1
|
Liu X, Wang C, Huang Y, Lv Q, Yu C, Ying J, Duan L, Guo Y, Huang G, Shen W, Jiang M, Mao W, Zuo Z, Zhao A. Abnormal Cellular Populations Shape Thymic Epithelial Tumor Heterogeneity and Anti-Tumor by Blocking Metabolic Interactions in Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406653. [PMID: 39258580 PMCID: PMC11558144 DOI: 10.1002/advs.202406653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Indexed: 09/12/2024]
Abstract
A variety of abnormal epithelial cells and immature and mature immune cells in thymic epithelial tumors (TETs) affect histopathological features, the degree of malignancy, and the response to treatment. Here, gene expression, trajectory inference, and T cell antigen receptor (TCR)-based lineage tracking are profiled in TETs at single-cell resolution. An original subpopulation of KRT14+ progenitor cells with a spindle cell phenotype is shown. An abnormal infiltration of immature T cells with a TCR hyper-rearrangement state is revealed, due to the lack of CCL21+ medullary epithelial cells. For thymic carcinoma, the novel biomarkers of MSLN, CCL20, and SLC1A5 are identified and observed an elevated expression of LAG3 and HAVCR2 in malignant tumorn-infiltrating mature T cells. These common features based on the single-cell populations may inform pathological reclassification of TETs. Meanwhile, it is found that macrophages (MACs) attract thymic tumor cells through the LGALS9-SLC1A5 axis, providing them with glutamine to elicit metabolic reprogramming. This MAC-based metabolic pattern can promote malignancy progression. Additionally, an interactive immune environment in TETs is identified that correlates with the infiltration of abnormal FOXI1+ CFTR- ionocytes. Collectively, the data broaden the knowledge of TET cellular ecosystems, providing a basis for tackling histopathological diagnosis and related treatment.
Collapse
Affiliation(s)
- Xuefei Liu
- Zhejiang Cancer InstituteZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Changchun Wang
- Department of Thoracic OncologyZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yueyu Huang
- Zhejiang Cancer InstituteZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qiaoli Lv
- Thoracic Oncology LaboratoryJiangxi Cancer HospitalNanchang Medical CollegeNanchangJiangxi330029China
| | - Chang Yu
- Department of PathologyZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Jianghua Ying
- Department of UltrasoundZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Lianhui Duan
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Yangzhong Guo
- Thoracic Oncology LaboratoryJiangxi Cancer HospitalNanchang Medical CollegeNanchangJiangxi330029China
| | - Guanyin Huang
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Wenhui Shen
- Zhejiang Cancer InstituteZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Ming Jiang
- Center for Genetic MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310011China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental DisordersHangzhouZhejiang310011China
| | - Weimin Mao
- Thoracic Oncology LaboratoryJiangxi Cancer HospitalNanchang Medical CollegeNanchangJiangxi330029China
- Zhejiang Provincial Key Laboratory of Diagnosis and Treatment of Thoracic CancerZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510308China
| | - An Zhao
- Zhejiang Cancer InstituteZhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Thoracic Oncology LaboratoryJiangxi Cancer HospitalNanchang Medical CollegeNanchangJiangxi330029China
| |
Collapse
|
2
|
Murugan S, de Campos VS, Ghag SA, Ng M, Shyam R. Characterization of a Novel Mouse Model for Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38587441 PMCID: PMC11005065 DOI: 10.1167/iovs.65.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Fuchs endothelial corneal dystrophy (FECD) is a progressive blinding disorder, characterized by increased corneal endothelial excrescences (guttae), corneal endothelial cell loss, and edema. These symptoms are hypothesized to be caused by changes in the extracellular matrix (ECM) and mitochondrial dysfunction in the corneal endothelium. Despite this clinical and biological relevance, a comprehensive animal model that recapitulates all the major disease characteristics is currently unavailable. In this study, we develop such a model to improve our understanding of the signaling pathways involved in the FECD progression and develop strategies for early intervention. Method To generate a comprehensive FECD model, we generated a double mutant mouse bearing tamoxifen-inducible knockdown of Slc4a11 and the Col8a2 (Q455K) mutation. We performed optical coherence tomography (OCT) and in vivo confocal microscopy using the Heidelberg Retinal Tomography 3 - Rostock Cornea module (HRT3-RCM) on the mice at 5 weeks of age before tamoxifen feeding to establish baseline values for corneal thickness, endothelial cell density, and test for the presence of guttae. We measured these parameters again post-tamoxifen treatment at 16 weeks of age. We collected corneas at 16 weeks to perform histopathology, immunofluorescence staining for tight junctions, adherens junctions, and oxidative stress. We evaluated endothelial pump function using a lactate assay. Results The double mutant tamoxifen-fed animals showed the presence of guttae, and displayed increased corneal thickness and decreased endothelial cell density. Endothelial cells showed altered morphology with disrupted adherens junctions and elevated reactive oxygen species (ROS). Finally, we found that stromal lactate concentrations were elevated in the double mutant mice, indicative of compromised endothelial pump function. Conclusions Overall, this mouse model recapitulates all the important phenotypic features associated with FECD.
