru Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Manping Lu
- Yue Dong Hospital District of Third Affiliated Hospital of Sun Yat-Sen University, Meizhou, Guangdong, China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Liang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Thomas KT, Vermare A, Egleston SO, Wang YD, Mishra A, Lin T, Peng J, Zakharenko SS. MicroRNA 3' ends shorten during adolescent brain maturation. Front Mol Neurosci 2023; 16:1168695. [PMID: 37122627 PMCID: PMC10140418 DOI: 10.3389/fnmol.2023.1168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics remain poorly understood during adolescent and early adult brain maturation, when symptoms often first appear. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early-, mid-, and late-adolescent and adult mice. Furthermore, we use quantitative proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects. We found that ~25% of miRNAs' 3' ends shorten with age due to increased 3' trimming and decreased U tailing. Particularly, shorter but functionally competent isoforms (isomiRs) of miR-338-3p increase up to 10-fold during adolescence and only in brain. MiRNAs that undergo 3' shortening exhibit stronger negative correlations with targets that decrease with age and stronger positive correlations with targets that increase with age, than miRNAs with stable 3' ends. Increased 3' shortening with age was also observed in available mouse and human miRNA-seq data sets, and stronger correlations between miRNAs that undergo shortening and their mRNA targets were observed in two of the three available data sets. We conclude that age-associated miRNA 3' shortening is a well-conserved feature of postnatal brain maturation.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anaïs Vermare
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Suzannah O. Egleston
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Stanislav S. Zakharenko,
| |
Collapse
|
23
|
Patel S, Sharma D, Uniyal A, Gadepalli A, Tiwari V. Recent advancements in biomarker research in schizophrenia: mapping the road from bench to bedside. Metab Brain Dis 2022; 37:2197-2211. [PMID: 35239143 DOI: 10.1007/s11011-022-00926-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a severe progressive neurodegenerative as well as disruptive behavior disorder affecting innumerable people throughout the world. The discovery of potential biomarkers in the clinical scenario would lead to the development of effective methods of diagnosis and would provide an understanding of the prognosis of the disease. Moreover, breakthrough inventions for the treatment and prevention of this mysterious disease could evolve as a result of a thorough understanding of the clinical biomarkers. In this review, we have discussed about specific biomarkers of SZ an emphasis has been laid to delineate (1) diagnostic biomarkers like neuroimmune biomarkers, metabolic biomarkers, oligodendrocyte biomarkers and biomarkers of negative and cognitive symptoms, (2) therapeutic biomarkers like various neurotransmitter systems and (3) prognostic biomarkers. All the biomarkers were evaluated in drug-naïve (at least for 4 weeks) patients in order to achieve a clear comparison between schizophrenic patients and healthy controls. Also, an attempt has been made to elucidate the potential genes which serve as predictors and tools for the determination of biomarkers and would ultimately help in the prevention and treatment of this deadly illness.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, 400098, Mumbai, India
| | - Dilip Sharma
- Rutgers New Jersey Medical School, 07103, Newark, NJ, United States
| | - Ankit Uniyal
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Anagha Gadepalli
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India.
| |
Collapse
|
24
|
Barbato C. MicroRNA-Mediated Silencing Pathways in the Nervous System and Neurological Diseases. Cells 2022; 11:cells11152375. [PMID: 35954216 PMCID: PMC9367879 DOI: 10.3390/cells11152375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play a prominent role in post-transcriptional gene regulation mechanisms in the brain tuning synaptic plasticity, memory formation, and cognitive functions in physiological and pathological conditions [...]
Collapse
Affiliation(s)
- Christian Barbato
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, University of Rome Sapienza, Policlinico Umberto I, 00161 Roma, Italy
| |
Collapse
|
25
|
Vázquez-Ágredos A, Gámiz F, Gallo M. MicroRNA Regulation of the Environmental Impact on Adolescent Neurobehavioral Development: A Systematic Review. Front Cell Neurosci 2022; 16:956609. [PMID: 35936504 PMCID: PMC9352948 DOI: 10.3389/fncel.2022.956609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a late developmental period marked by pronounced reorganization of brain networks in which epigenetic mechanisms play a fundamental role. This brain remodeling is associated with a peculiar behavior characterized by novelty seeking and risky activities such as alcohol and drug abuse, which is associated with increased susceptibility to stress. Hence, adolescence is a vulnerable postnatal period since short- and long-term deleterious effects of alcohol drinking and drug abuse are a serious worldwide public health concern. Among several other consequences, it has been proposed that exposure to stress, alcohol, or other drugs disrupts epigenetic mechanisms mediated by small non-coding microRNAs (miRNAs). During adolescence, this modifies the expression of a variety of genes involved in neurodevelopmental processes such as proliferation, differentiation, synaptogenesis, neural plasticity, and apoptosis. Hence, the effect of miRNAs dysregulation during adolescence might contribute to a long-term impact on brain function. This systematic review focuses on the miRNA expression patterns in the adolescent rodent brain with special interest in the impact of stress and drugs such as