1
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Min TK, Saini SS. The future of targeted therapy in chronic spontaneous urticaria. Ann Allergy Asthma Immunol 2024; 133:367-373. [PMID: 38885835 DOI: 10.1016/j.anai.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Chronic urticaria can be divided into 2 subsets: chronic spontaneous urticaria (CSU) with skin lesions occurring without a specific trigger and chronic inducible urticaria, which has an identified specific stimulus. The annual prevalence of chronic urticaria is 0.5% to 2.3% globally. The CSU is a self-limited disorder in most cases, with an average duration of 2 to 5 years, but symptoms persist beyond 5 years in up to 30% of patients. The first line of treatment is a daily nonsedating, second-generation H1-antihistamine. The CSU guidelines recommend using oral nonsedating antihistamines up to 4 fold in patients with CSU unresponsive to standard doses as the next step in treatment. A meta-analysis found that the rate of response in patients with CSU who responded to updosing was 63.2%. Therefore, approximately 40% of patients continue to have persistent hives and itching requiring treatment with the biologic omalizumab, based on evidence from randomized controlled trials. Although omalizumab has been shown to markedly relieve symptoms of CSU, omalizumab is not effective in all patients and has not been shown to induce long-term disease remission. Thus, there is an unmet need for more effective treatments that can lead to cure or long-term remission. In this review, we will provide an overview of new treatment targets and biologics that are under investigation for the treatment of CSU.
Collapse
Affiliation(s)
- Taek Ki Min
- Pediatric Allergy and Respiratory Center, Department of Pediatrics, Soonchunhyang University Hospital, Seoul, Korea
| | - Sarbjit S Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland.
| |
Collapse
|
3
|
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol 2024; 81:102502. [PMID: 39029379 DOI: 10.1016/j.cbpa.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - M S Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - A Serrano
- Francisco de Vitoria University, Ctra. M-515 Pozuelo-Majadahonda, Km. 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain. https://twitter.com/Antonation2002
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
4
|
Barone V, Scirocco L, Surico PL, Micera A, Cutrupi F, Coassin M, Di Zazzo A. Mast cells and ocular surface: An update review. Exp Eye Res 2024; 245:109982. [PMID: 38942134 DOI: 10.1016/j.exer.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Mast cells (MCs), traditionally viewed as key players in IgE-mediated allergic responses, are increasingly recognized for their versatile roles. Situated at critical barrier sites such as the ocular surface, these sentinel cells participate in a broad array of physiological and pathological processes. This review presents a comprehensive update on the immune pathophysiology of MCs, with a particular focus on the mechanisms underlying innate immunity. It highlights their roles at the ocular surface, emphasizing their participation in allergic reactions, maintenance of corneal homeostasis, neovascularization, wound healing, and immune responses in corneal grafts. The review also explores the potential of MCs as therapeutic targets, given their significant contributions to disease pathogenesis and their capacity to modulate immunity. Through a thorough examination of current literature, we aim to elucidate the immune pathophysiology and multifaceted roles of MCs in ocular surface health and disease, suggesting directions for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Vincenzo Barone
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Laura Scirocco
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Pier Luigi Surico
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS - Fondazione Bietti, Rome, Italy
| | - Francesco Cutrupi
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Marco Coassin
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, Rome, Italy.
| |
Collapse
|
5
|
Du F, Rische CH, Li Y, Vincent MP, Krier-Burris RA, Qian Y, Yuk SA, Almunif S, Bochner BS, Qiao B, Scott EA. Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy. NATURE NANOTECHNOLOGY 2024; 19:698-704. [PMID: 38228804 PMCID: PMC11105988 DOI: 10.1038/s41565-023-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Clayton H Rische
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Jacobse J, Brown R, Revetta F, Vaezi M, Buendia MA, Williams CS, Higginbotham T, Washington MK, Goettel J, Hiremath G, Choksi YA. A synthesis and subgroup analysis of the eosinophilic esophagitis tissue transcriptome. J Allergy Clin Immunol 2024; 153:759-771. [PMID: 37852329 PMCID: PMC10939980 DOI: 10.1016/j.jaci.2023.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic immune mediated inflammatory disorder of the esophagus. It is still unknown why children and adults present differently, and there is little evidence about why it is more common in men than women. OBJECTIVE Our aim was to synthesize published and unpublished esophageal bulk RNA-sequencing (RNA-seq) data to gain novel insights into the pathobiology of EoE and examine the differences in EoE transcriptome by sex and age group. METHODS Esophageal bulk RNA-seq data from 5 published and 2 unpublished studies resulting in 137 subjects (EoE: N = 76; controls: N = 61) were analyzed. For overall analysis, combined RNA-seq data of patients with EoE were compared with those of controls and subgroup analysis was conducted in patients with EoE by age of the patient (children [<18 years] vs adults [≥18 years]) and sex (female vs male). Gene-set enrichment analysis, ingenuity pathway analysis (IPA), cell-type analysis, immunohistochemistry, and T-cell or B-cell receptor analysis were performed. RESULTS Overall analysis identified dysregulation of new genes in EoE compared with controls. IPA revealed that EoE is characterized by a mixed inflammatory response compared with controls. Cell-type analysis showed that cell composition varied with age: children had more mast cells, whereas adults had more macrophages. Finally, gene-set enrichment analysis and IPA revealed pathways that were differentially regulated in adults versus children and male versus female patients with EoE. CONCLUSIONS Using a unique approach to analyze bulk RNA-seq data, we found that EoE is characterized by a mixed inflammatory response, and the EoE transcriptome may be influenced by age and sex. These findings enhance insights into the molecular mechanisms of EoE.
