1
|
Bravo-Reyna CC, Miranda-Galván V, Reyes-Soto G, Vicuña R, Alanis-Mendizabal J, Escobar-Valderrama M, Arango D, Bautista CJ, Ramírez V, Torres-Villalobos G. Evaluation of the Chetomin effect on histopathological features in a murine acute spinal cord injury model. World Neurosurg X 2025; 25:100414. [PMID: 39411272 PMCID: PMC11474364 DOI: 10.1016/j.wnsx.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Several research studies have been focused on improving the treatment and prognosis of acute spinal cord injury, as part of this initiative we investigated the use of Chetomin to reduce the inflammatory response in this pathology. Methods An experimental, prospective, cross-sectional study was performed using 42 Wistar rats where we analyzed the effect of Chetomin compared to methylprednisolone administered 1 and 8 h after the spinal cord injury in a murine model. Results Chetomin administration 8h post-injury decreased IL-6 and VEGF expression; and, and its administration 1h post-injury decreased NF-kB expression. Conclusions Chetomin has anti-inflammatory effects in acute spinal cord injury, whether these effects are observable with other proinflammatory markers should be investigated.
Collapse
Affiliation(s)
- Carlos César Bravo-Reyna
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Vladimir Miranda-Galván
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Gervith Reyes-Soto
- Oncologic Neurosurgery Unit, Instituto Nacional de Cancerología, Tlalpan, Zip code 14080, Mexico
| | - R. Vicuña
- Department of Pathology, Hospital Central Sur de Alta Especialidad PEMEX Picacho, Tlalpan, Zip code 14140, Mexico
| | - Jorge Alanis-Mendizabal
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Manuel Escobar-Valderrama
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - David Arango
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Claudia J. Bautista
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Victoria Ramírez
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| | - Gonzalo Torres-Villalobos
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Zip code 14080, Mexico
| |
Collapse
|
2
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Masoumi M, Bodaghi AB, Khorramdelazad H, Ebadi E, Houshmandfar S, Saeedi-Boroujeni A, Karami J. Unraveling the immunometabolism puzzle: Deciphering systemic sclerosis pathogenesis. Heliyon 2024; 10:e35445. [PMID: 39170585 PMCID: PMC11336762 DOI: 10.1016/j.heliyon.2024.e35445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The article delves into the pathogenesis of systemic sclerosis (SSc) with an emphasis on immunometabolism dysfunctions. SSc is a complex autoimmune connective tissue disorder with skin and organ fibrosis manifestation, vasculopathy, and immune dysregulation. A growing amount of research indicates that immunometabolism plays a significant role in the pathogenesis of autoimmune diseases, including SSc. The review explores the intricate interplay between immune dysfunction and metabolic alterations, focusing on the metabolism of glucose, lipids, amino acids, the TCA (tricarboxylic acid) cycle, and oxidative stress in SSc disease. According to recent research, there are changes in various metabolic pathways that could trigger or perpetuate the SSc disease. Glycolysis and TCA pathways play a pivotal role in SSc pathogenesis through inducing fibrosis. Dysregulated fatty acid β-oxidation (FAO) and consequent lipid metabolism result in dysregulated extracellular matrix (ECM) breakdown and fibrosis induction. The altered metabolism of amino acids can significantly be involved in SSc pathogenesis through various mechanisms. Reactive oxygen species (ROS) production has a crucial role in tissue damage in SSc patients. Indeed, immunometabolism involvement in SSc is highlighted, which offers potential therapeutic avenues. The article underscores the need for comprehensive studies to unravel the multifaceted mechanisms driving SSc pathogenesis and progression.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Unit, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Ali Bayat Bodaghi
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Ebadi
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Sheyda Houshmandfar
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Jafar Karami
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
4
|
Mainali R, Buechler N, Otero C, Edwards L, Key CC, Furdui C, Quinn MA. Itaconate stabilizes CPT1a to enhance lipid utilization during inflammation. eLife 2024; 12:RP92420. [PMID: 38305778 PMCID: PMC10945551 DOI: 10.7554/elife.92420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
One primary metabolic manifestation of inflammation is the diversion of cis-aconitate within the tricarboxylic acid (TCA) cycle to synthesize the immunometabolite itaconate. Itaconate is well established to possess immunomodulatory and metabolic effects within myeloid cells and lymphocytes, however, its effects in other organ systems during sepsis remain less clear. Utilizing Acod1 knockout mice that are deficient in synthesizing itaconate, we aimed to understand the metabolic role of itaconate in the liver and systemically during sepsis. We find itaconate aids in lipid metabolism during sepsis. Specifically, Acod1 KO mice develop a heightened level of hepatic steatosis when induced with polymicrobial sepsis. Proteomics analysis reveals enhanced expression of enzymes involved in fatty acid oxidation in following 4-octyl itaconate (4-OI) treatment in vitro. Downstream analysis reveals itaconate stabilizes the expression of the mitochondrial fatty acid uptake enzyme CPT1a, mediated by its hypoubiquitination. Chemoproteomic analysis revealed itaconate interacts with proteins involved in protein ubiquitination as a potential mechanism underlying its stabilizing effect on CPT1a. From a systemic perspective, we find itaconate deficiency triggers a hypothermic response following endotoxin stimulation, potentially mediated by brown adipose tissue (BAT) dysfunction. Finally, by use of metabolic cage studies, we demonstrate Acod1 KO mice rely more heavily on carbohydrates versus fatty acid sources for systemic fuel utilization in response to endotoxin treatment. Our data reveal a novel metabolic role of itaconate in modulating fatty acid oxidation during polymicrobial sepsis.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Cristian Otero
