1
|
Ochieng WA, Wei L, Wagutu GK, Xian L, Muthui SW, Ogada S, Otieno DO, Linda EL, Liu F. Transcriptome Analysis of Macrophytes' Myriophyllum spicatum Response to Ammonium Nitrogen Stress Using the Whole Plant Individual. PLANTS (BASEL, SWITZERLAND) 2023; 12:3875. [PMID: 38005772 PMCID: PMC10675724 DOI: 10.3390/plants12223875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Ammonium toxicity in macrophytes reduces growth and development due to a disrupted metabolism and high carbon requirements for internal ammonium detoxification. To provide more molecular support for ammonium detoxification in the above-ground and below-ground parts of Myriophyllum spicatum, we separated (using hermetic bags) the aqueous medium surrounding the below-ground from that surrounding the above-ground and explored the genes in these two regions. The results showed an upregulation of asparagine synthetase genes under high ammonium concentrations. Furthermore, the transcriptional down and/or upregulation of other genes involved in nitrogen metabolism, including glutamate dehydrogenase, ammonium transporter, and aspartate aminotransferase in above-ground and below-ground parts were crucial for ammonium homeostasis under high ammonium concentrations. The results suggest that, apart from the primary pathway and alternative pathway, the asparagine metabolic pathway plays a crucial role in ammonium detoxification in macrophytes. Therefore, the complex genetic regulatory network in M. spicatum contributes to its ammonium tolerance, and the above-ground part is the most important in ammonium detoxification. Nevertheless, there is a need to incorporate an open-field experimental setup for a conclusive picture of nitrogen dynamics, toxicity, and the molecular response of M. spicatum in the natural environment.
Collapse
Affiliation(s)
- Wyckliffe Ayoma Ochieng
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Li Wei
- Changjiang Water Resources and Hydropower Development Group (Hubei) Co., Ltd., Wuhan 430010, China;
| | - Godfrey Kinyori Wagutu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Ling Xian
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
| | - Samuel Wamburu Muthui
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Stephen Ogada
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Duncan Ochieng Otieno
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Elive Limunga Linda
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China;
| | - Fan Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.A.O.); (G.K.W.); (L.X.); (S.W.M.); (D.O.O.)
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
2
|
Mishra S, Sahu G, Shaw BP. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea. PHYSIOLOGIA PLANTARUM 2022; 174:e13542. [PMID: 34459503 DOI: 10.1111/ppl.13542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors are potent growth and developmental regulators in plants, also responsive to various hormonal and environmental stimuli. In this study, we primarily focused on the functional role of TCP9, a nuclear-localised Class-I TCP transcription factor in a drought and heat-tolerant legume crop, cowpea (Vigna unguiculata). Under drought stress, a higher protein expression level of TCP9 was observed in the leaves of the drought-tolerant cowpea cultivar Pusa Komal as compared to the drought-sensitive cultivar TVu-7778. Further, overexpression of VuTCP9 resulted in reduced cell and stomata size, aperture length and width while cell and overall stomatal density in the 35S::VuTCP9 transgenic cowpea lines increased. Phenotypic alterations, such as reduced leaf size and vigour, altered seed coats displaying extension pattern similar to the 'Watson pattern' and delayed senescence were prominent in the transgenic lines. Under normal conditions, the gas exchange and fluorescence measurements indicated reduction in transpiration rate (E), stomatal conductance (gs ) and photosynthetic efficiency (Φ PSII). However, water usage efficiency (WUE) remained unaltered in the transgenic lines as compared to the wild-type (WT) plants. Furthermore, the transgenic lines displayed higher tolerance to oxidative, drought and salinity stress, maintained relatively higher relative water content and lower occurrence of H2 O2 , as compared to the WT plants. Genes related to the jasmonic acid biosynthesis, stomatal development and abiotic stress responsiveness, such as TTG1, NAC25, SPCH and GRP1, increased and LOX2 decreased significantly in the transgenic lines.
Collapse
Affiliation(s)
- Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Bárzana G, Carvajal M. Genetic regulation of water and nutrient transport in water stress tolerance in roots. J Biotechnol 2020; 324:134-142. [PMID: 33038476 DOI: 10.1016/j.jbiotec.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Drought stress is one of the major abiotic factors affecting the growth and development of crops. The primary effect of drought is the alteration of water and nutrient uptake and transport by roots, related essentially with aquaporins and ion transporters of the plasma membrane. Therefore, the efficiency of water and nutrient transport across cell layers is a main factor in tolerance mechanisms. The regulation of this transport under water stress - in relation to the differing degrees of tolerance of crops and the effect of arbuscular mycorrhizae, together with signaling mechanisms - is reviewed here. Three different phases in the response to stress (immediate, short-term and long-term), involving different signals and levels of gene regulation, are highlighted.
