1
|
Huang X, Zhang W, Yang N, Zhang Y, Qin T, Ruan H, Zhang Y, Tian C, Mo X, Tang W, Liu J, Zhang B. Identification of HSP90B1 in pan-cancer hallmarks to aid development of a potential therapeutic target. Mol Cancer 2024; 23:19. [PMID: 38243263 PMCID: PMC10799368 DOI: 10.1186/s12943-023-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Weiming Zhang
- Department of Clinical Oncology, Wuming Hospital of Guangxi Medical University, Nanning, The People's Republic of China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, The People's Republic of China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China
| | - Yujie Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Tianyu Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hanyi Ruan
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yan Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chao Tian
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China.
| |
Collapse
|
2
|
Peña-García PE, Fastiggi VA, Mank MM, Ather JL, Garrow OJ, Anathy V, Dixon AE, Poynter ME. Bariatric surgery decreases the capacity of plasma from obese asthmatic subjects to augment airway epithelial cell proinflammatory cytokine production. Am J Physiol Lung Cell Mol Physiol 2024; 326:L71-L82. [PMID: 37988602 PMCID: PMC11292671 DOI: 10.1152/ajplung.00205.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.
Collapse
Affiliation(s)
- Paola E Peña-García
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
- Cellular, Molecular, and Biomedical Sciences doctoral program, University of Vermont, Burlington, Vermont, United States
| | - V Amanda Fastiggi
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
- Cellular, Molecular, and Biomedical Sciences doctoral program, University of Vermont, Burlington, Vermont, United States
| | - Madeleine M Mank
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Olivia J Garrow
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Vikas Anathy
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States
| | - Anne E Dixon
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
3
|
Goudswaard LJ, Smith ML, Hughes DA, Taylor R, Lean M, Sattar N, Welsh P, McConnachie A, Blazeby JM, Rogers CA, Suhre K, Zaghlool SB, Hers I, Timpson NJ, Corbin LJ. Using trials of caloric restriction and bariatric surgery to explore the effects of body mass index on the circulating proteome. Sci Rep 2023; 13:21077. [PMID: 38030643 PMCID: PMC10686974 DOI: 10.1038/s41598-023-47030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Thousands of proteins circulate in the bloodstream; identifying those which associate with weight and intervention-induced weight loss may help explain mechanisms of diseases associated with adiposity. We aimed to identify consistent protein signatures of weight loss across independent studies capturing changes in body mass index (BMI). We analysed proteomic data from studies implementing caloric restriction (Diabetes Remission Clinical trial) and bariatric surgery (By-Band-Sleeve), using SomaLogic and Olink Explore1536 technologies, respectively. Linear mixed models were used to estimate the effect of the interventions on circulating proteins. Twenty-three proteins were altered in a consistent direction after both bariatric surgery and caloric restriction, suggesting that these proteins are modulated by weight change, independent of intervention type. We also integrated Mendelian randomisation (MR) estimates of the effect of BMI on proteins measured by SomaLogic from a UK blood donor cohort as a third line of causal evidence. These MR estimates provided further corroborative evidence for a role of BMI in regulating the levels of six proteins including alcohol dehydrogenase-4, nogo receptor and interleukin-1 receptor antagonist protein. These results indicate the importance of triangulation in interrogating causal relationships; further study into the role of proteins modulated by weight in disease is now warranted.
Collapse
Affiliation(s)
- Lucy J Goudswaard
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- MRC Integrative Epidemiology Unit, Bristol, UK.
- Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Madeleine L Smith
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
| | - David A Hughes
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G31 2ER, UK
| | - Naveed Sattar
- School of Cardiovascular and Medical Science, University of Glasgow, Glasgow, G12 8TA, UK
| | - Paul Welsh
- School of Cardiovascular and Medical Science, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, School of Health and Wellbeing, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jane M Blazeby
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Chris A Rogers
- Bristol Medical School, Bristol Trials Centre, University of Bristol, Bristol, BS8 1NU, UK
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Shaza B Zaghlool
- Department of Biophysics and Physiology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Ingeborg Hers
- Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Nicholas J Timpson
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
| | - Laura J Corbin
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, Bristol, UK
| |
Collapse
|
4
|
Jayaraman S, Pérez A, Miñambres I, Sánchez-Quesada JL, Gursky O. LDL binding to cell receptors and extracellular matrix is proatherogenic in obesity but improves after bariatric surgery. J Lipid Res 2023; 64:100451. [PMID: 37777014 PMCID: PMC10665669 DOI: 10.1016/j.jlr.2023.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Obesity is a major global public health issue involving dyslipidemia, oxidative stress, inflammation, and increased risk of CVD. Weight loss reduces this risk, but the biochemical underpinnings are unclear. We explored how obesity and weight loss after bariatric surgery influence LDL interactions that trigger proatherogenic versus antiatherogenic processes. LDL was isolated from plasma of six patients with severe obesity before (basal) and 6-12 months after bariatric surgery (basal BMI = 42.7 kg/m2; 6-months and 12-months postoperative BMI = 34.1 and 30 kg/m2). Control LDL were from six healthy subjects (BMI = 22.6 kg/m2). LDL binding was quantified by ELISA; LDL size and charge were assessed by chromatography; LDL biochemical composition was determined. Compared to controls, basal LDL showed decreased nonatherogenic binding to LDL receptor, which improved postoperatively. Conversely, basal LDL showed increased binding to scavenger receptors LOX1 and CD36 and to glycosaminoglycans, fibronectin and collagen, which is proatherogenic. One year postoperatively, this binding decreased but remained elevated, consistent with elevated lipid peroxidation. Serum amyloid A and nonesterified fatty acids were elevated in basal and postoperative LDL, indicating obesity-associated inflammation. Aggregated and electronegative LDL remained elevated, suggesting proatherogenic processes. These results suggest that obesity-induced inflammation contributes to harmful LDL alterations that probably increase the risk of CVD. We conclude that in obesity, LDL interactions with cell receptors and extracellular matrix shift in a proatherogenic manner but are partially reversed upon postoperative weight loss. These results help explain why the risk of CVD increases in obesity but decreases upon weight loss.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Antonio Pérez
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain; Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau, CIBERDEM, Barcelona, Spain.
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Cobeta P, Pariente R, Osorio A, Marchan M, Blázquez L, Pestaña D, Galindo J, Botella-Carretero JI. The Beneficial Changes on Inflammatory and Endothelial Biomarkers Induced by Metabolic Surgery Decreases the Carotid Intima-Media Thickness in Men. Biomolecules 2022; 12:biom12121827. [PMID: 36551255 PMCID: PMC9775021 DOI: 10.3390/biom12121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity increases cardiovascular risk in men through several mechanisms. Among them, low-grade chronic inflammation and obesity-associated hypogonadism have been described. We aimed to study the effects of metabolic surgery on the carotid-intima media thickness through changes in inflammatory, endothelial biomarkers, and testosterone. We included 60 men; 20 submitted to laparoscopic Roux-en-Y gastric bypass (RYGB), 20 to sleeve gastrectomy (SG), and 20 to lifestyle modification (controls). Several inflammatory and endothelial biomarkers and total testosterone (TT) were measured at baseline and six months after surgery. Free testosterone (FT) was calculated, and carotid intima-media thickness (cIMT) was measured by ultrasonography. Compared to controls, cIMT decreased after surgery concomitantly with CRP, PAI-1, sICAM-1, and IL-18 (p < 0.01) and with an increase in sTWEAK (p = 0.027), with no differences between RYGB and SG. The increase in TT and FT after surgery correlated with the changes in cIMT (p = 0.010 and p = 0.038, respectively), but this association disappeared after multivariate analysis. Linear regression showed that sTWEAK (ß = -0.245, p = 0.039), PAI-1 (ß = 0.346, p = 0.005), and CRP (ß = 0.236, p = 0.049) were associated with the changes in cIMT (R2 = 0.267, F = 6.664, p = 0.001). In conclusion, both RYGB and SG induced improvements in inflammation and endothelial biomarkers that drove a decrease in cIMT compared to men with obesity who submitted to diet and exercise.
Collapse
Affiliation(s)
- Pilar Cobeta
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Roberto Pariente
- Department of Inmunology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Alvaro Osorio
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of Angiology and Vascular Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Marta Marchan
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Luis Blázquez
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - David Pestaña
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Julio Galindo
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - José I. Botella-Carretero
- Instituto Ramón y Cajal de Investigación Sanitaria—IRyCIS, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-913368343
| |
Collapse
|