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Laken Edwards
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| |
Collapse
|
5
|
Shafqat A, Khan JA, Alkachem AY, Sabur H, Alkattan K, Yaqinuddin A, Sing GK. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int J Mol Sci 2023; 24:17583. [PMID: 38139412 PMCID: PMC10744338 DOI: 10.3390/ijms242417583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation. Neutrophils are a heterogeneous group of immune cells from which are derived extracellular traps (NETs), reactive oxygen species, cytokines, chemokines, immunomodulatory factors, and alarmins that regulate the recruitment and phenotypes of neutrophils, macrophages, dendritic cells, T cells, and B cells. In addition, cytokine-stimulated neutrophils can express class II major histocompatibility complex and the internal machinery necessary for successful antigen presentation to memory CD4+ T cells. This may be relevant in the context of vaccine memory. Neutrophils thus emerge as orchestrators of immune responses that play a key role in determining the outcome of infections, vaccine efficacy, and chronic diseases like autoimmunity and cancer. This review aims to provide a synthesis of current evidence as regards the role of these functions of neutrophils in homeostasis and disease.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia (K.A.); (A.Y.); (G.K.S.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Zhao M, Lin Z, Zheng Z, Yao D, Yang S, Zhao Y, Chen X, Aweya JJ, Zhang Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front Immunol 2023; 14:1241934. [PMID: 37744346 PMCID: PMC10513178 DOI: 10.3389/fimmu.2023.1241934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
8
|
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst (Seoul) 2023; 27:149-158. [PMID: 37465289 PMCID: PMC10351453 DOI: 10.1080/19768354.2023.2234986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Autoimmune diseases are conditions in which the immune system mistakenly targets and damages healthy tissue in the body. In recent decades, the incidence of autoimmune diseases has increased, resulting in a significant disease burden. The current autoimmune therapies focus on targeting inflammation or inducing immunosuppression rather than addressing the underlying cause of the diseases. The activity of metabolic pathways is elevated in autoimmune diseases, and metabolic changes are increasingly recognized as important pathogenic processes underlying these. Therefore, metabolically targeted therapies may represent an important strategy for treating autoimmune diseases. This review provides a comprehensive overview of the evidence surrounding glucose metabolic reprogramming and its potential applications in drug discovery and development for autoimmune diseases, such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis.
Collapse
Affiliation(s)
- Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jin Han
- Department of Medical Biotechnology, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Yuk JM, Park EJ, Kim IS, Jo EK. Itaconate family-based host-directed therapeutics for infections. Front Immunol 2023; 14:1203756. [PMID: 37261340 PMCID: PMC10228716 DOI: 10.3389/fimmu.2023.1203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Itaconate is a crucial anti-infective and anti-inflammatory immunometabolite that accumulates upon disruption of the Krebs cycle in effector macrophages undergoing inflammatory stress. Esterified derivatives of itaconate (4-octyl itaconate and dimethyl itaconate) and its isomers (mesaconate and citraconate) are promising candidate drugs for inflammation and infection. Several itaconate family members participate in host defense, immune and metabolic modulation, and amelioration of infection, although opposite effects have also been reported. However, the precise mechanisms by which itaconate and its family members exert its effects are not fully understood. In addition, contradictory results in different experimental settings and a lack of clinical data make it difficult to draw definitive conclusions about the therapeutic potential of itaconate. Here we review how the immune response gene 1-itaconate pathway is activated during infection and its role in host defense and pathogenesis in a context-dependent manner. Certain pathogens can use itaconate to establish infections. Finally, we briefly discuss the major mechanisms by which itaconate family members exert antimicrobial effects. To thoroughly comprehend how itaconate exerts its anti-inflammatory and antimicrobial effects, additional research on the actual mechanism of action is necessary. This review examines the current state of itaconate research in infection and identifies the key challenges and opportunities for future research in this field.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In Soo Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|