1
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024:1-17. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
2
|
Zhang MJ, Yang L, Li ZY, Zhou LY, Wang YJ, Wang HS, Cui XJ, Yao M. NLRP1 inflammasome in neurodegenerative disorders: From pathology to therapies. Cytokine Growth Factor Rev 2024:S1359-6101(24)00083-2. [PMID: 39443194 DOI: 10.1016/j.cytogfr.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Neuroinflammation is a critical component in neurodegenerative disorders. The inflammasome, facilitates the cleavage of caspase-1, leading to the maturation and subsequent secretion of inflammatory factors interleukin (IL)-1β and IL-18. Consequently, pyroptosis mediated by gasdermin D, exacerbates neuroinflammation. Among the inflammasomes, NLRP1/3 are predominant in the central nervous system (CNS), Although NLRP1 was the earliest discovered inflammasome, the specific involvement of NLRP1 in neurodegenerative diseases remains to be fully elucidated. Recently, the discovery of an endogenous inhibitor of NLRP1, dipeptidyl peptidase 9, suggests the feasibility of producing of small-molecule drugs targeting NLRP1. This review describes the latest findings on the role of the NLRP1 inflammasome in the pathology of neurodegenerative disorders, including Alzheimer's disease, and summarises the regulatory mechanisms of NLRP1 inflammasome activation in the CNS. Furthermore, we highlight the recent progress in developing small-molecule and biological inhibitors that modulate the NLRP1 infammasome for the treatment of neurodegenerative disorders, some of which are advancing to preclinical testing. SIGNIFICANCE STATEMENT: The objective of this review is to synthesise the research on the structure, activation, and regulatory mechanisms of the NLRP1 inflammasome, along with its potential impact on both acute and chronic neurodegenerative conditions. The discovery of endogenous inhibitors, such as dipeptidyl peptidase 9 and thioredoxin, and their interaction with NLRP1 suggest the possibility of developing NLRP1-targeted small-molecule drugs for the treatment of neurodegenerative disorders. This review also discusses the use of both direct and indirect NLRP1 inhibitors as prospective therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long Yang
- Rehabilitation Medicine Department, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu 210029, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Shen Wang
- Orthopedics Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Gheitasi H, Sabbaghian M, Shekarchi AA, Mirmazhary AA, Poortahmasebi V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol J 2024; 21:30. [PMID: 38273382 PMCID: PMC10811852 DOI: 10.1186/s12985-024-02297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Viruses have developed many mechanisms by which they can stimulate or inhibit inflammation and cause various diseases, including viral respiratory diseases that kill many people every year. One of the mechanisms that viruses use to induce or inhibit inflammation is exosomes. Exosomes are small membrane nanovesicles (30-150 nm) released from cells that contain proteins, DNA, and coding and non-coding RNA species. They are a group of extracellular vesicles that cells can take up to produce and mediate communication. Intercellular effect exosomes can deliver a broad confine of biological molecules, containing nucleic acids, proteins, and lipids, to the target cell, where they can convey therapeutic or pathogenic consequences through the modulation of inflammation and immune processes. Recent research has shown that exosomes can deliver entire virus genomes or virions to distant target cells, then the delivered viruses can escape the immune system and infect cells. Adenoviruses, orthomyxoviruses, paramyxoviruses, respiratory syncytial viruses, picornaviruses, coronaviruses, and rhinoviruses are mostly related to respiratory diseases. In this article, we will first discuss the current knowledge of exosomes. We will learn about the relationship between exosomes and viral infections, and We mention the inflammations caused by viruses in the airways, the role of exosomes in them, and finally, we examine the relationship between the viruses as mentioned earlier, and the regulation of inflammatory pathways that play a role in causing the disease.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ali Mirmazhary
