1
|
Wei Y, Zhang Y, Sun J, Li W, Zhao X, Tian N, Cao Y, Xie J. Modulation of the receptor for advanced glycation end products pathway by natural polyphenols: A therapeutic approach to neurodegenerative diseases. FOOD BIOSCI 2024; 62:105511. [DOI: 10.1016/j.fbio.2024.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Sankaran S, Dubey R, Gomatam A, Chakor R, Kshirsagar A, Lohidasan S. Deciphering the multi-functional role of Indian propolis for the management of Alzheimer's disease by integrating LC-MS/MS, network pharmacology, molecular docking, and in-vitro studies. Mol Divers 2024; 28:4325-4342. [PMID: 38466554 DOI: 10.1007/s11030-024-10818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3β, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.
Collapse
Affiliation(s)
- Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, 400098, India
| | - Rishikesh Chakor
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Ashwini Kshirsagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.
| |
Collapse
|
3
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
4
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
5
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
6
|
Qi Y, Zhou Q, Zhang Y, Deng J, Li R, Zhang X. Exploring the active components and potential mechanisms of Alpiniae oxyphyllae Fructus in treating diabetes mellitus with depression by UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking. Metab Brain Dis 2024; 39:1065-1084. [PMID: 38954241 DOI: 10.1007/s11011-024-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The growing incidence of diabetes mellitus (DM) and depression is a global public health issue. Alpiniae oxyphyllae Fructus (AOF) is a kind of medicinal and edible plant which be found with anti-diabetic property, and could improve depression-like symptoms. This study aimed to screen active targets and potential mechanisms of AOF in treating DM with depression. Injection of streptozotocin (STZ) and exposure to chronic unpredictable mild stress (CUMS) for 4 weeks were used to conduct the DM with depression mice model. Behavioral tests, indexes of glucose metabolism, monoamine neurotransmitters, inflammatory cytokine and oxidative stress were measured. Histopathological change of hippocampus tissue was observing by HE and Nissl staining. UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking were used to explore the chemical components and mechanisms of AOF on the DM with depression. AOF showed a reversed effect on body weight in DM with depression mice. Glucose metabolism and insulin resistance could be improved by treatment of AOF. In addition, AOF could alleviate depression-like behaviors based on the results of behavior tests and monoamine neurotransmitters. AOF also attenuated STZ-CUMS induced neuron injury in hippocampus. Next, a total of 61 chemical components were identified in the UPLC-Q-Exactive Orbitrap/MS analysis of the extract of AOF. Network pharmacology analysis suggested that 12 active components and 227 targets were screened from AOF, and 1802 target genes were screened from DM with depression, finally 126 intersection target genes were obtained. Drug-disease targets network was constructed and implied that the top five components with a higher degree value includes quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol. Protein-protein interaction (PPI) network showed that MAPK1, FOS, AKT1, IL6 and TP53 may be the core intersection targets. The mechanism of the effect of AOF on DM with depression was analyzed through gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, mainly involved in AGE/RAGE, PI3K/AKT, and MAPK signaling pathways. The results of molecular docking indicated that quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol all had good binding to the core intersection targets. Overall, our experimental researches have demonstrated that AOF could exert the dual effects of anti-diabetic and anti-depression on DM with depression mice, through multi-targets and multi-pathways.