Collapse
Affiliation(s)
- Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tenn; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tenn
| | - Rachel Brown
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tenn; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Frank Revetta
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Michael Vaezi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Matthew A Buendia
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tenn
| | - Christopher S Williams
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tenn; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tenn; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Tina Higginbotham
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - M Kay Washington
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tenn; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tenn
| | - Jeremy Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tenn; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tenn; Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Girish Hiremath
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tenn
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tenn; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
7
|
Korver W, Benet Z, Wong A, Negri GL, Chang K, Sanchez R, Leung J, De Freitas N, Luu T, Schanin J, Youngblood BA. Regulation of mast cells by overlapping but distinct protein interactions of Siglec-6 and Siglec-8. Allergy 2024; 79:629-642. [PMID: 38186079 DOI: 10.1111/all.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. METHODS Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. RESULTS Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. CONCLUSION These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.
Collapse
Affiliation(s)
| | | | - Alan Wong
- Allakos Inc., San Carlos, California, USA
| | - Gian Luca Negri
- LM Biostat Consulting Inc., Victoria, British Columbia, Canada
| | | | | | - John Leung
- Allakos Inc., San Carlos, California, USA
| | | | - Thuy Luu
- Allakos Inc., San Carlos, California, USA
| | | | | |
Collapse
|
8
|
Zhu L, Jian X, Zhou B, Liu R, Muñoz M, Sun W, Xie L, Chen X, Peng C, Maurer M, Li J. Gut microbiota facilitate chronic spontaneous urticaria. Nat Commun 2024; 15:112. [PMID: 38168034 PMCID: PMC10762022 DOI: 10.1038/s41467-023-44373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) comes with gut dysbiosis, but its relevance remains elusive. Here we use metagenomics sequencing and short-chain fatty acids metabolomics and assess the effects of human CSU fecal microbial transplantation, Klebsiella pneumoniae, Roseburia hominis, and metabolites in vivo. CSU gut microbiota displays low diversity and short-chain fatty acids production, but high gut Klebsiella pneumoniae levels, negatively correlates with blood short-chain fatty acids levels and links to high disease activity. Blood lipopolysaccharide levels are elevated, link to rapid disease relapse, and high gut levels of conditional pathogenic bacteria. CSU microbiome transfer and Klebsiella pneumoniae transplantation facilitate IgE-mediated mast cell(MC)-driven skin inflammatory responses and increase intestinal permeability and blood lipopolysaccharide accumulation in recipient mice. Transplantation of Roseburia hominis and caproate administration protect recipient mice from MC-driven skin inflammation. Here, we show gut microbiome alterations, in CSU, may reduce short-chain fatty acids and increase lipopolysaccharide levels, respectively, and facilitate MC-driven skin inflammation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, the First people's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Wan Sun
- BGI, Complex building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Lu Xie
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Metz M, Kolkhir P, Altrichter S, Siebenhaar F, Levi-Schaffer F, Youngblood BA, Church MK, Maurer M. Mast cell silencing: A novel therapeutic approach for urticaria and other mast cell-mediated diseases. Allergy 2024; 79:37-51. [PMID: 37605867 DOI: 10.1111/all.15850] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.
Collapse
Affiliation(s)
- Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Martin K Church
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany
| |
Collapse
|
10
|
Cao Y, Rische CH, Bochner BS, O’Sullivan JA. Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells. Front Immunol 2023; 14:1283370. [PMID: 37928558 PMCID: PMC10623328 DOI: 10.3389/fimmu.2023.1283370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Collapse
Affiliation(s)
- Yun Cao
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Clayton H. Rische
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J, Hui Y, Morrison SD, Oskeritzian CA, Piliponsky AM. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J Allergy Clin Immunol 2023; 152:711-724.e14. [PMID: 37100120 PMCID: PMC10524464 DOI: 10.1016/j.jaci.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.
