1
|
Lin J, Bai S, He L, Yang Y, Li X, Luo L, Wang Y, Chen YY, Qin J, Zhong Y. Cytotoxic Lymphocyte-Monocyte Complex Reflects the Dynamics of Coronavirus Disease 2019 Systemic Immune Response. J Infect Dis 2024; 230:5-14. [PMID: 39052699 DOI: 10.1093/infdis/jiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.
Collapse
Affiliation(s)
- Jiajia Lin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shiyu Bai
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liheng He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Ye Yang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiyue Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Yi Zhong
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
2
|
Sharifi MJ, Gheibi N, Panahi F, Sharifzadeh S, Nasiri N. MDS-Type Morphologic Abnormalities of Peripheral Blood Granulocytes in Symptomatic COVID-19 Patients. Int J Hematol Oncol Stem Cell Res 2024; 18:249-253. [PMID: 39257703 PMCID: PMC11381661 DOI: 10.18502/ijhoscr.v18i3.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/12/2024] [Indexed: 09/12/2024] Open
Abstract
Background: Hematological abnormalities in COVID-19 infection included quantitative and qualitative changes and should be further characterized. Evaluation for myelodysplastic syndromes (MDS) is usually prompted by abnormal hematologic findings and the presence of dysplastic morphologies. Viral infections are considered to be the cause of dysplastic morphologies and should be considered by morphologists. There are few reports of dysplastic abnormal morphologies in patients with COVID-19 infection. However, such correlations still have to be clarified. Materials and Methods: In the present study, we examined the granulocyte lineage morphological abnormalities in symptomatic RT-PCR-confirmed COVID patients. Peripheral blood samples were collected from 82 patients with symptomatic COVID-19. Blood smears were prepared according to the standard Wright-Giemsa staining procedure. The morphological examination was carried out by two laboratory experts. Results: Blood smear examination revealed common myelodysplastic syndrome (MDS) type abnormalities including but not limited to pseudo-pelger nuclear lobulation (4.8%), hypogranulation (7.3%), Howell-Jolly-like bodies or detached nuclear segments (6.0%) and elongated and thin nuclear filaments (6.0%). One case of abnormal immature granulocyte and ring form nucleus is also evident. Conclusion: Our results accounted for the possibility of active COVID-19 infection in all subjects with granulocyte dysplasia. These results are of practical importance for patients suspected of having myelodysplastic syndromes or disease processes associated with myeloid malignancies.
Collapse
Affiliation(s)
- Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Gheibi
- Department of Information Technology, Aliasghar Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Panahi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Nasiri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Abramowitz BR, Coles M, Aytaman A, Chander-Roland B, DiLeo DA. Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient: A case report and review of literature. World J Clin Cases 2024; 12:3561-3566. [PMID: 38983408 PMCID: PMC11229906 DOI: 10.12998/wjcc.v12.i18.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND It is well-described that the coronavirus disease 2019 (COVID-19) infection is associated with an increased risk of thrombotic complications. While there have been many cases of pulmonary emboli and deep vein thrombosis in these patients, reports of COVID-19 associated portal vein thrombosis (PVT) have been uncommon. We present a unique case of concomitant PVT and splenic artery thrombosis in a COVID-19 patient. CASE SUMMARY A 77-year-old-male with no history of liver disease presented with three days of left-sided abdominal pain. One week earlier, the patient was diagnosed with mildly symptomatic COVID-19 and was treated with nirmatrelvir/ritonavir. Physical exam revealed mild right and left lower quadrant tenderness, but was otherwise unremarkable. Significant laboratory findings included white blood cell count 12.5 K/μL, total bilirubin 1.6 mg/dL, aminoaspartate transferase 40 U/L, and alanine aminotransferase 61 U/L. Computed tomography of the abdomen and pelvis revealed acute PVT with thrombus extending from the distal portion of the main portal vein into the right and left branches. Also noted was a thrombus within the distal portion of the splenic artery with resulting splenic infarct. Hypercoagulable workup including prothrombin gene analysis, factor V Leiden, cardiolipin antibody, and JAK2 mutation were all negative. Anticoagulation with enoxaparin was initiated, and the patient's pain improved. He was discharged on apixaban. CONCLUSION It is quite uncommon for PVT to present simultaneously with an arterial thrombotic occlusion, as in the case of our patient. Unusual thrombotic manifestations are classically linked to hypercoagulable states including malignancy and hereditary and autoimmune disorders. Viral infections such as Epstein-Barr virus, cytomegalovirus, viral hepatitis, and COVID-19 have all been found to increase the risk of splanchnic venous occlusions, including PVT. In our patient, prompt abdominal imaging led to early detection of thrombus, early treatment, and an excellent outcome. This case is unique in that it is the second known case within the literature of simultaneous PVT and splenic artery thrombosis in a COVID-19 patient.