Collapse
Affiliation(s)
- Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
7
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
8
|
Ye M, Nguyen S, Kim MJ, Hwang JS, Bae GW, Yang KHS, Shim I. Antidepressant Effect of Enzymatic Porcine Placenta Hydrolysate in Repeated Immobilization Stress-Induced Ovariectomized Female Mice. Curr Issues Mol Biol 2024; 46:6121-6138. [PMID: 38921037 PMCID: PMC11202803 DOI: 10.3390/cimb46060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
When postmenopausal women are under stress conditions, this exacerbates mood disorders and issues with neuroimmune systems. The porcine placenta is known to relieve menopausal depression in clinical trials, but its underlying mechanisms for depression and anti-inflammatory functions remain poorly defined. The present study was designed to examine the anti-inflammatory effects of enzymatic porcine placenta hydrolysate (EPPH) on LPS-induced levels of nitric oxide (NO), prostaglandin E2 (PGE2), corticosterone (CORT), and pro-inflammatory cytokine interleukin-1 beta (IL-1β) in RAW 264.7 macrophage cells. In addition, the neurite outgrowth of PC12 cells was evaluated to examine the effects of EPPH on neurite growth. To mimic the symptoms of women with menopause-related depression, a stressed ovariectomized (OVX) female mouse model was used to evaluate the antidepressant effects of EPPH. The female mice were randomly divided into five groups: (1) the sham-operated (Sham) group, (2) the OVX + repeated stress + saline-treated (OVX + ST) group, (3) the OVX + repeated stress + estradiol (0.2 mg/kg)-treated (positive control) group, (4) the OVX + repeated stress + EPPH (300 mg/kg)-treated (300) group, and (5) the OVX + repeated stress + EPPH (1500 mg/kg)-treated (1500) group. Female mice were OVX and repeatedly immobilization-stressed for 2 weeks (2 h/day). A tail suspension test was conducted on the 13th day, followed by the forced swimming test on the 14th day to assess the antidepressant effects of EPPH. After the behavioral tests, the levels of CORT, PGE2, and IL-1β were evaluated. In addition, c-Fos expression in the paraventricular nucleus (PVN) was evaluated using immunohistochemistry. The concentrations of NO, PGE2, and IL-1β stimulated by LPS were significantly reduced via the addition of EPPH to RAW 264.7 cells. EPPH significantly promoted neurite outgrowth in PC12 cells compared to that of the controls. In the tail suspension test, the duration of immobility was reduced in mice treated with EPPH 1500 compared to the OVX + ST group. The EPPH 1500 group had significantly decreased levels of c-Fos-positive neurons in the PVN and reduced levels of CORT and IL-1β in the serum of the Sham group. These results suggested that the high dose of EPPH administration induced the antidepressant-like effect in the ovariectomized mice with repeated stress via downregulating the levels of CORT, IL-1β, and PGE2 in the serum through reducing the expression of c-Fos in the PVN regions.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sharon Nguyen
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Min Ju Kim
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Republic of Korea (J.S.H.); (G.W.B.)
| | - Jee Sun Hwang
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Republic of Korea (J.S.H.); (G.W.B.)
| | - Gun Won Bae
- Department of R&D, Unimed Pharmaceuticals Inc., Unimed Bldg., Seoul 05567, Republic of Korea (J.S.H.); (G.W.B.)
| | - Keun-Hang Susan Yang
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Institute for Earth, Computing, Human and Observing (ECHO), Chapman University, Orange, CA 92866, USA
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Lu J, Zhang J, Wang X, Yuan F, Xin B, Li J, Yang Q, Li X, Zhang J, Wang X, Fu J, Guo C. Dl-3-n-butylphthalide promotes microglial phagocytosis and inhibits microglial inflammation via regulating AGE-RAGE pathway in APP/PS1 mice. Brain Res Bull 2024; 212:110969. [PMID: 38705540 DOI: 10.1016/j.brainresbull.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aβ levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aβ plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aβ plaques and an increase in microglial phagocytosis of Aβ plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aβ plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Jin Lu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiawei Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingxia Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyan Wang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Jianliang Fu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Wang CK, Kim G, Aleksandrova LR, Panenka WJ, Barr AM. A scoping review of the effects of mushroom and fungus extracts in rodent models of depression and tests of antidepressant activity. Front Pharmacol 2024; 15:1387158. [PMID: 38887548 PMCID: PMC11181029 DOI: 10.3389/fphar.2024.1387158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
One of the most important developments in psychopharmacology in the past decade has been the emergence of novel treatments for mood disorders, such as psilocybin for treatment-resistant depression. Psilocybin is most commonly found in different species of mushroom; however, the literature on mushroom and fungus extracts with potential antidepressant activity extends well beyond just psilocybin-containing mushrooms, and includes both psychedelic and non-psychedelic species. In the current review, we systematically review the preclinical literature on mushroom and fungus extracts, and their effects of animal models of depression and tests of antidepressant activity. The PICO structure, PRISMA checklist and the Cochrane Handbook for systematic reviews of intervention were used to guide the search strategy. A scoping search was conducted in electronic databases PubMed, CINAHL, Embase and Web of Science. The literature search identified 50 relevant and suitable published studies. These included 19 different species of mushrooms, as well as seven different species of other fungi. Nearly all studies reported antidepressant-like effects of treatment with extracts. Treatments were most commonly delivered orally, in both acute and chronically administered studies to predominantly male rodents. Multiple animal models of depression were used, the most common being unpredictable chronic mild stress, while the tail suspension test and forced swim test were most frequently used as standalone antidepressant screens. Details on each experiment with mushroom and fungus species are discussed in detail, while an evaluation is provided of the strengths and weaknesses of these studies.