Collapse
Affiliation(s)
- Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Albert J Seo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jake S Foronda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Josie Sachen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, SC
| | - Shane D Morrison
- Department of Surgery, Division of Plastic Surgery, Seattle Children's Hospital, Seattle, Wash
| | | | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
12
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
Chen Y, Chen H, Zheng Q. Siglecs family used by pathogens for immune escape may engaged in immune tolerance in pregnancy. J Reprod Immunol 2023; 159:104127. [PMID: 37572430 DOI: 10.1016/j.jri.2023.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The Siglecs family is a group of type I sialic acid-binding immunoglobulin-like receptors that regulate cellular signaling by recognizing sialic acid epitopes. Siglecs are predominantly expressed on the surface of leukocytes, where they play a crucial role in regulating immune activity. Pathogens can exploit inhibitory Siglecs by utilizing their sialic acid components to promote invasion or suppress immune functions, facilitating immune evasion. The establishing of an immune-balanced maternal-fetal interface microenvironment is essential for a successful pregnancy. Dysfunctional immune cells may lead to adverse pregnancy outcomes. Siglecs are important for inducing a phenotypic switch in leukocytes at the maternal-fetal interface toward a less toxic and more tolerant phenotype. Recent discoveries regarding Siglecs in the reproductive system have drawn further attention to their potential roles in reproduction. In this review, we primarily discuss the latest advances in understanding the impact of Siglecs as immune regulators on infections and pregnancy.
Collapse
Affiliation(s)
- Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
14
|
Kristjansson RP, Oskarsson GR, Skuladottir A, Oddsson A, Rognvaldsson S, Sveinbjornsson G, Lund SH, Jensson BO, Styrmisdottir EL, Halldorsson GH, Ferkingstad E, Eldjarn GH, Beyter D, Kristmundsdottir S, Juliusson K, Fridriksdottir R, Arnadottir GA, Katrinardottir H, Snorradottir MH, Tragante V, Stefansdottir L, Ivarsdottir EV, Bjornsdottir G, Halldorsson BV, Thorleifsson G, Ludviksson BR, Onundarson PT, Saevarsdottir S, Melsted P, Norddahl GL, Bjornsdottir US, Olafsdottir T, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Sulem P, Stefansson K. Sequence variant affects GCSAML splicing, mast cell specific proteins, and risk of urticaria. Commun Biol 2023; 6:703. [PMID: 37430141 DOI: 10.1038/s42003-023-05079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Urticaria is a skin disorder characterized by outbreaks of raised pruritic wheals. In order to identify sequence variants associated with urticaria, we performed a meta-analysis of genome-wide association studies for urticaria with a total of 40,694 cases and 1,230,001 controls from Iceland, the UK, Finland, and Japan. We also performed transcriptome- and proteome-wide analyses in Iceland and the UK. We found nine sequence variants at nine loci associating with urticaria. The variants are at genes participating in type 2 immune responses and/or mast cell biology (CBLB, FCER1A, GCSAML, STAT6, TPSD1, ZFPM1), the innate immunity (C4), and NF-κB signaling. The most significant association was observed for the splice-donor variant rs56043070[A] (hg38: chr1:247556467) in GCSAML (MAF = 6.6%, OR = 1.24 (95%CI: 1.20-1.28), P-value = 3.6 × 10-44). We assessed the effects of the variants on transcripts, and levels of proteins relevant to urticaria pathophysiology. Our results emphasize the role of type 2 immune response and mast cell activation in the pathogenesis of urticaria. Our findings may point to an IgE-independent urticaria pathway that could help address unmet clinical need.