Collapse
Affiliation(s)
- Binyamin Ravina Abramowitz
- Department of Gastroenterology and Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Michael Coles
- Department of Gastroenterology and Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Ayse Aytaman
- Department of Gastroenterology and Hepatology, Brooklyn Campus of the Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209, United States
| | - Bani Chander-Roland
- Department of Gastroenterology and Hepatology, Brooklyn Campus of the Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209, United States
| | - Daniel Anthony DiLeo
- Department of Gastroenterology and Hepatology, Brooklyn Campus of the Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY 11209, United States
| |
Collapse
|
4
|
Teluguakula N, Chow VTK, Pandareesh MD, Dasegowda V, Kurrapotula V, Gopegowda SM, Radic M. SARS-CoV-2 and Influenza Co-Infection: Fair Competition or Sinister Combination? Viruses 2024; 16:793. [PMID: 38793676 PMCID: PMC11125941 DOI: 10.3390/v16050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic remains a serious public health problem globally. During winter influenza seasons, more aggressive SARS-CoV-2 infections and fatalities have been documented, indicating that influenza co-infections may significantly impact the disease outcome of COVID-19. Both influenza and SARS-CoV-2 viruses share many similarities in their transmission and their cellular tropism for replication in the human respiratory tract. However, the complex intricacies and multi-faceted dynamics of how the two pathogens interact to ensure their survival in the same lung microenvironment are still unclear. In addition, clinical studies on influenza co-infections in COVID-19 patients do not provide conclusive evidence of how influenza co-infection mechanistically modifies disease outcomes of COVID-19. This review discusses various viral as well as host factors that potentially influence the survival or synergism of these two respiratory pathogens in the infected lung microenvironment.
Collapse
Affiliation(s)
- Narasaraju Teluguakula
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, Karnataka, India; (M.D.P.); (V.D.); (V.K.); (S.M.G.)
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 119228, Singapore;
| | - Mirazkar Dasharatharao Pandareesh
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, Karnataka, India; (M.D.P.); (V.D.); (V.K.); (S.M.G.)
- Department of Biochemistry, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, B.G Nagara 571448, Karnataka, India
| | - Venkatesha Dasegowda
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, Karnataka, India; (M.D.P.); (V.D.); (V.K.); (S.M.G.)
| | - Vidyasagar Kurrapotula
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, Karnataka, India; (M.D.P.); (V.D.); (V.K.); (S.M.G.)
| | - Shivaramu M. Gopegowda
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, Karnataka, India; (M.D.P.); (V.D.); (V.K.); (S.M.G.)