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
7
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2023:S2090-1232(23)00402-2. [PMID: 38123019 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
8
|
Liu X, Pang S, Jiang Y, Wang L, Liu Y. The Role of Macrophages in Atherosclerosis: Participants and Therapists. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07513-5. [PMID: 37864633 DOI: 10.1007/s10557-023-07513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Currently, atherosclerosis, characterized by the dysfunction of lipid metabolism and chronic inflammation in the intimal space of the vessel, is considered to be a metabolic disease. As the most abundant innate immune cells in the body, macrophages play a key role in the onset, progression, or regression of atherosclerosis. For example, macrophages exhibit several polarization states in response to microenvironmental stimuli; an increasing proportion of macrophages, polarized toward M2, can suppress inflammation, scavenge cell debris and apoptotic cells, and contribute to tissue repair and fibrosis. Additionally, specific exosomes, generated by macrophages containing certain miRNAs and effective efferocytosis of macrophages, are crucial for atherosclerosis. Therefore, macrophages have emerged as a novel potential target for anti-atherosclerosis therapy. This article reviews the role of macrophages in atherosclerosis from different aspects: origin, phenotype, exosomes, and efferocytosis, and discusses new approaches for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
9
|
Laura Francés J, Pagiatakis C, Di Mauro V, Climent M. Therapeutic Potential of EVs: Targeting Cardiovascular Diseases. Biomedicines 2023; 11:1907. [PMID: 37509546 PMCID: PMC10377624 DOI: 10.3390/biomedicines11071907] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their different biological functions, extracellular vesicles (EVs) have great potential from a therapeutic point of view. They are released by all cell types, carrying and delivering different kinds of biologically functional cargo. Under pathological events, cells can increase their secretion of EVs and can release different amounts of cargo, thus making EVs great biomarkers as indicators of pathological progression. Moreover, EVs are also known to be able to transport and deliver cargo to different recipient cells, having an important role in cellular communication. Interestingly, EVs have recently been explored as biological alternatives for the delivery of therapeutics, being considered natural drug delivery carriers. Because cardiovascular disorders (CVDs) are the leading cause of death worldwide, in this review, we will discuss the up-to-date knowledge regarding the biophysical properties and biological components of EVs, focusing on myocardial infarction, diabetic cardiomyopathy, and sepsis-induced cardiomyopathy, three very different types of CVDs.
Collapse
Affiliation(s)
| | - Christina Pagiatakis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Vittoria Di Mauro
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
10
|
Yao J, Chen Y, Lin Z. Exosomes: Mediators in microenvironment of colorectal cancer. Int J Cancer 2023. [PMID: 36760212 DOI: 10.1002/ijc.34471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Tumor microenvironment, the soil where tumor thrives, plays a critical role in the development and progression of colorectal cancer (CRC). Various cell signaling molecules in the environment promote tumor angiogenesis, immune tolerance and facilitate immune escape. Exosomes, as messengers between tumor and host cells, are considered key mediators involved in the tumor-accelerating environment. However, the exosome-mediated communication networks in the CRC microenvironment are still largely unclear. In this review, we summarized the relationship between TME and CRC based on recent literature. Then, we revealed the unique impacts and signal molecules of exosomes on account of their regulatory role in the flora, hypoxia, inflammatory and immunological microenvironment of CRC. Finally, we summarized the therapeutically effective of exosomes in CRC microenvironment and discussed their current status and prospects, aiming to provide new molecular targets and a theoretical basis for the CRC treatment.