Collapse
Affiliation(s)
| | - Gudjon R Oskarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | - Snædis Kristmundsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | | | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur S Bjornsdottir
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
- The Medical Center Mjodd, Reykjavik, Iceland
| | - Thorunn Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
15
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
16
|
Murphy RC, Lai Y, Liu M, Al-Shaikhly T, Altman MC, Altemeier WA, Frevert CW, Debley JS, Piliponsky AM, Ziegler SF, Gharib SA, Hallstrand TS. Distinct Epithelial-Innate Immune Cell Transcriptional Circuits Underlie Airway Hyperresponsiveness in Asthma. Am J Respir Crit Care Med 2023; 207:1565-1575. [PMID: 37212596 PMCID: PMC10273121 DOI: 10.1164/rccm.202209-1707oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023] Open
Abstract
Rationale: Indirect airway hyperresponsiveness (AHR) is a highly specific feature of asthma, but the underlying mechanisms responsible for driving indirect AHR remain incompletely understood. Objectives: To identify differences in gene expression in epithelial brushings obtained from individuals with asthma who were characterized for indirect AHR in the form of exercise-induced bronchoconstriction (EIB). Methods: RNA-sequencing analysis was performed on epithelial brushings obtained from individuals with asthma with EIB (n = 11) and without EIB (n = 9). Differentially expressed genes (DEGs) between the groups were correlated with measures of airway physiology, sputum inflammatory markers, and airway wall immunopathology. On the basis of these relationships, we examined the effects of primary airway epithelial cells (AECs) and specific epithelial cell-derived cytokines on both mast cells (MCs) and eosinophils (EOS). Measurements and Main Results: We identified 120 DEGs in individuals with and without EIB. Network analyses suggested critical roles for IL-33-, IL-18-, and IFN-γ-related signaling among these DEGs. IL1RL1 expression was positively correlated with the density of MCs in the epithelial compartment, and IL1RL1, IL18R1, and IFNG were positively correlated with the density of intraepithelial EOS. Subsequent ex vivo modeling demonstrated that AECs promote sustained type 2 (T2) inflammation in MCs and enhance IL-33-induced T2 gene expression. Furthermore, EOS increase the expression of IFNG and IL13 in response to both IL-18 and IL-33 as well as exposure to AECs. Conclusions: Circuits involving epithelial interactions with MCs and EOS are closely associated with indirect AHR. Ex vivo modeling indicates that epithelial-dependent regulation of these innate cells may be critical in indirect AHR and modulating T2 and non-T2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryan C. Murphy
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Ying Lai
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Matthew Liu
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | - Taha Al-Shaikhly
- Division of Allergy and Infectious Diseases, Department of Medicine
- Center for Lung Biology
| | - Matthew C. Altman
- Division of Allergy and Infectious Diseases, Department of Medicine
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | | | | | - Jason S. Debley
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Steven F. Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep
- Center for Lung Biology
| | | |
Collapse
|
17
|
Arora S, Vyavahare N. Elastin-targeted nanoparticles delivering doxycycline mitigate cytokine storm and reduce immune cell infiltration in LPS-mediated lung inflammation. PLoS One 2023; 18:e0286211. [PMID: 37267267 DOI: 10.1371/journal.pone.0286211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cytokine storm invoked during acute and chronic lung injury promotes alveolar damage and remodeling. The current study shows that degraded elastin-targeted nanoparticles releasing doxycycline (Doxy NPs) are potent in mitigating cytokines storm, migration of immune cells in the lungs, and inhibiting inflammasome pathways in the LPS mouse model. EXPERIMENTAL APPROACH Cytokine storm and lung injury were induced using LPS and elastase in C57BL/6 mice (rodent model for emphysema). The mice were then treated with I.V. Doxy NPs, blank NPs, or Doxy a day before LPS administration. Cytokine levels, immune cell population, and MMP activity were analyzed in broncheo-alveolar lavage fluid (BALF) 4 hours after LPS administration. Additionally, gene expression of IL-6, IL-1beta, MCP-1, NLRP3, Caspase 1 and MMPs were investigated in alveolar cells on day 3 after LPS administration. KEY RESULTS Doxycycline NPs but not Doxycycline significantly decreased IL-6, TNF-α, IL-23 and were significantly more effective in decreasing the percentage of immune cells in the BALF. This is the first in-vivo study to demonstrate that Doxycycline can effectively inhibit inflammasome pathways in the lungs. CONCLUSION AND IMPLICATIONS IV administration of elastin antibody conjugated Doxycycline-loaded albumin NPs can effectively modulate the local immune environment in the lungs, which is not achieved by IV Doxycycline even at 100-fold higher dose. This novel method of drug delivery can effectively lead to the repurposing of traditional Doxycycline as a potential adjunct treatment for managing the cytokine storm in the lungs in COPD and viral infections.