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
5
|
Ji R, Wu Y, Ye Y, Li Y, Li Y, Zhong G, Fan W, Feng C, Chen H, Teng X, Wu Y, Xu J. Stimulation of PSTPIP1 to trigger proinflammatory responses in asymptomatic SARS-CoV-2 infections. Heliyon 2024; 10:e26886. [PMID: 38463809 PMCID: PMC10920375 DOI: 10.1016/j.heliyon.2024.e26886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Background A hyperinflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection gravely worsens the clinical progression of coronavirus disease 2019 (COVID-19). Although the undesirable effects of inflammasome activation have been correlated to the severity of COVID-19, the mechanisms of this process in the asymptomatic infection and disease progression have not yet been clearly elucidated. Methods We performed strand-specific RNA sequencing in 39 peripheral blood mononuclear cell (PBMC) samples from asymptomatic individuals(n = 10), symptomatic patients(n = 16) and healthy donors(n = 13). Results Dysregulation of pyrin inflammasomes along with the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene was identified in SARS-COV-2 infection. Notably, the PSTPIP1 expression level showed a significant negative correlation with an adjacent long-noncoding RNA (lncRNA) RP11-797A18.6 in the asymptomatic individuals compared with the healthy controls. In addition, a decline in the nuclear factor kappa B subunit 1 (NFKB1) gene expression was observed in asymptomatic infection, followed by a rise in the mild and moderate disease stages, suggesting that altered NFKB1 expression and associated proinflammatory signals may trigger a disease progression. Conclusions Overall, our results indicate that PSTPIP1-dependent pyrin inflammasomes-mediated pyroptosis and NF-κB activation might be potential preventive targets for COVID-19 disease development and progression.
Collapse
Affiliation(s)
- Ruili Ji
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanling Li
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Yizhe Li
- Department of Laboratory Science, West China TianFu Hospital, Sichuan University, Sichuan, China
| | - Guojiu Zhong
- Department of Respiratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Wentao Fan
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Chengjuan Feng
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Hui Chen
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Xiangyun Teng
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Yunli Wu
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Jianhua Xu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| |
Collapse
|
6
|
Shen S, Guo H, Li Y, Zhang L, Tang Y, Li H, Li X, Wang PH, Yu XF, Wei W. SARS-CoV-2 and oncolytic EV-D68-encoded proteases differentially regulate pyroptosis. J Virol 2024; 98:e0190923. [PMID: 38289118 PMCID: PMC10878271 DOI: 10.1128/jvi.01909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.
Collapse
Affiliation(s)
- Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiaohan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Guo C, Yang X, Li L. Pyroptosis-Related Gene Signature Predicts Prognosis and Response to Immunotherapy and Medication in Pediatric and Young Adult Osteosarcoma Patients. J Inflamm Res 2024; 17:417-445. [PMID: 38269108 PMCID: PMC10807455 DOI: 10.2147/jir.s440425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose Pyroptosis, a new form of inflammatory programmed cell death, has recently gained attention. However, the impact of the expression levels of pyroptosis-related genes (PRGs) on the overall survival (OS) of osteosarcoma patients remains unclear. This study aims to investigate the impact of the expression levels of PRGs on the OS of pediatric and young adult patients with osteosarcoma. Patients and Methods Transcriptome matrix datasets of normal muscle or skeletal tissues from the Genotype-Tissue Expression (GTEx) project and osteosarcoma specimen the National Cancer Institute's (NCI) Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were used to identify pyroptosis-related genes (PRGs) associated with prognosis. The National Center for Biotechnology Information's (NCBI) GSE21257 dataset was employed to validate the predictive value of the pyroptosis-related signature (PRS). Additionally, reverse transcription polymerase chain reaction (RT-qPCR) experiment was performed in normal and osteosarcoma cell lines. Results The study identified 18 differentially expressed PRGs (DEPRGs) between normal muscle or skeletal tissues and tumor samples. Multiple machine learning techniques were used to select PRGs, resulting in the identification of four hub PRGs. A PRS-score was calculated for each sample based on the expression of these four hub PRGs, and samples were categorized into low and high PRS-score level groups. It was confirmed that metastatic status and PRS-score level are independent prognostic predictors. A nomogram model for predicting OS of osteosarcoma patients was constructed. Single-cell RNA-sequencing data display the expression patterns of the hub PRGs. RT-qPCR data results were found to be consistent with the differential expression analysis performed on TARGET and GTEx samples. Conclusion The study developed a novel pyroptosis-related gene signature that can stratify pediatric and young adult osteosarcoma patients into different risk groups, thus predicting their response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Chaofan Guo
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Xin Yang
- Department of Neurosurgery, Chongqing Fourth People’s Hospital, Chongqing, People’s Republic of China
| | - Lijun Li
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| |
Collapse
|
8