Collapse
Affiliation(s)
- Subashree Murugan
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Viviane Souza de Campos
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Sachin Anil Ghag
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Matthew Ng
- Department of Biology, Indiana University Bloomington, Indiana, United States
| | - Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| |
Collapse
|
3
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
4
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
5
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Arojojoye AS, Olelewe C, Gukathasan S, Kim JH, Vekaria H, Parkin S, Sullivan PG, Awuah SG. Serum-Stable Gold(III) Bisphosphine Complex Induces Mild Mitochondrial Uncoupling and In Vivo Antitumor Potency in Triple Negative Breast Cancer. J Med Chem 2023; 66:7868-7879. [PMID: 37279147 PMCID: PMC10317555 DOI: 10.1021/acs.jmedchem.3c00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of cyclometalated complexes offers a path to stable materials, catalysts, and therapeutic agents. Here, we explore the anticancer potential of novel biphenyl organogold(III) cationic complexes supported by diverse bisphosphine ligands, Au-1-Au-5, toward aggressive glioblastoma and triple negative breast cancer cells (TNBCs). The [C^C] gold(III) complex, Au-3, exhibits significant tumor growth inhibition in a metastatic TNBC mouse model. Remarkably, Au-3 displays promising blood serum stability over a relevant therapeutic window of 24 h and alteration in the presence of excess L-GSH. The mechanism-of-action studies show that Au-3 induces mitochondrial uncoupling, membrane depolarization, and G1 cell cycle arrest and prompts apoptosis. To the best of our knowledge, Au-3 is the first biphenyl gold-phosphine complex to uncouple mitochondria and inhibit TNBC growth in vivo.
Collapse
Affiliation(s)
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | | | - Jong H. Kim
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, U.S.A
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky Lexington KY 40536, U.S.A
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
7
|
Ogando DG, Kim ET, Li S, Bonanno JA. Corneal Edema in Inducible Slc4a11 Knockout Is Initiated by Mitochondrial Superoxide Induced Src Kinase Activation. Cells 2023; 12:1528. [PMID: 37296649 PMCID: PMC10253072 DOI: 10.3390/cells12111528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Inducible Slc4a11 KO leads to corneal edema by disruption of the pump and barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH3-activated mitochondrial uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress. The goal of this study was to investigate the link between oxidative stress and the failure of pump and barrier functions and to test different approaches to revert the process. METHODS Mice which were homozygous for Slc4a11 Flox and Estrogen receptor -Cre Recombinase fusion protein alleles at 8 weeks of age were fed Tamoxifen (Tm)-enriched chow (0.4 g/Kg) for 2 weeks, and controls were fed normal chow. During the initial 14 days, Slc4a11 expression, corneal thickness (CT), stromal [lactate], Na+-K+ ATPase activity, mitochondrial superoxide levels, expression of lactate transporters, and activity of key kinases were assessed. In addition, barrier function was assessed by fluorescein permeability, ZO-1 tight junction integrity, and cortical cytoskeleton F-actin morphology. RESULTS Tm induced a rapid decay in Slc4a11 expression that was 84% complete at 7 days and 96% complete at 14 days of treatment. Superoxide levels increased significantly by day 7; CT and fluorescein permeability by day 14. Tight junction ZO-1 distribution and the cortical cytoskeleton were disrupted at day 14, concomitant with decreased expression of Cldn1, yet with increased tyrosine phosphorylation. Stromal lactate increased by 60%, Na+-K+ ATPase activity decreased by 40%, and expression of lactate transporters MCT2 and MCT4 significantly decreased, but MCT1 was unchanged at 14 days. Src kinase was activated, but not Rock, PKCα, JNK, or P38Mapk. Mitochondrial antioxidant Visomitin (SkQ1, mitochondrial targeted antioxidant) and Src kinase inhibitor eCF506 significantly slowed the increase in CT, with concomitant decreased stromal lactate retention, improved barrier function, reduced Src activation and Cldn1 phosphorylation, and rescued MCT2 and MCT4 expression. CONCLUSIONS Slc4a11 KO-induced CE oxidative stress triggered increased Src kinase activity that resulted in perturbation of the pump components and barrier function of the CE.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University, Bloomington, IN 47405, USA; (D.G.O.); (E.T.K.); (S.L.)
| |
Collapse
|
8
|
Izmailova O, Kabaliei A, Shynkevych V, Shlykova O, Kaidashev I. PPARG agonist pioglitazone influences diurnal kidney medulla mRNA expression of core clock, inflammation-, and metabolism-related genes disrupted by reverse feeding in mice. Physiol Rep 2022; 10:e15535. [PMID: 36511486 PMCID: PMC9746034 DOI: 10.14814/phy2.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.