Collapse
Affiliation(s)
- Catherine K. Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Gio Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Lily R. Aleksandrova
- Department of Psychiatry, Faculty of Medicine, Canada Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, Canada
| | - William J. Panenka
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, Faculty of Medicine, Canada Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| |
Collapse
|
11
|
Chen Z, Zhang S, Sun X, Meng D, Lai C, Zhang M, Wang P, Huang X, Gao X. Analysis of the Protective Effects of Rosa roxburghii-Fermented Juice on Lipopolysaccharide-Induced Acute Lung Injury in Mice through Network Pharmacology and Metabolomics. Nutrients 2024; 16:1376. [PMID: 38732622 PMCID: PMC11085916 DOI: 10.3390/nu16091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Experimental Animal Center of Guizhou Medical University, Guiyang 550025, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xuncai Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
12
|
Zhu J, Yang S, Cao Q, Li X, Jiao L, Shi Y, Yan Y, Xu L, Yang M, Xie X, Madzak C, Yan J. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5867-5877. [PMID: 38446418 DOI: 10.1021/acs.jafc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.
Collapse
Affiliation(s)
- Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shu Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | | | - Xiaoyan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanxing Shi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Catherine Madzak
- UMR 782 SayFood, INRAE, AgroParisTech, Paris-Saclay University, Palaiseau 91400, France
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
13
|
Chen F, Zhang X, Wang J, Wang F, Mao J. P-coumaric Acid: Advances in Pharmacological Research Based on Oxidative Stress. Curr Top Med Chem 2024; 24:416-436. [PMID: 38279744 DOI: 10.2174/0115680266276823231230183519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/28/2024]
Abstract
P-coumaric acid is an important phenolic compound that is mainly found in fruits, vegetables, grains, and fungi and is also abundant in Chinese herbal medicines. In this review, the pharmacological research progress of p-coumaric acid in recent years was reviewed, with emphasis on its role and mechanism in oxidative stress-related diseases, such as inflammation, cardiovascular diseases, diabetes, and nervous system diseases. Studies have shown that p-coumaric acid has a positive effect on the prevention and treatment of these diseases by inhibiting oxidative stress. In addition, p-coumaric acid also has anti-tumor, antibacterial, anti-aging skin and other pharmacological effects. This review will provide reference and inspiration for further research on the pharmacological effects of p-coumaric acid.
Collapse
Affiliation(s)
- Feixiang Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junxiang Wang
- Experimental Center of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Jinan, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Cao Y, Chen H, Tan Y, Yu XD, Xiao C, Li Y, Reilly J, He Z, Shu X. Protection of p-Coumaric acid against chronic stress-induced neurobehavioral deficits in mice via activating the PKA-CREB-BDNF pathway. Physiol Behav 2024; 273:114415. [PMID: 38000530 DOI: 10.1016/j.physbeh.2023.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
There is a body of evidence to suggest that chronic stress modulates neurochemical homeostasis, alters neuronal structure, inhibits neurogenesis and contributes to development of mental disorders. Chronic stress-associated mental disorders present common symptoms of cognitive impairment and depression with complex disease mechanisms. P-coumaric acid (p-CA), a natural phenolic compound, is widely distributed in vegetables, cereals and fruits. p-CA exhibits a wide range of health-related effects, including anti-oxidative-stress, anti-mutagenesis, anti-inflammation and anti-cancer activities. The current study aims to evaluate the therapeutic potential of p-CA against stress-associated mental disorders. We assessed the effect of p-CA on cognitive deficits and depression-like behavior in mice exposed to chronic restraint stress (CRS); we used network pharmacology, biochemical and molecular biological approaches to elucidate the underlying molecular mechanisms. CRS exposure caused memory impairments and depression-like behavior in mice; p-CA administration attenuated these CRS-induced memory deficits and depression-like behavior. Network pharmacology analysis demonstrated that p-CA was possibly involved in multiple targets and a variety of signaling pathways. Among them, the protein kinase A (PKA) - cAMP-response element binding protein (CREB) - brain derived neurotrophic factor (BDNF) signaling pathway was predominant and further characterized. The levels of PKA, phosphorylated CREB (pCREB) and BDNF were significantly lowered in the hippocampus of CRS mice, suggesting disruption of the PKA-CREB-BDNF signaling pathway; p-CA treatment restored the signaling pathway. Furthermore, CRS upregulated expression of proinflammatory cytokines in hippocampus, while p-CA reversed the CRS-induced effects. Our findings suggest that p-CA will offer therapeutic benefit to patients with stress-associated mental disorders.