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U, Marino M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int J Mol Sci 2023; 24:16556. [PMID: 38068879 PMCID: PMC10706560 DOI: 10.3390/ijms242316556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, 41126 Modena, Italy;
| | - Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Annunziata Stefanile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy;
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Xia C, Zhang X, Harypursat V, Ouyang J, Chen Y. The role of pyroptosis in incomplete immune reconstitution among people living with HIV:Potential therapeutic targets. Pharmacol Res 2023; 197:106969. [PMID: 37866704 DOI: 10.1016/j.phrs.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Globally, HIV infection causes significant morbidity and mortality, and is a major public health problem. Despite the fact that widespread use of antiretroviral therapy (ART) has substantially altered the natural history of HIV infection from originally being a universally lethal disease to now being a chronic medical condition for those taking appropriate treatment, approximately 10-40% of people living with HIV (PLWH) who take effective ART and maintain long-term viral suppression fail to achieve normalization of CD4 + T-cell counts. This phenomenon is referred to as incomplete immune reconstitution or immunological non-response. Although the precise mechanisms underlying this outcome have not been elucidated, recent evidence indicates that excessive pyroptosis may play a crucial role in the development of incomplete immune reconstitution. Pyroptosis is characterized by the formation of pores in the cell membrane, cell rupture, and secretion of intracellular contents and pro-inflammatory cytokines, including IL-1β and IL-18. This excessive inflammation-induced programmed cell death leads to a massive loss of CD4 + T-cells, and inflammatory consequences that may promote and sustain incomplete immune reconstitution. Herein, we review the possible pathways activated in HIV infection by inflammasomes that act as switches of pyroptosis, and the role of pyroptosis in HIV, as well as the relevance of CD4 + T-cells in incomplete immune reconstitution. We also highlight the possible mechanisms of pyroptosis involved in incomplete immune reconstitution, thus paving the way for the development of potential targets for the treatment of incomplete immune reconstitution.
Collapse
Affiliation(s)
- Chao Xia
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Department of Pharmacy, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
10
|
Leal VNC, Paulino LM, Cambui RAG, Zupelli TG, Yamada SM, Oliveira LAT, Dutra VDF, Bub CB, Sakashita AM, Yokoyama APH, Kutner JM, Vieira CA, Santiago WMDS, Andrade MMS, Teixeira FME, Alberca RW, Gozzi-Silva SC, Yendo TM, Netto LC, Duarte AJS, Sato MN, Venturini J, Pontillo A. A common variant close to the "tripwire" linker region of NLRP1 contributes to severe COVID-19. Inflamm Res 2023; 72:1933-1940. [PMID: 36416944 PMCID: PMC9684769 DOI: 10.1007/s00011-022-01670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The heterogeneity of response to SARS-CoV-2 infection is directly linked to the individual genetic background. Genetic variants of inflammasome-related genes have been pointed as risk factors for several inflammatory sterile and infectious disease. In the group of inflammasome receptors, NLRP1 stands out as a good novel candidate as severity factor for COVID-19 disease. METHODS To address this question, we performed an association study of NLRP1, DPP9, CARD8, IL1B, and IL18 single nucleotide variants (SNVs) in a cohort of 945 COVID-19 patients. RESULTS The NLRP1 p.Leu155His in the linker region, target of viral protease, was significantly associated to COVID-19 severity, which could contribute to the excessive cytokine release reported in severe cases. CONCLUSION Inflammasome genetic background contributes to individual response to SARS-CoV-2.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Leandro M Paulino
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Raylane A G Cambui
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Thiago G Zupelli
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Suemy M Yamada
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Leonardo A T Oliveira
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil
| | - Valéria de F Dutra
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Carolina B Bub
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Araci M Sakashita
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Ana Paula H Yokoyama
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - José M Kutner
- Departamento de Hemoterapia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | - Camila A Vieira
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Wellyngton M de S Santiago
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Milena M S Andrade
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Franciane M E Teixeira
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Ricardo W Alberca
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - Tatiana M Yendo
- Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical, Universidade de São Paulo/FMUSP, São Paulo, Brasil
| | - Lucas C Netto
- Unidade Terapia Intensiva, Hospital das Clínicas/FMUSP, São Paulo, Brasil
| | - Alberto J S Duarte
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo/FMUSP, São Paulo, Brasil
| | - Maria N Sato
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56, Departamento de Dermatologia, Hospital das Clínicas E Faculdade de Medicina/HCFMUSP, São Paulo, Brasil
| | - James Venturini
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Grosso do Sul, Brasil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, SP, Brasil.