Collapse
Affiliation(s)
- Gloria Bárzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain.
| |
Collapse
|
4
|
Musa M, Ayoko GA, Ward A, Rösch C, Brown RJ, Rainey TJ. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019; 8:E851. [PMID: 31394865 PMCID: PMC6721732 DOI: 10.3390/cells8080851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
Microalgae are swift replicating photosynthetic microorganisms with several applications for food, chemicals, medicine and fuel. Microalgae have been identified to be suitable for biofuels production, due to their high lipid contents. Microalgae-based biofuels have the potential to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. However, the present state of technology does not economically support sustainable large-scale production. The biofuel production process comprises the upstream and downstream processing phases, with several uncertainties involved. This review examines the various production and processing stages, and considers the use of chemometric methods in identifying and understanding relationships from measured study parameters via statistical methods, across microalgae production stages. This approach enables collection of relevant information for system performance assessment. The principal benefit of such analysis is the identification of the key contributing factors, useful for decision makers to improve system design, operation and process economics. Chemometrics proffers options for time saving in data analysis, as well as efficient process optimization, which could be relevant for the continuous growth of the microalgae industry.
Collapse
Affiliation(s)
- Mutah Musa
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| | - Godwin A Ayoko
- Environmental Technologies Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia
| | - Andrew Ward
- Queensland Urban Utilities (QUU), Innovation Centre, Main Beach Road Myrtletown QLD 4008, Australia
- Advanced Water Management Centre (AWMC), University of Queensland (UQ), St Lucia, Brisbane, Queensland 4072, Australia
| | - Christine Rösch
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Richard J Brown
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia
| | - Thomas J Rainey
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| |
Collapse
|
5
|
Sańko-Sawczenko I, Łotocka B, Mielecki J, Rekosz-Burlaga H, Czarnocka W. Transcriptomic Changes in Medicago truncatula and Lotus japonicus Root Nodules during Drought Stress. Int J Mol Sci 2019; 20:E1204. [PMID: 30857310 PMCID: PMC6429210 DOI: 10.3390/ijms20051204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Drought is one of the major environmental factors limiting biomass and seed yield production in agriculture. In this research, we focused on plants from the Fabaceae family, which has a unique ability for the establishment of symbiosis with nitrogen-fixing bacteria, and are relatively susceptible to water limitation. We have presented the changes in nitrogenase activity and global gene expression occurring in Medicago truncatula and Lotus japonicus root nodules during water deficit. Our results proved a decrease in the efficiency of nitrogen fixation, as well as extensive changes in plant and bacterial transcriptomes, shortly after watering cessation. We showed for the first time that not only symbiotic plant components but also Sinorhizobium meliloti and Mesorhizobium loti bacteria residing in the root nodules of M. truncatula and L. japonicus, respectively, adjust their gene expression in response to water shortage. Although our results demonstrated that both M. truncatula and L. japonicus root nodules were susceptible to water deprivation, they indicated significant differences in plant and bacterial response to drought between the tested species, which might be related to the various types of root nodules formed by these species.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Hanna Rekosz-Burlaga
- Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
6
|
Arsenic-silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 2018; 8:10301. [PMID: 29985462 PMCID: PMC6037781 DOI: 10.1038/s41598-018-28712-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/13/2018] [Indexed: 11/08/2022] Open
Abstract
Silicon (Si) has attracted substantial attention because of its beneficial effect on plants during abiotic stress, including stress due to arsenic (As). We here report that priming rice seeds with As and Si together, helped the plant to sustain As stress for longer period. We examined Si induced tolerance against As in rice seedlings at short (7 d) and long (15 d) exposure periods under As(III) and Si treatments since their germinating stage. Results showed that the expression of As(III) transporter genes OsLsi1, OsLsi2 and OsLsi6 was more in As(III) + Si treatment as compared to control and Si treatment, but lower than As(III) alone treatments. The gene expression was maximum in shoot and root at 15 d over 7 d under both As(III) and As(III) + Si treatment, which ultimately leads to decreased accumulation of As in the presence of Si. Morphological characters, antioxidant capacity, oxidative stress marker (MDA), stress modulators (cysteine, proline), and enzymes related with ascorbate-glutathione cycle significantly altered during As(III) + Si treatment at both exposure periods. Further, macro and micronutrient contents also improved with Si, and differentially regulated 12 key genes (NR, NiR, AMT, NR, GS, GOGAT, PT, PHT1, PHT2, APase, KAT1 and HAK10) related with NPK transport and utilization. Results highlight that Si priming of seeds along with As(III) influences growth positively of As-stressed rice.
Collapse
|
7
|
Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Sci Rep 2018; 8:7790. [PMID: 29773844 PMCID: PMC5958118 DOI: 10.1038/s41598-018-25959-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd2+) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.