Collapse
Affiliation(s)
- Yanqun Cao
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Hao Chen
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Yinna Tan
- Anesthesiology department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Xu-Dong Yu
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Chuli Xiao
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Yin Li
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhiming He
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China.
| | - Xinhua Shu
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
15
|
Schmidt L, Vargas BK, Monteiro CS, Pappis L, Mello RDO, Machado AK, Emanuelli T, Ayub MAZ, Moreira JCF, Augusti PR. Bioavailable Phenolic Compounds from Olive Pomace Present Anti-Neuroinflammatory Potential on Microglia Cells. Foods 2023; 12:4048. [PMID: 38002106 PMCID: PMC10670107 DOI: 10.3390/foods12224048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The neuroinflammatory process is considered one of the main characteristics of central nervous system diseases, where a pro-inflammatory response results in oxidative stress through the generation of reactive oxygen and nitrogen species (ROS and RNS). Olive (Olea europaea L.) pomace is a by-product of olive oil production that is rich in phenolic compounds (PCs), known for their antioxidant and anti-inflammatory properties. This work looked at the antioxidant and anti-neuroinflammatory effects of the bioavailable PC from olive pomace in cell-free models and microglia cells. The bioavailable PC of olive pomace was obtained through the process of in vitro gastrointestinal digestion of fractionated olive pomace (OPF, particles size < 2 mm) and micronized olive pomace (OPM, particles size < 20 µm). The profile of the PC that is present in the bioavailable fraction as well as its in vitro antioxidant capacity were determined. The anti-neuroinflammatory capacity of the bioavailable PC from olive pomace (0.03-3 mg L-1) was evaluated in BV-2 cells activated by lipopolysaccharide (LPS) for 24 h. The total bioavailable PC concentration and antioxidant activity against peroxyl radical were higher in the OPM than those observed in the OPF sample. The activation of BV-2 cells by LPS resulted in increased levels of ROS and nitric oxide (NO). The bioavailable PCs from both OPF and OPM, at their lowest concentrations, were able to reduce the ROS generation in activated BV-2 cells. In contrast, the highest PC concentration of OPF and OPM was able to reduce the NO levels in activated microglial cells. Our results demonstrate that bioavailable PCs from olive pomace can act as anti-neuroinflammatory agents in vitro, independent of particle size. Moreover, studies approaching ways to increase the bioavailability of PCs from olive pomace, as well as any possible toxic effects, are needed before a final statement on its nutritional use is made.
Collapse
Affiliation(s)
- Luana Schmidt
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Bruna Krieger Vargas
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Lauren Pappis
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria CEP 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| | - José Cláudio Fonseca Moreira
- Institute of Basic Health Sciences, Postgraduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600-Annex, Porto Alegre CEP 90035-003, RS, Brazil; (L.S.); (J.C.F.M.)
| | - Paula Rossini Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre CEP 91501-970, RS, Brazil (M.A.Z.A.)