Collapse
Affiliation(s)
- Shivani Arora
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Narendra Vyavahare
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
18
|
Bochner BS, O'Sullivan JA, Chang AT, Youngblood BA. Siglecs in allergy and asthma. Mol Aspects Med 2023; 90:101104. [PMID: 35835621 PMCID: PMC10757266 DOI: 10.1016/j.mam.2022.101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/21/2023]
Abstract
The term "allergic diseases" encompasses several common, IgE-mediated conditions that range from being annoying to those that are life-threatening. Available treatments include active avoidance of the instigating allergen and the use of a variety of oral, inhaled, intranasal, intraocular and injected agents. While most individuals with allergies do well with existing therapies, there are still unmet therapeutic needs. Siglecs (sialic acid-binding, immunoglobulin-like lectins) are a family of single-pass transmembrane I-type lectins found on various subsets of cells, especially those of the immune system. All Siglecs have extracellular domains recognizing sialoside ligands, and most contain cytoplasmic domains with inhibitory signaling activity. This review focuses on Siglecs that likely play a role in regulating allergic and asthmatic responses, and how specific Siglecs, expressed on cells such as eosinophils and mast cells, are being targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
19
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
20
|
Smiljkovic D, Herrmann H, Sadovnik I, Gamperl S, Berger D, Stefanzl G, Eisenwort G, Hoermann G, Kopanja S, Dorofeeva Y, Focke-Tejkl M, Jaksch P, Hoetzenecker K, Szepfalusi Z, Valenta R, Arock M, Valent P. Expression and regulation of Siglec-6 (CD327) on human mast cells and basophils. J Allergy Clin Immunol 2023; 151:202-211. [PMID: 35953001 DOI: 10.1016/j.jaci.2022.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mast cells (MC) and basophils are effector cells of allergic reactions and display a number of activation-linked cell surface antigens. Of these antigens, however, only a few are functionally relevant and specifically expressed in these cells. OBJECTIVE We sought to identify MC- and basophil-specific surface molecules and to study their cellular distribution and regulation during cytokine-induced and IgE-dependent activation. METHODS Multicolor flow cytometry was performed to recognize surface antigens and to determine changes in antigen expression upon activation. RESULTS We identified Siglec-6 (CD327) as a differentially regulated surface antigen on human MC and basophils. In the bone marrow, Siglec-6 was expressed abundantly on MC in patients with mastocytosis and in reactive states, but it was not detected on other myeloid cells, with the exception of basophils and monocytes. In healthy individuals, allergic patients, and patients with chronic myeloid leukemia (CML), Siglec-6 was identified on CD203c+ blood basophils, a subset of CD19+ B lymphocytes, and few CD14+ monocytes, but not on other blood leukocytes. CML basophils expressed higher levels of Siglec-6 than normal basophils. IL-3 promoted Siglec-6 expression on normal and CML basophils, and stem cell factor increased the expression of Siglec-6 on tissue MC. Unexpectedly, IgE-dependent activation resulted in downregulation of Siglec-6 in IL-3-primed basophils, whereas in MC, IgE-dependent activation augmented stem cell factor-induced upregulation of Siglec-6. CONCLUSIONS Siglec-6 is a dynamically regulated marker of MC and basophils. Activated MC and basophils exhibit unique Siglec-6 responses, including cytokine-dependent upregulation and unique, cell-specific, responses to IgE-receptor cross-linking.
Collapse
Affiliation(s)
- Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany
| | - Sonja Kopanja
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Yulia Dorofeeva
- Department of Pathophysiology, Division of Immunopathology, Center for Pathophysiology, Immunology, and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology, Division of Immunopathology, Center for Pathophysiology, Immunology, and Infectiology, Medical University of Vienna, Vienna, Austria; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szepfalusi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology, Division of Immunopathology, Center for Pathophysiology, Immunology, and Infectiology, Medical University of Vienna, Vienna, Austria; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
22
|
Discovery of an agonistic Siglec-6 antibody that inhibits and reduces human mast cells. Commun Biol 2022; 5:1226. [DOI: 10.1038/s42003-022-04207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractMast cells (MC) are key drivers of allergic and inflammatory diseases. Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 is an immunoregulatory receptor found on MCs. While it is recognized that engaging Siglecs with antibodies mediates inhibition across immune cells, the mechanisms that govern this agonism are not understood. Here we generated Siglec-6 mAb clones (AK01 to AK18) to better understand Siglec-6-mediated agonism. Siglec-6 mAbs displayed epitope-dependent receptor internalization and inhibitory activity. We identified a Siglec-6 mAb (AK04) that required Fc-mediated interaction for receptor internalization and induced inhibition and antibody-dependent cellular phagocytosis against MCs. AK04-mediated MC inhibition required Siglec-6 immunoreceptor tyrosine-based inhibitory motif (ITIM) and ITIM-like domains and was associated with receptor cluster formation containing inhibitory phosphatases. Treatment of humanized mice with AK04 inhibited systemic anaphylaxis with a single dose and reduced MCs with chronic dosing. Our findings suggest Siglec-6 activity is epitope dependent and highlight an agonistic Siglec-6 mAb as a potential therapeutic approach in allergic disease.
Collapse
|