amphetamine, cocaine, nicotine, cannabis, and ketamine. The results point to a relevant and complex role of miRNAs in the regulation of the molecular processes involved in adolescent brain development as part of a dynamic epigenetic network sensitive to environmental events with distinctive changes across adolescence. Several miRNAs have been assessed evidencing changing expression profiles during the adolescent transition which are altered by exposure to stress and drug abuse. Since this is an emerging rapidly growing field, updating the present knowledge will contribute to improving our understanding of the epigenetic regulation mechanisms involved in the neurodevelopmental changes responsible for adolescent behavior. It can be expected that increased knowledge of the molecular mechanisms mediating the effect of environmental threats during the adolescent critical developmental period will improve understanding of psychiatric and addictive disorders emerging at this stage.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
26
|
Schell G, Roy B, Prall K, Dwivedi Y. miR-218: A Stress-Responsive Epigenetic Modifier. Noncoding RNA 2022; 8:ncrna8040055. [PMID: 35893238 PMCID: PMC9326663 DOI: 10.3390/ncrna8040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the epigenetic role of microRNAs (miRNAs) has been a critical development in the field of neuropsychiatry and in understanding their underlying pathophysiology. Abnormalities in miRNA expression are often seen as key to the pathogenesis of many stress-associated mental disorders, including major depressive disorder (MDD). Recent advances in omics biology have further contributed to this understanding and expanded the role of miRNAs in networking a diverse array of molecular pathways, which are essentially related to the stress adaptivity of a healthy brain. Studies have highlighted the role of many such miRNAs in causing maladaptive changes in the brain's stress axis. One such miRNA is miR-218, which is debated as a critical candidate for increased stress susceptibility. miR-218 is expressed throughout the brain, notably in the hippocampus and prefrontal cortex (PFC). It is expressed at various levels through life stages, as seen by adolescent and adult animal models. Until now, a minimal number of studies have been conducted on human subjects to understand its role in stress-related abnormalities in brain circuits. However, several studies, including animal and cell-culture models, have been used to understand the impact of miR-218 on stress response and hypothalamic-pituitary-adrenal (HPA) axis function. So far, expression changes in this miRNA have been found to regulate signaling pathways such as glucocorticoid signaling, serotonergic signaling, and glutamatergic signaling. Recently, the developmental role of miR-218 has generated interest, given its increasing expression from adolescence to adulthood and targeting the Netrin-1/DCC signaling pathway. Since miR-218 expression affects neuronal development and plasticity, it is expected that a change in miR-218 expression levels over the course of development may negatively impact the process and make individuals stress-susceptible in adulthood. In this review, we describe the role of miR-218 in stress-induced neuropsychiatric conditions with an emphasis on stress-related disorders.
Collapse
|
27
|
Kim K, Jeon HJ, Myung W, Suh SW, Seong SJ, Hwang JY, Ryu JI, Park SC. Clinical Approaches to Late-Onset Psychosis. J Pers Med 2022; 12:381. [PMID: 35330384 PMCID: PMC8950304 DOI: 10.3390/jpm12030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/10/2022] Open
Abstract
Psychosis can include schizophrenia, mood disorders with psychotic features, delusional disorder, active delirium, and neurodegenerative disorders accompanied by various psychotic symptoms. Late-onset psychosis requires careful intervention due to the greater associated risks of secondary psychosis; higher morbidity and mortality rates than early-onset psychosis; and complicated treatment considerations due to the higher incidence of adverse effects, even with the black box warning against antipsychotics. Pharmacological treatment, including antipsychotics, should be carefully initiated with the lowest dosage for short-term efficacy and monitoring of adverse side effects. Further research involving larger samples, more trials with different countries working in consortia, and unified operational definitions for diagnosis will help elaborate the clinical characteristics of late-onset psychosis and lead to the development of treatment approaches.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Psychiatry, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea; (K.K.); (S.W.S.); (S.J.S.); (J.Y.H.)
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gumi-ro, 173 beon-gil Bundang-gu, Seongnam-si 13619, Korea;
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea; (K.K.); (S.W.S.); (S.J.S.); (J.Y.H.)
| | - Su Jeong Seong
- Department of Psychiatry, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea; (K.K.); (S.W.S.); (S.J.S.); (J.Y.H.)
| | - Jae Yeon Hwang
- Department of Psychiatry, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea; (K.K.); (S.W.S.); (S.J.S.); (J.Y.H.)
| | - Je il Ryu
- Department of Neurosurgery, College of Medicine, Hanyang University, Gyungchun-ro 153, Guri-si 11923, Korea
- Department of Neurosurgery, Hanyang University Guri Hospital, Gyungchun-ro 153, Guri-si 11923, Korea
| | - Seon-Cheol Park
- Department of Psychiatry, College of Medicine, Hanyang University, Gyungchun-ro 153, Guri-si 11923, Korea
- Department of Psychiatry, Hanyang University Guri Hospital, Gyungchun-ro 153, Guri-si 11923, Korea
| |
Collapse
|
28
|
Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits 2021; 15:769969. [PMID: 34955759 PMCID: PMC8693383 DOI: 10.3389/fncir.2021.769969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | - Stanislav S. Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|