| |
Collapse
|
16
|
Yang L, Zhao Y, Qu R, Fu Y, Zhou C, Yu J. A network pharmacology and molecular docking approach to reveal the mechanism of Chaihu Anxin Capsule in depression. Front Endocrinol (Lausanne) 2023; 14:1256045. [PMID: 37745719 PMCID: PMC10513492 DOI: 10.3389/fendo.2023.1256045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction As one of the most frequently diagnosed mental disorders, depression is expected to become the most common disease worldwide by 2030. Previous studies have shown that Chaihu Anxin Capsule has powerful antidepressant effects. However, its mechanisms are not fully understood. The aim of our research is to reveal the mechanisms of Chaihu Anxin Capsule in treating depression. Methods Information about the ingredients of the herb was gathered using the TCMSP. Genes associated with antidepressants were gathered from the GeneCards database. An "herbal-ingredient-target" network was constructed and analyzed using Cytoscape software. The PPI network of the antidepressant targets of Chaihu Anxin Capsule was constructed using the STRING database. KEGG pathway and GO enrichment were used to analyze the antidepressant targets. Molecular docking technology was used to confirm the capacity of the primary active ingredients of Chaihu Anxin Capsule to bind to central targets using AutoDock Vina and PyMOL software. Results Network analysis showed that five targets might be therapeutic targets of Chaihu Anxin Capsule in depression, namely, JUN, IL6, AKT1, TP53, and STAT3. The gene enrichment analysis implied that Chaihu Anxin Capsule benefits patients with depression by modulating pathways related to lipids and atherosclerosis and the AGE-RAGE signaling pathway in diabetic complications. Molecular docking analyses revealed that JUN, IL6, AKT1, TP53, and STAT3 had good affinities for quercetin, beta-sitosterol and kaempferol. Conclusion According to the bioinformatics data, the antidepressant effects of Chaihu Anxin Capsule may be primarily linked to cholesterol and atherosclerosis as well as the AGE-RAGE signaling pathway in diabetic complications. These results emphasize that the expected therapeutic targets may be possible indicators for antidepressant activity.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruochen Qu
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, China
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhou
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Yu
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Han XX, Tian YG, Liu WJ, Zhao D, Liu XF, Hu YP, Feng SX, Li JS. Metabolomic profiling combined with network analysis of serum pharmacochemistry to reveal the therapeutic mechanism of Ardisiae Japonicae Herba against acute lung injury. Front Pharmacol 2023; 14:1131479. [PMID: 37554987 PMCID: PMC10405081 DOI: 10.3389/fphar.2023.1131479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Introduction: Acute lung injury (ALI) is a common and devastating respiratory disease associated with uncontrolled inflammatory response and transepithelial neutrophil migration. In recent years, a growing number of studies have found that Ardisiae Japonicae Herba (AJH) has a favorable anti-inflammatory effect. However, its serum material basis and molecular mechanism are still unknown in ALI treatment. In this study, metabolomics and network analysis of serum pharmacochemistry were used to explore the therapeutic effect and molecular mechanism of AJH against lipopolysaccharide (LPS)-induced ALI. Methods: A total of 12 rats for serum pharmacochemistry analysis were randomly divided into the LPS group and LPS + AJH-treated group (treated with AJH extract 20 g/kg/d), which were administered LPS (2 mg/kg) by intratracheal instillation and then continuously administered for 7 days. Moreover, 36 rats for metabolomic research were divided into control, LPS, LPS + AJH-treated (5, 10, and 20 g/kg/d), and LPS + dexamethasone (Dex) (2.3 × 10-4 g/kg/d) groups. After 1 h of the seventh administration, the LPS, LPS + AJH-treated, and LPS + Dex groups were administered LPS by intratracheal instillation to induce ALI. The serum pharmacochemistry profiling was performed by UPLC-Orbitrap Fusion MS to identify serum components, which further explore the molecular mechanism of AJH against ALI by network analysis. Meanwhile, metabolomics was used to select the potential biomarkers and related metabolic pathways and to analyze the therapeutic mechanism of AJH against ALI. Results: The results showed that 71 serum components and 18 related metabolites were identified in ALI rat serum. We found that 81 overlapping targets were frequently involved in AGE-RAGE, PI3K-AKT, and JAK-STAT signaling pathways in network analysis. The LPS + AJH-treated groups exerted protective effects against ALI by reducing the infiltration of inflammatory cells and achieved anti-inflammatory efficacy by significantly regulating the interleukin (IL)-6 and IL-10 levels. Metabolomics analysis shows that the therapeutic effect of AJH on ALI involves 43 potential biomarkers and 14 metabolic pathways, especially phenylalanine, tyrosine, and tryptophan biosynthesis and linoleic acid metabolism pathways, to be influenced, which implied the potential mechanism of AJH in ALI treatment. Discussion: Our study initially elucidated the material basis and effective mechanism of AJH against ALI, which provided a solid basis for AJH application.