Collapse
|
9
|
Yamashita T, Asada K, Ueno M, Hiramoto N, Fujita T, Toda M, Sotozono C, Kinoshita S, Hamuro J. Cellular Interplay Through Extracellular Vesicle miR-184 Alleviates Corneal Endothelium Degeneration. OPHTHALMOLOGY SCIENCE 2022; 2:100212. [PMID: 36531590 PMCID: PMC9755023 DOI: 10.1016/j.xops.2022.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE The objective of the study was to reveal the presence of cellular interplay through extracellular vesicle (EV) microRNAs (miRs), to dampen the vicious cycle to degenerate human corneal endothelium (HCE) tissues. DESIGN Prospective, comparative, observational study. METHODS The miR levels in neonate-derived corneal tissues, in the aqueous humor (AqH) of bullous keratoplasty and cataract patients, as well as in the culture supernatant (CS) and EV of cultured human corneal endothelial cells (hCECs), were determined using 3D-Gene human miR chips and then validated using the real-time polymerase chain reaction. The extracellularly released miRs were profiled after the forced downregulation of cellular miR-34a, either by an miR-34a inhibitor or exposure to H2O2. The senescence-associated secretory phenotypes and mitochondrial membrane potential (MMP) were assessed to determine the functional features of the released miRs. MAIN OUTCOME MEASURES Identification of functional miRs attenuating HCE degeneration. RESULTS The miRs in AqH were classified into 2 groups: expression in 1 group was significantly reduced in neonate-derived tissues, whereas that in the other group remained almost constant, independent of aging. The miR-34a and -29 families were typical in the former group, whereas miR-184 and -24-3p were typical in the latter. Additionally, a larger amount of the latter miRs was detected in AqH compared with those of the former miRs. There was also a greater abundance of miR-184 and -24-3p in hCECs, EV, and CS in fully mature CD44-/dull hCEC, leading to sufficient clinical tissue regenerative capacity in cell injection therapy. The repression of cellular miR-34a, either due to miR-34a inhibitors or exposure to oxidative stress, unexpectedly resulted in the elevated release of miR-184 and -24-3p. Secretions of VEGF, interleukin 6, monocyte chemotactic protein-1, and MMP were all repressed in both mature CD44-/dull and degenerated CD44+++ hCEC, transfected with an miR-184 mimic. CONCLUSIONS The elevated release of miR-184 into AqH may constitute cellular interplay that prevents the aggravation of HCE degeneration induced by oxidative stress, thereby sustaining tissue homeostasis in HCE.
Collapse
Key Words
- AQP-1, aquaporin 1
- AqH, aqueous humor
- CS, culture supernatant
- Corneal endothelium degeneration
- ECD, endothelial cell density
- ER, endoplasmic reticulum
- EV, extracellular vesicle
- Extracellular vesicle
- HCE, human corneal endothelium
- IL-6, interleukin 6
- MCP-1, monocyte chemotactic protein-1
- MMP, mitochondrial membrane potential
- MiR-184
- Mitochondria metabolic homeostasis
- Oxidative stress
- SASP, senescence-associated secretory phenotype
- SLC4A11, solute carrier family 4 member 11
- SP, subpopulation
- hCEC, cultured human corneal endothelial cell
- miR, microRNA
Collapse
Affiliation(s)
- Tomoko Yamashita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuko Asada
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nao Hiramoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Fujita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Munetoyo Toda
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Zhang Y, Li M, Guo Y, Liu S, Tao Y. The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Front Pharmacol 2022; 13:905501. [PMID: 35784729 PMCID: PMC9247141 DOI: 10.3389/fphar.2022.905501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is fairly different from other types of cell-death in biochemical processes, morphological changes and genetics as a special programmed cell-death. Here we summarize the current literatures on ferroptosis, including the cascade reaction of key material metabolism in the process, dysfunction of organelles, the relationship between different organelles and the way positive and negative key regulatory factors to affect ferroptosis in the epigenetic level. Based on material metabolism or epigenetic regulation, it is obvious that the regulatory network of ferroptosis is interrelated and complex.
Collapse
Affiliation(s)
- Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingrui Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiming Guo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao,
| |
Collapse
|
11
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|