| |
Collapse
|
11
|
Allali-Boumara I, Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Pyroptosis Modulators: New Insights of Gasdermins in Health and Disease. Antioxidants (Basel) 2023; 12:1551. [PMID: 37627547 PMCID: PMC10451529 DOI: 10.3390/antiox12081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Pyroptosis is an inflammation-dependent type of cell death that has been in the spotlight for the scientific community in the last few years. Crucial players in the process of pyroptosis are the members of the gasdermin family of proteins, which have been parallelly studied. Upon induction of pyroptosis, gasdermins suffer from structural changes leading to the formation of pores in the membrane that subsequently cause the release of pro-inflammatory contents. Recently, it has been discovered that oxidation plays a key role in the activation of certain gasdermins. Here, we review the current knowledge on pyroptosis and human gasdermins, focusing on the description of the different members of the family, their molecular structures, and their influence on health and disease directly or non-directly related to inflammation. Noteworthy, we have focused on the existing understanding of the role of this family of proteins in cancer, which could translate into novel promising strategies aimed at benefiting human health. In conclusion, the modulation of pyroptosis and gasdermins by natural and synthetic compounds through different mechanisms, including modification of the redox state of cells, has been proven effective and sets precedents for future therapeutic strategies.
Collapse
Affiliation(s)
- Imane Allali-Boumara
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
| | - Ana Dácil Marrero
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
12
|
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun 2023; 112:188-205. [PMID: 37329995 PMCID: PMC10270733 DOI: 10.1016/j.bbi.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Whether or not SARS-CoV-2 can cross from mother to fetus during a prenatal infection has been controversial; however, recent evidence such as viral RNA detection in umbilical cord blood and amniotic fluid, as well as the discovery of additional entry receptors in fetal tissues suggests a potential for viral transmission to and infection of the fetus. Furthermore, neonates exposed to maternal COVID-19 during later development have displayed neurodevelopmental and motor skill deficiencies, suggesting the potential for consequential neurological infection or inflammation in utero. Thus, we investigated transmission potential of SARS-CoV-2 and the consequences of infection on the developing brain using human ACE2 knock-in mice. In this model, we found that viral transmission to the fetal tissues, including the brain, occurred at later developmental stages, and that infection primarily targeted male fetuses. In the brain, SARS-CoV-2 infection largely occurred within the vasculature, but also within other cells such as neurons, glia, and choroid plexus cells; however, viral replication and increased cell death were not observed in fetal tissues. Interestingly, early gross developmental differences were observed between infected and mock-infected offspring, and high levels of gliosis were seen in the infected brains 7 days post initial infection despite viral clearance at this time point. In the pregnant mice, we also observed more severe COVID-19 infections, with greater weight loss and viral dissemination to the brain, compared to non-pregnant mice. Surprisingly, we did not observe an increase in maternal inflammation or the antiviral IFN response in these infected mice, despite showing clinical signs of disease. Overall, these findings have concerning implications regarding neurodevelopment and pregnancy complications of the mother following prenatal COVID-19 exposure.