Collapse
Affiliation(s)
- Jiali Yao
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yingrui Chen
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
13
|
Exosomes in Cerebral Ischemia-Reperfusion Injury: Current Perspectives and Future Challenges. Brain Sci 2022; 12:brainsci12121657. [PMID: 36552117 PMCID: PMC9776031 DOI: 10.3390/brainsci12121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia impedes the functional or metabolic demands of the central nervous system (CNS), which subsequently leads to irreversible brain damage. While recanalization of blocked vessels recovers cerebral blood flow, it can also aggravate brain injury, termed as ischemia/reperfusion (I/R) injury. Exosomes, nanometric membrane vesicles, attracted wide attention as carriers of biological macromolecules. In the brain, exosomes can be secreted by almost all types of cells, and their contents can be altered during the pathological and clinical processes of cerebral I/R injury. Herein, we will review the current literature on the possible role of cargos derived from exosomes and exosomes-mediated intercellular communication in cerebral I/R injury. The PubMed and Web of Science databases were searched through January 2015. The studies published in English were identified using search terms including "exosomes", "cerebral ischemia-reperfusion injury", "brain ischemia-reperfusion injury", and "stroke". We will also focus on the potential therapeutic effects of stem cell-derived exosomes and underlying mechanisms in cerebral I/R injury. Meanwhile, with the advantages of low immunogenicity and cytotoxicity, high bioavailability, and the capacity to pass through the blood-brain barrier, exosomes also attract more attention as therapeutic modalities for the treatment of cerebral I/R injury.
Collapse
|
14
|
Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S, Gautam KA. Extracellular vesicles in neurodegenerative diseases: A systematic review. Front Mol Neurosci 2022; 15:1061076. [PMID: 36504676 PMCID: PMC9729355 DOI: 10.3389/fnmol.2022.1061076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Extracellular vesicles (EVs) are known to have a significant role in the central nervous system (CNS) and neurodegenerative disease. Methods PubMed, Scopus, ISI Web of Science, EMBASE, and Google Scholar were used to identify published articles about EV modifications (2012 to Feb 2022). Results In total, 1,435 published papers were identified among the searched articles, with 1,128 non-duplicate publications being identified. Following the screening of titles and abstracts, 214 publications were excluded; following the full-text screening of 93 published articles, another 33 publications were excluded. The remaining 60 studies were considered. The kappa statistic of 0.868 indicated that the raters were highly reliable. Furthermore, the inter-reliability and intra-reliability coefficients were found to be 0.931 and 0.908, respectively, indicating strong reliability and consistency between the eligible studies identified by the raters. A total of 27 relevant studies demonstrated the role of EVs as therapeutic and diagnostic biomarkers in neurodegenerative diseases. Of note, 19 and 14 studies, respectively, found EVs to be pioneering in diagnostic and therapeutic roles. Discussion EVs play an important role in the central nervous system (CNS), aiding in cell-to-cell communication and serving as a diagnostic marker and therapeutic target in a variety of neurodegenerative diseases. EVs are the home of several proteins [including-synuclein (-syn) and tau proteins], lipids, and genetic materials such as DNA and RNA. The presence of novel miRNAs in EVs suggests biomarkers for the diagnosis and screening of neurodegenerative disorders. Furthermore, EVs play an important role in the pathogenesis of such disorders. This systematic review discussed the current state of EVs' role in neurological diseases, as well as some preclinical studies on the therapeutic and diagnostic potential of EVs.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
| | - Manish Singh
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
- Department of Neurosurgery, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Richa Giri
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
- KPS PG Institute of Medicine, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
| | - Saurabh Agarwal
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
- KPS PG Institute of Medicine, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
| | - Sanjay Kala
- Department of Surgery, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India
| | - Kirti Amresh Gautam
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
15
|
Anakor E, Duddy WJ, Duguez S. The Cellular and Molecular Signature of ALS in Muscle. J Pers Med 2022; 12:1868. [PMID: 36579600 PMCID: PMC9692882 DOI: 10.3390/jpm12111868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a disease affecting upper and lower motor neurons. Although motor neuron death is the core event of ALS pathology, it is increasingly recognized that other tissues and cell types are affected in the disease, making potentially major contributions to the occurrence and progression of pathology. We review here the known cellular and molecular characteristics of muscle tissue affected by ALS. Evidence of toxicity in skeletal muscle tissue is considered, including metabolic dysfunctions, impaired proteostasis, and deficits in muscle regeneration and RNA metabolism. The role of muscle as a secretory organ, and effects on the skeletal muscle secretome are also covered, including the increase in secretion of toxic factors or decrease in essential factors that have consequences for neuronal function and survival.