Collapse
Affiliation(s)
- Xiao-Xiao Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan-Ge Tian
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Jing Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Di Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue-Fang Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan-Ping Hu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Su-Xiang Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jian-Sheng Li
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Oh DR, Choi C, Kim MJ, Mun BY, Ko H, Oh KN, Jo A, Kim JY, Bae D. Antidepressant effects of p-coumaric acid isolated from Vaccinium bracteatum leaves extract on chronic restraint stress mouse model and antagonism of serotonin 6 receptor in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154871. [PMID: 37270968 DOI: 10.1016/j.phymed.2023.154871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Vaccinium bracteatum Thunb. leaves (VBL) are used in traditional herbal medicines to treat various biological diseases. p-coumaric acid (CA), the main active component of VBL, has neuroprotective effects against corticosterone-induced damage in vitro. However, the effects of CA on immobility induced by chronic restraint stress (CRS) in a mouse model and 5-HT receptor activity have not been investigated. HYPOTHESIS/PURPOSE We investigated the antagonistic effects of VBL, NET-D1602, and the three components of Gαs protein-coupled 5-HT receptors. Additionally, we identified the effects and mechanism of action of CA, the active component of NET-D1602, in the CRS-exposed model. METHODS For in vitro analyses, we used 1321N1 cells stably expressing human 5-HT6 receptors and CHO-K1 expressing human 5-HT4 or 5-HT7 receptors cell lines to study the mechanism of action. For in vivo analyses, CRS-exposed mice were orally administered CA (10, 50, or 100 mg/kg) daily for 21 consecutive days. The effects of CA were analyzed by assessing behavioral changes using a forced swim test (FST), measuring levels of hypothalamic-pituitary-adrenal (HPA) axis-related hormones in ntial therapeutic effects as 5-HT6 receptor antagonists for neurodegenerative diseases and depressioserum, and acetylcholinesterase (AChE), monoamines, including 5-HT, dopamine, and norepinephrine, using enzyme-linked immunosorbent assay kits. The underlying molecular mechanisms of the serotonin transporter (SERT), monoamine oxidase A (MAO-A), and extracellular signal-regulated kinase (ERK)/protein kinase B (Akt)/mTORC1 signaling were detected using western blotting. RESULTS CA was confirmed to be an active component in the antagonistic effects of NET-D1602 on 5-HT6 receptor activity through decreases in cAMP and ERK1/2 phosphorylation. Moreover, CRS-exposed mice treated with CA showed a significantly reduced immobility time in the FST. CA also significantly decreased corticosterone, corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) levels. CA enhanced 5-HT, dopamine, and norepinephrine levels in the hippocampus (HC) and prefrontal cortex (PFC) but decreased MAO-A and SERT protein levels. Similarly, CA significantly upregulated the ERK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), Akt/mTOR/p70S6K/S6 signaling pathways in both HC and the PFC. CONCLUSION CA contained in NET-D1602 may play the antidepressant effects against CRS-induced depression-like mechanism and the selective antagonist effect of 5-HT6 receptor.
Collapse
Affiliation(s)
- Dool-Ri Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea
| | - Chulyung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Moon Jong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea
| | - Bo Yeong Mun
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea
| | - Haeju Ko
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea
| | - Kyo-Nyeo Oh
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea
| | - Ara Jo
- Department of Biomedical Science, College of Natural Science, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jin Young Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, 309, pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Donghyuck Bae
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), 288, Woodland-gil, Anyang-myeon, Jangheung-gun, Jeollanamdo 59338, Republic of Korea.