Collapse
Affiliation(s)
- Courtney L McMahon
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joshua Castro
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jesus Silvas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aranis Muniz Perez
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Manuel Estrada
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
13
|
Teyssou E, Marot S, Gothland A, Malet I, Zafilaza K, Leducq V, Cocherie T, Todesco E, Soulié C, Marcelin AG, Calvez V. SARS-CoV-2 variant-dependent inflammasome activation. J Infect 2023; 87:62-63. [PMID: 37060923 PMCID: PMC10101480 DOI: 10.1016/j.jinf.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Affiliation(s)
- Elisa Teyssou
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France.
| | - Stéphane Marot
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Adélie Gothland
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Isabelle Malet
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Karen Zafilaza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Valentin Leducq
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Théophile Cocherie
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Eve Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Cathia Soulié
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Laboratoire de Virologie, F-75013 Paris, France
| |
Collapse
|
14
|
Csobonyeiova M, Smolinska V, Harsanyi S, Ivantysyn M, Klein M. The Immunomodulatory Role of Cell-Free Approaches in SARS-CoV-2-Induced Cytokine Storm-A Powerful Therapeutic Tool for COVID-19 Patients. Biomedicines 2023; 11:1736. [PMID: 37371831 DOI: 10.3390/biomedicines11061736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, there is still no effective and definitive cure for the coronavirus disease 2019 (COVID-19) caused by the infection of the novel highly contagious severe acute respiratory syndrome virus (SARS-CoV-2), whose sudden outbreak was recorded for the first time in China in late December 2019. Soon after, COVID-19 affected not only the vast majority of China's population but the whole world and caused a global health public crisis as a new pandemic. It is well known that viral infection can cause acute respiratory distress syndrome (ARDS) and, in severe cases, can even be lethal. Behind the inflammatory process lies the so-called cytokine storm (CS), which activates various inflammatory cytokines that damage numerous organ tissues. Since the first outbreak of SARS-CoV-2, various research groups have been intensively trying to investigate the best treatment options; however, only limited outcomes have been achieved. One of the most promising strategies represents using either stem cells, such as mesenchymal stem cells (MSCs)/induced pluripotent stem cells (iPSCs), or, more recently, using cell-free approaches involving conditioned media (CMs) and their content, such as extracellular vesicles (EVs) (e.g., exosomes or miRNAs) derived from stem cells. As key mediators of intracellular communication, exosomes carry a cocktail of different molecules with anti-inflammatory effects and immunomodulatory capacity. Our comprehensive review outlines the complex inflammatory process responsible for the CS, summarizes the present results of cell-free-based pre-clinical and clinical studies for COVID-19 treatment, and discusses their future perspectives for therapeutic applications.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Apel, Dunajská 52, 811 08 Bratislava, Slovakia
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
| | - Veronika Smolinska
- Regenmed Ltd., Medená 29, 811 08 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | | | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
15
|
Akbar SMF, Al Mahtab M, Khan S. Cellular and Molecular Mechanisms of Pathogenic and Protective Immune Responses to SARS-CoV-2 and Implications of COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11030615. [PMID: 36992199 DOI: 10.3390/vaccines11030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has devastated the world with coronavirus disease 2019 (COVID-19), which has imparted a toll of at least 631 million reported cases with 6.57 million reported deaths. In order to handle this pandemic, vaccines against SARS-CoV-2 have been developed and billions of doses of various vaccines have been administered. In the meantime, several antiviral drugs and other treatment modalities have been developed to treat COVID-19 patients. At the end of the day, it seems that anti-SARS-CoV-2 vaccines and newly developed antiviral drugs may be improved based on various new developments. COVID-19 represents a virus-induced, immune-mediated pathological process. The severity of the disease is related to the nature and properties of the host immune responses. In addition, host immunity plays a dominant role in regulating the extent of COVID-19. The present reality regarding the role of anti-SARS-CoV-2 vaccines, persistence of SARS-CoV-2 infection even three years after the initiation of the pandemic, and divergent faces of COVID-19 have initiated several queries among huge populations, policy makers, general physicians, and scientific communities. The present review aims to provide some information regarding the molecular and cellular mechanisms underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| |