Collapse
Affiliation(s)
| | | | - Stephanie Duguez
- Northern Ireland Center for Personalised Medicine, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
16
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
17
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
18
|
McCluskey G, Donaghy C, Morrison KE, McConville J, Duddy W, Duguez S. The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases. J Pers Med 2022; 12:jpm12091418. [PMID: 36143200 PMCID: PMC9501626 DOI: 10.3390/jpm12091418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Dundonald, Belfast BT16 1RH, UK
| | - William Duddy
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence:
| |
Collapse
|
19
|
Sex Differentially Alters Secretion of Brain Extracellular Vesicles During Aging: A Potential Mechanism for Maintaining Brain Homeostasis. Neurochem Res 2022; 47:3428-3439. [PMID: 35904699 PMCID: PMC9546961 DOI: 10.1007/s11064-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) in the brain play a role in neuronal homeostasis by removing intracellular material and regulating cell-to-cell communication. Given that sex and aging differentially modulate brain networks, we investigated sex-dependent differences in EV levels and content in the brain during aging. EVs were isolated from the brains of 3, 6, 12, 18, and 24 month-old female and male C57BL/6 J mice, and the levels of different EV species determined. While the number of plasma membrane-derived microvesicles and a subset of late endosomes-derived exosomes increased with age in the brain of female mice, no significant changes were seen in males. Mitochondria-derived mitovesicles in the brain increased during aging in both sexes, a change that may reflect aging-dependent alterations in mitochondrial function. These findings reveal enhanced turnover during aging in female brains, suggesting a mechanism for advantageous successful female brain aging and sex-depending different susceptibility to age-related neurodegenerative diseases.
Collapse
|
20
|
The Neurotoxicity of Vesicles Secreted by ALS Patient Myotubes Is Specific to Exosome-Like and Not Larger Subtypes. Cells 2022; 11:cells11050845. [PMID: 35269468 PMCID: PMC8909615 DOI: 10.3390/cells11050845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles can mediate communication between tissues, affecting the physiological conditions of recipient cells. They are increasingly investigated in Amyotrophic Lateral Sclerosis, the most common form of Motor Neurone Disease, as transporters of misfolded proteins including SOD1, FUS, TDP43, or other neurotoxic elements, such as the dipeptide repeats resulting from C9orf72 expansions. EVs are classified based on their biogenesis and size and can be separated by differential centrifugation. They include exosomes, released by the fusion of multivesicular bodies with the plasma membrane, and ectosomes, also known as microvesicles or microparticles, resulting from budding or pinching of the plasma membrane. In the current study, EVs were obtained from the myotube cell culture medium of ALS patients or healthy controls. EVs of two different sizes, separating at 20,000 or 100,000 g, were then compared in terms of their effects on recipient motor neurons, astrocytes, and myotubes. Compared to untreated cells, the smaller, exosome-like vesicles of ALS patients reduced the survival of motor neurons by 31% and of myotubes by 18%, decreased neurite length and branching, and increased the proportion of stellate astrocytes, whereas neither those of healthy subjects, nor larger EVs of ALS or healthy subjects, had such effects.