Collapse
|
8
|
García-Calderón M, Pérez-Delgado CM, Credali A, Vega JM, Betti M, Márquez AJ. Genes for asparagine metabolism in Lotus japonicus: differential expression and interconnection with photorespiration. BMC Genomics 2017; 18:781. [PMID: 29025409 PMCID: PMC5639745 DOI: 10.1186/s12864-017-4200-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asparagine is a very important nitrogen transport and storage compound in plants due to its high nitrogen/carbon ratio and stability. Asparagine intracellular concentration depends on a balance between asparagine biosynthesis and degradation. The main enzymes involved in asparagine metabolism are asparagine synthetase (ASN), asparaginase (NSE) and serine-glyoxylate aminotransferase (SGAT). The study of the genes encoding for these enzymes in the model legume Lotus japonicus is of particular interest since it has been proposed that asparagine is the principal molecule used to transport reduced nitrogen within the plant in most temperate legumes. RESULTS A differential expression of genes encoding for several enzymes involved in asparagine metabolism was detected in L. japonicus. ASN is encoded by three genes, LjASN1 was the most highly expressed in mature leaves while LjASN2 expression was negligible and LjASN3 showed a low expression in this organ, suggesting that LjASN1 is the main gene responsible for asparagine synthesis in mature leaves. In young leaves, LjASN3 was the only ASN gene expressed although at low levels, while all the three genes encoding for NSE were highly expressed, especially LjNSE1. In nodules, LjASN2 and LjNSE2 were the most highly expressed genes, suggesting an important role for these genes in this organ. Several lines of evidence support the connection between asparagine metabolic genes and photorespiration in L. japonicus: a) a mutant plant deficient in LjNSE1 showed a dramatic decrease in the expression of the two genes encoding for SGAT; b) expression of the genes involved in asparagine metabolism is altered in a photorespiratory mutant lacking plastidic glutamine synthetase; c) a clustering analysis indicated a similar pattern of expression among several genes involved in photorespiratory and asparagine metabolism, indicating a clear link between LjASN1 and LjSGAT genes and photorespiration. CONCLUSIONS The results obtained in this paper indicate the existence of a differential expression of asparagine metabolic genes in L. japonicus and point out the crucial relevance of particular genes in different organs. Moreover, the data presented establish clear links between asparagine and photorespiratory metabolic genes in this plant.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Carmen M Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Alfredo Credali
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - José M Vega
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain.
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| |
Collapse
|
9
|
Pérez-Delgado CM, Moyano TC, García-Calderón M, Canales J, Gutiérrez RA, Márquez AJ, Betti M. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3095-108. [PMID: 27117340 PMCID: PMC4867901 DOI: 10.1093/jxb/erw170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes.
Collapse
Affiliation(s)
- Carmen M Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012-Sevilla, Spain
| | - Tomás C Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012-Sevilla, Spain
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia 5090000, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012-Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012-Sevilla, Spain
| |
Collapse
|
10
|
Goel P, Singh AK. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L. PLoS One 2015; 10:e0143645. [PMID: 26605918 PMCID: PMC4659633 DOI: 10.1371/journal.pone.0143645] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses.
Collapse
Affiliation(s)
- Parul Goel
- CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anil Kumar Singh
- CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
11
|
Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress. J Proteomics 2015; 128:388-402. [PMID: 26344133 DOI: 10.1016/j.jprot.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
The plant oxidative stress response is vital for defense against various abiotic and biotic stresses. In this study, ultrastructural changes and the proteomic response to H2O2 stress in roots and leaves of the model plant Brachypodium distachyon were studied. Transmission electron microscopy (TEM) showed that the ultrastructural damage in roots was more serious than in leaves. Particularly, the ultrastructures of organelles and the nucleus in root tip cells were damaged, leading to the inhibition of normal biological activities of roots, which then spread throughout the plant. Based on two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF-MS, 84 and 53 differentially accumulated protein (DAP) spots representing 75 and 45 unique proteins responsive to H2O2 stress in roots and leaves, respectively, were identified. These protein species were mainly involved in signal transduction, energy metabolism, redox homeostasis/stress defense, protein folding/degradation, and cell wall/cell structure. Interestingly, two 14-3-3 proteins (GF14-B and GF14-D) were identified as DAPs in both roots and leaves. Protein-protein interaction (PPI) analysis revealed a synergetic H2O2-responsive network.
Collapse
|
12
|
Tapia G, Morales-Quintana L, Parra C, Berbel A, Alcorta M. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. PLANT MOLECULAR BIOLOGY 2013; 82:485-501. [PMID: 23733601 DOI: 10.1007/s11103-013-0080-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 05/19/2013] [Indexed: 06/02/2023]
Abstract
The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Functional analysis of post-genomics data is essential to identify the biological processes involved in a given investigation. Although most of the ontological tools available are limited to organisms with well-annotated genomes, this chapter provides an overview of two complementary tools-MapMan and GeneBins/PathExpress-that are used to perform a functional analysis of legume gene expression data. MapMan is a stand-alone tool that displays large datasets onto diagrams of metabolic pathways or other processes. Although initially developed for Arabidopsis thaliana, MapMan can be extended to other plants by assigning new sequences to their orthologs in the current classification. GeneBins and PathExpress have been developed to perform enrichment analysis of functional groups and metabolic networks, respectively. Based on the KEGG database, these tools can be used with any organism, including the main reference legumes.
Collapse
Affiliation(s)
- Nicolas Goffard
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|