Collapse
|
16
|
Chen C, Ye Q, Wang L, Zhou J, Xiang A, Lin X, Guo J, Hu S, Rui T, Liu J. Targeting pyroptosis in breast cancer: biological functions and therapeutic potentials on It. Cell Death Discov 2023; 9:75. [PMID: 36823153 PMCID: PMC9950129 DOI: 10.1038/s41420-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Pyroptosis is a lytic and inflammatory type of programmed cell death that is mediated by Gasdermin proteins (GSDMs). Attractively, recent evidence indicates that pyroptosis involves in the development of tumors and can serve as a new strategy for cancer treatment. Here, we present a basic knowledge of pyroptosis, and an overview of the expression patterns and roles of GSDMs in breast cancer. In addition, we further summarize the available evidence of pyroptosis in breast cancer progression and give insight into the clinical potential of applying pyroptosis in anticancer strategies for breast cancer. This review will deepen our understanding of the relationship between pyroptosis and breast cancer, and provide a novel potential therapeutic avenue for breast cancer.
Collapse
Affiliation(s)
- Cong Chen
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianwei Ye
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aizhai Xiang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Hu
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Rui
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
18
|
Taner N, Haskologlu IC, Erdag E, Mercan M, Chuckwunyere U, Ulker D, Sehirli AO, Abacioglu N. Chronobiological Efficacy of Combined Therapy of Pelargonium Sidoides and Melatonin in Acute and Persistent Cases of COVID-19: A Hypothetical Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:427-442. [PMID: 37378781 DOI: 10.1007/978-3-031-28012-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since the outbreak of the first SARS-CoV-2 epidemic in China, pharmacists have rapidly engaged and developed strategies for pharmaceutical care and supply. According to the guidelines of the International Pharmaceutical Federation (FIP), clinical pharmacists/hospital pharmacists, as members of care teams, play one of the most important roles in the pharmaceutical care of patients with COVID-19. During this pandemic, many immuno-enhancing adjuvant agents have become critical in addition to antivirals and vaccines in order to overcome the disease more easily. The liquid extract obtained from the Pelargonium sidoides plant is used for many indications such as colds, coughs, upper respiratory tract infections, sore throat, and acute bronchitis. The extract obtained from the roots of the plant has been observed to have antiviral and immunomodulatory activity. In addition to its anti-inflammatory and antioxidant effects, melatonin plays a role in suppressing the cytokine storm that can develop during COVID-19 infection. Knowing that the severity and duration of COVID-19 symptoms vary within 24 hours and/or in different time periods indicates that COVID-19 requires a chronotherapeutic approach. Our goal in the management of acute and long COVID is to synchronize the medication regimen with the patient's biological rhythm. This chapter provides a comprehensive review of the existing and emerging literature on the chronobiological use of Pelargonium sidoides and melatonin during acute and prolonged COVID-19 episodes.
Collapse
Affiliation(s)
- Neda Taner
- Istanbul Medipol University, School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ismail Celil Haskologlu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Emine Erdag
- Near East University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Nicosia, Mersin 10, Turkey
| | - Merve Mercan
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Ugochukwu Chuckwunyere
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Damla Ulker
- Near East University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Nicosia, Mersin 10, Turkey
| | - Ahmet Ozer Sehirli
- Near East University, Faculty of Dentistry, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Nurettin Abacioglu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| |
Collapse
|
19
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|