Collapse
|
21
|
Alfandari D, Ben Ami Pilo H, Abou Karam P, Dagan O, Joubran C, Rotkopf R, Regev-Rudzki N, Porat Z. Monitoring Distribution Dynamics of EV RNA Cargo Within Recipient Monocytes and Macrophages. Front Cell Infect Microbiol 2022; 11:739628. [PMID: 35155269 PMCID: PMC8825493 DOI: 10.3389/fcimb.2021.739628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by across almost all the living kingdoms and play a crucial role in cell-cell communication processes. EVs are especially important for pathogens, as Plasmodium falciparum (Pf) parasite, the leading causing species in human malaria. Malaria parasites are able to modulate the host immune response from a distance via delivering diverse cargo components inside the EVs, such as proteins and nucleic acids. We have previously shown that imaging flow cytometry (IFC) can be effectively used to monitor the uptake of different cargo components of malaria derived EVs by host human monocytes. Here, we take this approach one step further and demonstrate that we can directly investigate the dynamics of the cargo distribution pattern over time by monitoring its distribution within two different recipient cells of the immune system, monocytes vs macrophages. By staining the RNA cargo of the vesicles and monitor the signal we were able to evaluate the kinetics of its delivery and measure different parameters of the cargo’s distribution post internalization. Interestingly, we found that while the level of the EV uptake is similar, the pattern of the signal for RNA cargo distribution is significantly different between these two recipient immune cells. Our results demonstrate that this method can be applied to study the distribution dynamics of the vesicle cargo post uptake to different types of cells. This can benefit significantly to our understanding of the fate of cargo components post vesicle internalization in the complex interface between pathogen-derived vesicles and their host recipient cells.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Ben Ami Pilo
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Dagan
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Carine Joubran
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Neta Regev-Rudzki, ; Ziv Porat,
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Neta Regev-Rudzki, ; Ziv Porat,
| |
Collapse
|
22
|
Menaceur C, Gosselet F, Fenart L, Saint-Pol J. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 2021; 11:cells11010133. [PMID: 35011695 PMCID: PMC8750298 DOI: 10.3390/cells11010133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
The construction of the blood–brain barrier (BBB), which is a natural barrier for maintaining brain homeostasis, is the result of a meticulous organisation in space and time of cell–cell communication processes between the endothelial cells that carry the BBB phenotype, the brain pericytes, the glial cells (mainly the astrocytes), and the neurons. The importance of these communications for the establishment, maturation and maintenance of this unique phenotype had already been suggested in the pioneering work to identify and demonstrate the BBB. As for the history of the BBB, the evolution of analytical techniques has allowed knowledge to evolve on the cell–cell communication pathways involved, as well as on the role played by the cells constituting the neurovascular unit in the maintenance of the BBB phenotype, and more particularly the brain pericytes. This review summarises the key points of the history of the BBB, from its origin to the current knowledge of its physiology, as well as the cell–cell communication pathways identified so far during its development, maintenance, and pathophysiological alteration.
Collapse
|
23
|
Borowiec BM, Angelova Volponi A, Mozdziak P, Kempisty B, Dyszkiewicz-Konwińska M. Small Extracellular Vesicles and COVID19-Using the "Trojan Horse" to Tackle the Giant. Cells 2021; 10:3383. [PMID: 34943891 PMCID: PMC8699232 DOI: 10.3390/cells10123383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is a global challenge, demanding researchers address different approaches in relation to prevention, diagnostics and therapeutics. Amongst the many tactics of tackling these therapeutic challenges, small extracellular vesicles (sEVs) or exosomes are emerging as a new frontier in the field of ameliorating viral infections. Exosomes are part of extracellular vesicles (EVs)-spherical biological structures with a lipid bilayer of a diameter of up to 5000 nm, which are released into the intercellular space by most types of eukaryotic cells, both in physiological and pathological states. EVs share structural similarities to viruses, such as small size, common mechanisms of biogenesis and mechanisms for cell entry. The role of EVs in promoting the viral spread by evading the immune response of the host, which is exhibited by retroviruses, indicates the potential for further investigation and possible manipulation of these processes when tackling the spread and treatment of COVID-19. The following paper introduces the topic of the use of exosomes in the treatment of viral infections, and presents the future prospects for the use of these EVs.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (B.M.B.); (B.K.)
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty for Dentistry, Oral and Craniofacial Sciences, King’s College University of London, London SE1 9RT, UK;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (B.M.B.); (B.K.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| |
Collapse
|