| |
Collapse
|
19
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
20
|
Correia AS, Cardoso A, Vale N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 2023; 12:470. [PMID: 36830028 PMCID: PMC9951986 DOI: 10.3390/antiox12020470] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Depression is a prevalent, complex, and highly debilitating disease. The full comprehension of this disease is still a global challenge. Indeed, relapse, recurrency, and therapeutic resistance are serious challenges in the fight against depression. Nevertheless, abnormal functioning of the stress response, inflammatory processes, neurotransmission, neurogenesis, and synaptic plasticity are known to underlie the pathophysiology of this mental disorder. The role of oxidative stress in disease and, particularly, in depression is widely recognized, being important for both its onset and development. Indeed, excessive generation of reactive oxygen species and lack of efficient antioxidant response trigger processes such as inflammation, neurodegeneration, and neuronal death. Keeping in mind the importance of a detailed study about cellular and molecular mechanisms that are present in depression, this review focuses on the link between oxidative stress and the stress response, neuroinflammation, serotonergic pathways, neurogenesis, and synaptic plasticity's imbalances present in depression. The study of these mechanisms is important to lead to a new era of treatment and knowledge about this highly complex disease.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
21
|
Yan Y, Wang M, Gan X, Wang X, Fu C, Li Y, Chen N, Lv P, Zhang Y. Evaluation of pharmacological activities and active components in Tremella aurantialba by instrumental and virtual analyses. Front Nutr 2022; 9:1083581. [PMID: 36570135 PMCID: PMC9767953 DOI: 10.3389/fnut.2022.1083581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
As a kind of medicinal and edible homologous fungus, there is a lack of data on the medicinal value of Tremella aurantialba. In this study, ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) was used to screen the chemical components in T. aurantialba. Then, network pharmacology was used to reveal the potential biological activities, active compounds, and therapeutic targets of T. aurantialba. Finally, the potential binding sites of the active compounds of T. aurantialba and key targets were studied by molecular docking. Results showed that 135 chemical components in T. aurantialba, especially linoleic acid, and linolenic acid have significant biological activities in neuroprotective, anticancer, immune, hypoglycemic, and cardiovascular aspects. The existence of these bioactive natural products in T. aurantialba is consistent with the traditional use of T. aurantialba. Moreover, the five diseases have comorbidity molecular mechanisms and therapeutic targets. The molecular docking showed that linolenic acid, adenosine, and vitamin D2 had higher binding energy with RXRA, MAPK1, and JUN, respectively. This study is the first to systematically identify chemical components in T. aurantialba and successfully predict its bioactivity, key active compounds, and drug targets, providing a reliable novel strategy for future research on the bioactivity development and utilization of T. aurantialba.
Collapse
Affiliation(s)
- Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Xiaoruo Gan
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China,Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenghao Fu
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Pin Lv
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China,*Correspondence: Pin Lv,
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China,Yan Zhang,
| |
Collapse
|
22
|
Huang J, Chen B, Wang H, Hu S, Yu X, Reilly J, He Z, You Y, Shu X. Dihydromyricetin Attenuates Depressive-like Behaviors in Mice by Inhibiting the AGE-RAGE Signaling Pathway. Cells 2022; 11:cells11233730. [PMID: 36496991 PMCID: PMC9738449 DOI: 10.3390/cells11233730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Depression is a complex mental disorder, affecting approximately 280 million individuals globally. The pathobiology of depression is not fully understood, and the development of new treatments is urgently needed. Dihydromyricetin (DHM) is a natural flavanone, mainly distributed in Ampelopsis grossedentata. DHM has demonstrated a protective role against cardiovascular disease, diabetes, liver disease, cancer, kidney injury and neurodegenerative disorders. In the present study, we examined the protective effect of DHM against depression in a chronic depression mouse model induced by corticosterone (CORT). Animals exposed to CORT displayed depressive-like behaviors; DHM treatment reversed these behaviors. Network pharmacology analyses showed that DHM's function against depression involved a wide range of targets and signaling pathways, among which the inflammation-linked targets and signaling pathways were critical. Western blotting showed that CORT-treated animals had significantly increased levels of the advanced glycation end product (AGE) and receptor of AGE (RAGE) in the hippocampus, implicating activation of the AGE-RAGE signaling pathway. Furthermore, enzyme-linked immunosorbent assay (ELISA) detected a marked increase in the production of proinflammatory cytokines, interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNFα) in the hippocampus of CORT-treated mice. DHM administration significantly counteracted these CORT-induced changes. These findings suggest that protection against depression by DHM is mediated by suppression of neuroinflammation, predominantly via the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Jun Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
| | - Bin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Hao Wang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
| | - Sheng Hu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xudong Yu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (Y.Y.); (X.S.)
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
- Correspondence: (Y.Y.); (X.S.)
| |
Collapse
|
23
|
Ghaderi S, Gholipour P, Komaki A, Salehi I, Rashidi K, Esmaeil Khoshnam S, Rashno M. p-Coumaric acid ameliorates cognitive and non-cognitive disturbances in a rat model of Alzheimer’s disease: The role of oxidative stress and inflammation. Int Immunopharmacol 2022; 112:109295. [DOI: 10.1016/j.intimp.2022.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|